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Abstract. The purpose of this paper is to introduce and study a new class of generalized strongly
nonlinear variational-like inequalities. The existence and uniqueness of solution and a new
iterative algorithm for the generalized strongly nonlinear variational-like inequality are proved
and suggested, respectively. Moreover, the convergence criteria of the sequence generated by the
iterative algorithm are also given.

1. Introduction

Recently, variational inequality theory has been extended and applied in various
directions, see [1]-[8], [10]-[33] and the references therein. It is worth mentioning that
one of the most important problems in variational inequality theory is the develop-
ment of efficient and implementable iterative algorithms for solving various variational
inequalities. It is well known that there are a lot of iterative type algorithms for find-
ing the approximate solutions of various variational inequalities in Hilbert spaces [3]
and [7], [8], [10]-[33]. By using the auxiliary principle technique, Ding [4], [5] and
Ding-Tan [6] studied some classes of general nonlinear mixed variational inequalities
and variational-like inequalities in reflexive Banach spaces, and suggested some iter-
ative algorithms to compute approximate solutions for these general nonlinear mixed
variational inequalities and variational-like inequalities. Verma [27]-[31] proved the
existence of solutions for several classes of nonlinear variational inequalities involving
various nonlinear monotone mappings in Hilbert spaces.

In this paper, we introduce and study a new class of generalized strongly nonlinear
variational-like inequalities. By applying a result due to Chang [1], we prove the
existence and uniqueness of solution of the generalized strongly nonlinear variational-
like inequality and suggest a new iterative algorithm for solving the class of generalized
strongly nonlinear variational-like inequalities. The convergence criteria of the sequence
generated by the iterative algorithm are given. The results presented in this paper extend
and improve the corresponding results in [4], [5] and [33].

Mathematics subject classification (2000): 47J20, 49J40.
Keywordsandphrases: Generalizedstronglynonlinear variational-like inequality, contractionmapping,

algorithm.

c© � � , Zagreb
Paper MIA-08-65

705



706 ZEQING LIU, JUHE SUN, SOO HAK SHIM AND SHIN MIN KANG

2. Preliminaries

Let H be a real Hilbert space endowed with an inner product 〈 ·, ·〉 and norm ‖·‖ ,
respectively. Let K be a nonempty closed convex subset of H , A, C, E, F : K → H,
N, M : H × H → H and η : K × K → H be mappings. Suppose that a : H × H →
(−∞,∞) is a coercive continuous bilinear form, that is, there exist positive constants
c and d such that

(C1) a(v, v) � c‖v‖2, ∀v ∈ H;
(C2) a(u, v) � d‖u‖‖v‖, ∀u, v ∈ H.

Clearly, c � d.

Let b : H × H → (−∞, +∞) be nondifferential and satisfy the following conditions:
(C3) b is linear in the first argument;
(C4) b is convex in the second argument;
(C5) b is bounded, that is, there exists a constant q > 0 satisfying

|b(u, v)| � q‖u‖‖v‖, ∀u, v ∈ H;

(C6) b(u, v) − b(u, w) � b(u, v− w), ∀u, v, w ∈ H.

Now we consider the following generalized strongly nonlinear variational-like
inequality problem: For a given g ∈ H, find u ∈ K such that

〈N(Au, Cu)− M(Eu, Fu)+g,η(v, u)〉+a(u, v− u) � b(u, u)−b(u, v), ∀v ∈ K.
(2.1)

Special Cases
(A) If N(Au, Cu) = Au − Cu, a(u, v) = 0, M(Eu, Fu) = 0 and b(u, v) = f (v)

for all u, v ∈ K, and g = 0 , then the generalized strongly nonlinear variational-like
inequality (2.1) is equivalent to finding u ∈ K such that

〈Cu − Au,η(v, u)〉 � f (u) − f (v), ∀v ∈ K, (2.2)

which was introduced and studied by Ding [4].
(B) If a(u, v) = 0 and M(Eu, Fu) = 0 for all u, v ∈ K, then the generalized

strongly nonlinear variational-like inequality (2.1) is equivalent to finding u ∈ K such
that

〈N(Au, Cu) + g,η(v, u)〉 � b(u, u)− b(u, v), ∀v ∈ K, (2.3)

which was studied by Ding [5].
(C) If N(Au, Cu) = Au − Cu, a(u, v) = 0, M(Eu, Fu) = 0, η(u, v) = gu − gv

and b(u, v) = f (v) for all u, v ∈ K, and g = 0, then the generalized strongly nonlinear
variational-like inequality (2.1) is equivalent to finding u ∈ K such that

〈Cu − Au, gv− gu)〉 � f (u) − f (v), ∀v ∈ K, (2.4)

which was studied by Yao [33].
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DEFINITION 2.1. Let A : K → H, N : H × H → H and η : K × K → H be
mappings.

(1) A is said to be Lipschitz continuous with constant α if there exists a constant
α > 0 such that

‖Au − Av‖ � α‖u − v‖, ∀u, v ∈ K;

(2) N is said to be Lipschitz continuous with constant β in the first argument if
there exists a constant β > 0 such that

‖N(u, w) − N(v, w)‖ � β‖u − v‖, ∀u, v, w ∈ H;

(3) N is said to be strongly monotone with constant γ with respect to A in the
second argument if

〈N(w, Au) − N(w, Av), u − v〉 � γ ‖u − v‖2, ∀u, v ∈ K, w ∈ H;

(4) N is said to be relaxed Lipschitz with constant γ with respect to A in the
second argument if

〈N(w, Au) − N(w, Av), u − v〉 � −γ ‖u − v‖2, ∀u, v ∈ K, w ∈ H;

(5) N is said to be η -monotone with respect to A in the first argument if

〈N(Au, w) − N(Av, w),η(u, v)〉 � 0, ∀u, v ∈ K, w ∈ H;

(6) N is said to be η -strongly monotone with constant ξ with respect to A in
the first argument if there exists a constant ξ > 0 such that

〈N(Au, w) − N(Av, w),η(u, v)〉 � ξ‖u − v‖2, ∀u, v ∈ K, w ∈ H;

(7) N is said to be η -relaxed Lipschitz with constant ζ with respect to A in the
second argument if there exists a constant ζ > 0 such that

〈N(w, Au) − N(w, Av),η(u, v)〉 � −ζ‖u − v‖2, ∀u, v ∈ K, w ∈ H;

(8) η is said to be Lipschitz continuous with constant δ if there exists a constant
δ > 0 such that

‖η(u, v)‖ � δ‖u − v‖, ∀u, v ∈ K;

(9) η is said to be strongly monotone with constant ω if there exists a constant
ω > 0 such that

〈 u − v,η(u, v)〉 � ω‖u − v‖2, ∀u, v ∈ K.

Similarly, we can define the Lipschitz continuity of N in the second argument.

LEMMA 2.1. [1] Let X be a nonempty closed convex subset of a Hausdorff linear
topological space E , and φ,ψ : X × X → R be mappings satisfying the following
conditions:

(a) ψ(x, y) � φ(x, y), ∀x, y ∈ X, and ψ(x, x) � 0, ∀x ∈ X;
(b) for each x ∈ X, φ(x, ·) is upper semicontinuous on X;
(c) for each y ∈ X, the set {x ∈ X : ψ(x, y) < 0} is a convex set;
(d) there exists a nonempty compact set K ⊂ X and x0 ∈ K such that ψ(x0, y) <

0, ∀y ∈ X \ K.
Then there exists ŷ ∈ K such that φ(x, ŷ) � 0, ∀x ∈ X.
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LEMMA 2.2. [9] Let {αn}n�0 , {βn}n�0 and {γn}n�0 be nonnegative sequences
satisfying

αn+1 � (1 − λn)αn + βnλn + γn, ∀n � 0,

where {λn}n�0 ⊂ [0, 1] ,
∑∞

n=0 λn = ∞, limn→∞ βn = 0 and
∑∞

n=0 γn < ∞. Then

lim
n→∞αn = 0.

3. Existence Theorems

In this section, we give two existence theorems of solutions for the generalized
strongly nonlinear variational-like inequality (2.1) .

THEOREM 3.1. Let a : H×H → (−∞,∞) be a coercive continuous bilinear form
with (C1) and (C2) and b : H × H → (−∞,∞) satisfy (C3) − (C6). Suppose that
A, C, E : K → H and N, M : H×H → H are continuous mappings, η : K×K → H is
Lipschitz continuous with constant δ and strongly monotone with constant ω , for each
v ∈ K, η(·, v) is continuous and η(v, u) = −η(u, v) for all u, v ∈ K. Assume that N
is η -strongly monotone with constant ξ with respect to A in the first argument and
η -monotone with respect to C in the second argument. Let F : K → H be Lipschitz
continuous with constant l, M be η -relaxed Lipschitz with constant � with respect
to E in the first argument, relaxed Lipschitz with constant τ with respect to F in the
second argument and Lipschitz continuous with constant ϑ in the second argument.
Suppose that for given x, y ∈ H and v ∈ K, the mappings u 
→ 〈N(x, y) + g,η(v, u)〉
and u 
→ 〈M(x, y),η(u, v)〉 be concave and upper semicontinuous. Let k = ϑ l,
j = ξ+�

δ and p = ω−d−q
δ . If there exists a constant μ > 0 satisfying

μj + p > 0, (3.1)

and one of the following conditions:
∣∣∣∣μ − τ − jp

k2 − j2

∣∣∣∣ <

√
(τ − jp)2 − (k2 − j2)(1 − p2)

k2 − j2
,

k > j, |τ − jp| >
√

(k2 − j2)(1 − p2);

(3.2)

∣∣∣∣μ − τ − jp
k2 − j2

∣∣∣∣ >

√
(τ − jp)2 + (j2 − k2)(1 − p2)

j2 − k2
, k < j, (3.3)

then for any given g ∈ H, the generalized strongly nonlinear variational-like inequality
(2.1) has a unique solution in K.

Proof. First of all we show that for each fixed û ∈ K, there exists a unique ŵ ∈ K
such that

〈 ŵ,η(v, ŵ)〉 � 〈 û,η(v, ŵ)〉 − μ〈N(Aŵ, Cŵ) − M(Eŵ, Fû) + g,η(v, ŵ)〉
− μa(û, v − ŵ) − μb(û, v) + μb(û, ŵ), ∀v ∈ K,

(3.4)
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where μ > 0 is a constant. Let û be in K. Define the functionals φ and ψ : K×K → R
by

φ(v, w) = 〈 v,η(v, w)〉 − 〈 û,η(v, w)〉
+ μ〈N(Av, Cv) − M(Ev, Fû) + g,η(v, w)〉
+ μa(û, v − w) + μb(û, v) − μb(û, w)

and
ψ(v, w) = 〈w,η(v, w)〉 − 〈 û,η(v, w)〉

+ μ〈N(Aw, Cw) − M(Ew, Fû) + g,η(v, w)〉
+ μa(û, v − w) + μb(û, v) − μb(û, w)

for all v, w ∈ K .
We check that the functionals φ and ψ satisfy all the conditions of Lemma 2.1 in

the weak topology. It is easy to see for all v, w ∈ K,

φ(v, w) − ψ(v, w) = 〈 v − w,η(v, w)〉 + μ〈N(Av, Cv) − N(Aw, Cv),η(v, w)〉
+ μ〈N(Aw, Cv) − N(Aw, Cw),η(v, w)〉
− μ〈M(Ev, Fû) − M(Ew, Fû),η(v, w)〉

� [ω + μ(ξ + �)]‖v − w‖2 � 0,

which yields that φ and ψ satisfy the condition (a) of Lemma 2.1. Note that b is
convex and lower semicontinuous with respect to the second argument and for given
x, y ∈ H, v ∈ K, the mappings u 
→ 〈N(x, y)+g,η(v, u)〉 and u 
→ 〈M(x, y),η(u, v)〉
are concave and upper semicontinuous. It follows that φ(v, w) is weakly upper semi-
continuous with respect to w and the set {v ∈ K : ψ(v, w) < 0} is convex for each
w ∈ K. Therefore the conditions (b) and (c) of Lemma 2.1 hold. Put

D = [ω + μ(ξ + �)]−1[δμ(‖N(Av∗, Cv∗)‖ + ‖M(Ev∗, Fû)− g‖)− μ(1 + d + q)‖û‖]
and

T = {w ∈ K : ‖w − v∗‖ � D}.
Clearly, T is a weakly compact subset of K and for any w ∈ K \ T

ψ(v∗, w) = −〈w,η(w, v∗)〉 + 〈 û,η(w, v∗)〉
− μ〈N(Aw, Cw) − N(Av∗, Cw),η(w, v∗)〉
− μ〈N(Av∗, Cw) − N(Av∗, Cv∗),η(w, v∗)〉
− μ〈N(Av∗, Cv∗),η(w, v∗)〉 + μ〈M(Ew, Fû) − M(Ev∗, Fû),η(w, v∗)〉
+ μ〈M(Ev∗, Fû) − g,η(w, v∗)〉 + μa(û,−w) + μb(û, v∗) − μb(û, w)

� −‖w− v∗‖{[ω + μ(ξ + �)]‖w − v∗‖ − δμ(‖N(Av∗, Cv∗)‖
+ ‖M(Ev∗, Fû) − g‖) − μ(1 + d + q)‖û‖}

< 0,

which means that the condition (d) of Lemma 2.1 holds. Thus Lemma 2.1 ensures that
there exists a ŵ ∈ K such that φ(v, ŵ) � 0 for all v ∈ K, that is,

〈 v,η(v, ŵ)〉 � 〈 û,η(v, ŵ)〉 − μ〈N(Av, Cv) − M(Ev, Fû) + g,η(v, ŵ)〉
− μa(û, v − ŵ) − μb(û, v) + μb(û, ŵ).

(3.5)
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Set t be in (0, 1] and v be in K. Replacing v by vt = tv + (1− t)ŵ in (3.5) , we
know that

〈 vt,η(vt, ŵ)〉 � 〈 û,η(vt, ŵ)〉 − μ〈N(Avt, Cvt) − M(Evt, Fû) + g,η(vt, ŵ)〉
− μa(û, t(v − ŵ)) − μb(û, vt) + μb(û, ŵ).

(3.6)

Notice that a is bilinear and b is convex with respect to the second argument.
From (3.6) we deduce that

t[〈 vt,η(v, ŵ)〉 ] � t[〈 û,η(v, ŵ)〉 − μ〈N(Avt, Cvt) − M(Evt, Fû) + g,η(v, ŵ)〉
− μa(û, v − ŵ) − μb(û, v) + μb(û, ŵ)],

which implies that

〈 vt,η(v, ŵ)〉 � 〈 û,η(v, ŵ)〉 − μ〈N(Avt, Cvt) − M(Evt, Fû) + g,η(v, ŵ)〉
− μa(û, v − ŵ) − μb(û, v) + μb(û, ŵ).

Letting t → 0+ in the above inequality, we conclude that

〈 ŵ,η(v, ŵ)〉 � 〈 û,η(v, ŵ)〉 − μ〈N(Aŵ, Cŵ) − M(Eŵ, Fû) + g,η(v, ŵ)〉
− μa(û, v − ŵ) − μb(û, v) + μb(û, ŵ), ∀v ∈ K.

That is, ŵ is a solution of (3.4) . Now we prove the uniqueness. For any two solutions
w1, w2 ∈ K of (3.4) , we know that

〈w1,η(v, w1)〉 � 〈 û,η(v, w1)〉 − μ〈N(Aw1, Cw1) − M(Ew1, Fû) + g,η(v, w1)〉
− μa(û, v − w1) − μb(û, v) + μb(û, w1)

(3.7)
and

〈w2,η(v, w2)〉 � 〈 û,η(v, w2)〉 − μ〈N(Aw2, Cw2) − M(Ew2, Fû) + g,η(v, w2)〉
− μa(û, v − w2) − μb(û, v) + μb(û, w2)

(3.8)
for all v ∈ K. Taking v = w2 in (3.7) and v = w1 in (3.8), we get that

〈w1,η(w2, w1)〉 � 〈 û,η(w2, w1)〉 − μ〈N(Aw1, Cw1) − M(Ew1, Fû) + g,η(w2, w1)〉
− μa(û, w2 − w1) − μb(û, w2) + μb(û, w1)

and

〈w2,η(w1, w2)〉 � 〈 û,η(w1, w2)〉 − μ〈N(Aw2, Cw2) − M(Ew2, Fû) + g,η(w1, w2)〉
− μa(û, w1 − w2) − μb(û, w1) + μb(û, w2).

Adding these inequalities, we deduce that

ω‖w1 − w2‖2 � −μ〈N(Aw1, Cw1) − N(Aw2, Cw1),η(w1, w2)〉
− μ〈N(Aw2, Cw1) − N(Aw2, Cw2),η(w1, w2)〉
+ μ〈M(Ew1, Fû) − M(Ew2, Fû),η(w1, w2)〉

� −μ(ξ + �)‖w1 − w2‖2,
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which yields that w1 = w2. That is, ŵ is the unique solution of (3.4) . This means
that there exists a mapping G : K → K satisfying G(û) = ŵ, where ŵ is the unique
solution of (3.4) for each û ∈ K.

Next we show that G is a contraction mapping. Let u1 and u2 be arbitrary
elements in K. Using (3.4), we see that

〈Gu1,η(v, Gu1)〉 � 〈 u1,η(v, Gu1)〉
− μ〈N(A(Gu1), C(Gu1)) − M(E(Gu1), Fu1) + g,η(v, Gu1)〉
− μa(u1, v − Gu1) − μb(u1, v) + μb(u1, Gu1)

(3.9)
and

〈Gu2,η(v, Gu2)〉 � 〈 u2,η(v, Gu2)〉
− μ〈N(A(Gu2), C(Gu2)) − M(E(Gu2), Fu2) + g,η(v, Gu2)〉
− μa(u2, v − Gu2) − μb(u2, v) + μb(u2, Gu2)

(3.10)
for all v ∈ K. Letting v = Gu2 in (3.9) and v = Gu1 in (3.10) , and adding these
inequalities, we arrive at

ω‖Gu1 − Gu2‖2 � −μ〈N(A(Gu1), C(Gu1)) − N(A(Gu2), C(Gu1)),η(Gu1, Gu2)〉
− μ〈N(A(Gu2), C(Gu1)) − N(A(Gu2), C(Gu2)),η(Gu1, Gu2)〉
+ μ〈M(E(Gu1), Fu1) − M(E(Gu2), Fu1),η(Gu1, Gu2)〉
+ 〈 u1−u2+μ(M(E(Gu2), Fu1)−M(E(Gu2), Fu2)),η(Gu1, Gu2)〉
+ μa(u1 − u2, Gu1 − Gu2) + μb(u1 − u2, Gu2 − Gu1)

� −μ(ξ + �)‖Gu1 − Gu2‖2

+ [δ
√

1 − 2μτ + (μϑ l)2 + μ(d + q)]‖u1 − u2‖‖Gu1 − Gu2‖,
that is,

‖Gu1 − Gu2‖ � θ‖u1 − u2‖,
where

θ =
δ
√

1 − 2μτ + (μϑ l)2 + μ(d + q)
ω + μ(ξ + �)

< 1 (3.11)

by (3.1) and one of (3.2) and (3.3) , which yields that G : K → K is a contraction
mapping and hence it has a unique fixed point u ∈ K, which is a unique solution of
the generalized strongly nonlinear variational-like inequality (2.1) . This completes the
proof.

THEOREM 3.2. Let a, b, A, E, F, N, M,η, k and p be as in Theorem 3.1. Suppose
that N is Lipschitz continuous with constant ζ in the second argument, C : K → H is
Lipschitz continuous with constant ε and j = ξ+�−δζε

δ > 0. If there exists a constant
μ > 0 satisfying (3.1) and one of (3.2) and (3.3) , then for any given g ∈ H, the
generalized strongly nonlinear variational-like inequality (2.1) has a unique solution
u ∈ K.
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Proof. Put

D = [ω+μ(ξ+�−δζε)]−1[δμ(‖N(Av∗, Cv∗)‖+‖M(Ev∗, Fû)−g‖)−μ(1+d+q)‖û‖]
and

T = {w ∈ K : ‖w − v∗‖ � D}.
As in the proof of Theorem 3.1, we conclude that

ψ(v∗, w) = −〈w,η(w, v∗)〉 + 〈 û,η(w, v∗)〉
− μ〈N(Aw, Cw) − N(Av∗, Cw),η(w, v∗)〉
− μ〈N(Av∗, Cw) − N(Av∗, Cv∗),η(w, v∗)〉
− μ〈N(Av∗, Cv∗),η(w, v∗)〉 + μ〈M(Ew, Fû) − M(Ev∗, Fû),η(w, v∗)〉
+ μ〈M(Ev∗, Fû) − g,η(w, v∗)〉 + μa(û,−w) + μb(û, v∗) − μb(û, w)

� −‖w− v∗‖{[ω + μ(ξ + � − δζε)]‖w − v∗‖ − δμ(‖N(Av∗, Cv∗)‖
+ ‖M(Ev∗, Fû) − g‖) − μ(1 + d + q)‖û‖}

< 0

for any w ∈ K \ T. The rest of the argument is now essentially the same as in the proof
of Theorem 3.1 and therefore is omitted.

REMARK 3.2 Theorems 3.1 and 3.2 extend Theorem 3.1 in [33].

4. Algorithm and Convergence Theorems

Using Theorem 3.1, we suggest the following iterative algorithm.
Algorithm. Suppose that a : H×H → (−∞,∞) is a coercive continuous bilinear

form with (C1) and (C2) and b : H × H → (−∞,∞) satisfies (C3) − (C6). Let
A, C, E, F : K → H, N, M : H × H → H and η : K × K → H be mappings, and
g ∈ H be given. For any given u0 ∈ K, compute sequences {un}n�0 and {wn}n�0 by
the following iterative schemes

〈wn,η(v, wn)〉 � (1 − αn)〈 un,η(v, wn)〉
+ αn〈 un − μN(Awn, Cwn) + μM(Ewn, Fun) − μg,η(v, wn)〉
− αnμa(un, v − wn) − αnμb(un, v) + αnμb(un, wn) + 〈 rn,η(v, wn)〉

(4.1)
and

〈 un+1,η(v, un+1)〉 � (1 − βn)〈wn,η(v, un+1)〉
+ βn〈wn−μN(Aun+1, Cun+1)+μM(Eun+1, Fwn)−μg,η(v, un+1)〉
− βnμa(wn, v − un+1) − βnμb(wn, v) + βnμb(wn, un+1)
+ 〈 sn,η(v, un+1)〉

(4.2)
for all v ∈ K and n � 0, where {αn}n�0, {βn}n�0 ⊂ [0, 1] and {rn}n�0, {sn}n�0 ∈
H.
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THEOREM 4.1. Let a, b, A, C, E, F, N, M,η, k, j and p be as in Theorem 3.1. As-
sume that

lim
n→∞ ‖rn‖ = lim

n→∞ ‖sn‖ = 0 (4.3)

and
inf{αn, βn : n � 0} > 0. (4.4)

If there exists a constant μ > 0 satisfying (3.1) and

δ − ω
(ξ + �) inf{αn, βn : n � 0} � μ < min

{
δ

d + q
,

2δ(δτ − d − q)
(δϑ l)2 − (d + q)2

}
, (4.5)

then for any given g ∈ H, the generalized strongly nonlinear variational-like inequality
(2.1) possesses a unique solution u ∈ K and the iterative sequence {un}n�0 generated
by Algorithm converges strongly to u .

Proof. Put

θ1 =
δ

ω + μ(ξ + �) inf{αn, βn : n � 0}
and

θ2 =
μ(d + q)

δ
+

√
1 − 2μτ + (μϑ l)2.

In view of (3.1) , (3.11) and (4.5) , we conclude easily that

θ =
δ
√

1 − 2μτ + (μϑ l)2 + μ(d + q)
ω + μ(ξ + �)

=
δθ2

ω + μ(ξ + ρ)

� δθ2

ω + μ(ξ + ρ) inf{αn, βn : n � 0}
� θ2 < 1,

which yields that one of (3.2) and (3.3) holds. It follows from Theorem 3.1 that for
any given g ∈ H, the generalized strongly nonlinear variational-like inequality (2.1)
has a unique solution u ∈ K such that

〈 u,η(v, u)〉 � (1 − αn)〈 u,η(v, u)〉
+ αn〈 u − μN(Au, Cu) + μM(Eu, Fu)− μg,η(v, u)〉
− αnμa(u, v− u) − αnμb(u, v) + αnμb(u, u)

(4.6)

and

〈 u,η(v, u)〉 � (1 − βn)〈 u,η(v, u)〉
+ βn〈 u − μN(Au, Cu) + μM(Eu, Fu) − μg,η(v, u)〉
− βnμa(u, v − u) − βnμb(u, v) + βnμb(u, u)

(4.7)
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for all v ∈ K and n � 0. Taking v = u in (4.1) , v = wn in (4.6) and adding these
inequalities, we get that

ω‖wn − u‖2 � (1 − αn)〈 un − u,η(wn, u)〉
− αnμ〈N(Awn, Cwn) − N(Au, Cwn),η(wn, u)〉
− αnμ〈N(Au, Cwn) − N(Au, Cu),η(wn, u)〉
+ αnμ〈M(Ewn, Fun) − M(Eu, Fun),η(wn, u)〉
+ αn〈 un − u + μ(M(Eu, Fun) − M(Eu, Fu)),η(wn, u)〉
− αnμa(un − u, wn − u) + αnμb(un − u, u − wn) + 〈 rn,η(wn, u)〉

� (1 − αn)δ‖un − u‖‖wn − u‖ − αnξμ‖wn − u‖2 − αnρμ‖wn − u‖2

+ αnδ
√

1 − 2μτ + μ2ϑ2l2‖un − u‖‖wn − u‖
+ αndμ‖un − u‖‖wn − u‖ + αnqμ‖un − u‖‖wn − u‖
+ δ‖rn‖‖wn − u‖, ∀n � 0,

which means that

‖wn − u‖ � δ
ω + μ(ξ + ρ)αn

[1 − αn(1 − θ2)]‖un − u‖ +
δ

ω + μ(ξ + ρ)αn
‖rn‖

� θ1[1 − αn(1 − θ2)]‖un − u‖ + θ1‖rn‖
� [1 − αn(1 − θ2)]‖un − u‖ + ‖rn‖
� ‖un − u‖ + ‖rn‖, ∀n � 0.

(4.8)
From (4.2) , (4.7) and (4.8) , we deduce similarly that

‖un+1 − u‖ � [1 − βn(1 − θ2)]‖wn − u‖ + ‖sn‖
� [1 − βn(1 − θ2)]‖un − u‖ + ‖sn‖ + ‖rn‖, ∀n � 0.

(4.9)

It follows from (4.3) , (4.4) , (4.9) and Lemma 2.2 that limn→∞ ‖un+1 − u‖ = 0 .
This completes the proof.

Similarly we have the following result.

THEOREM 4.2. Let a, b, A, C, E, F, N, M,η, k, j and p be as in Theorem 3.2 and
(4.3) and (4.4) hold. If there exists a constant μ > 0 satisfying (3.1) and

δ − ω
(ξ + � − δζε) inf{αn, βn : n � 0} � μ < min

{
δ

d + q
,

2δ(δτ − d − q)
(δϑ l)2 − (d + q)2

}
,

(4.10)
then for any given g ∈ H, the generalized strongly nonlinear variational-like inequality
(2.1) possesses a unique solution u ∈ K and the iterative sequence {un}n�0 generated
by Algorithm converges strongly to u .
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