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GENERICITY AND MINIMAX OPTIMIZATION

ALEXANDER J. ZASLAVSKI

Abstract. In this paper we study a class of minimax problems max{f (x), g(x)} → min, x ∈ Rn

where f , g ∈ C1(Rn) and f is convex. We show that the subclass of all problems for which
there exists a point of minimum z ∈ R1 such that f (z) = g(z) and ∇f (z) = ∇g(z) is small.
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