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GENERICITY AND MINIMAX OPTIMIZATION

ALEXANDER J. ZASLAVSKI

(communicated by C. E. M. Pearce)

Abstract. In this paper we study a class of minimax problems max{f (x), g(x)} → min, x ∈ Rn

where f , g ∈ C1(Rn) and f is convex. We show that the subclass of all problems for which
there exists a point of minimum z ∈ R1 such that f (z) = g(z) and ∇f (z) = ∇g(z) is small.

1. Introduction

The study of minimax problems is one of central topics in optimization theory.
See, for example, [3-5] and the references mentioned therein. In this paper we consider
a class of minimax problems

max{f (x), g(x)} → min, x ∈ Rn

where f , g ∈ C1(Rn) and f is convex. We show that the subclass of all problems for
which there exists a point of minimum z ∈ Rn such that

f (z) = g(z) and ∇f (z) = ∇g(z)

is small. It means that for a typical problem, if its solution z satisfies f (z) = g(z) , then
the cost function max{f , g} is not differentiable at z . Here, instead of considering a
certain property for a single minimax problem, we investigate it for a class of minimax
problems and show that this property holds for most of the problems in the class. This
approach has already been successfully applied in many areas of Analysis. See, for
example, [1, 2, 7-9].

Let X be a nonempty set. For each f : X → R1 define

inf(f ) = inf{f (x) : x ∈ X}.
For each f , g : X → R1 define a function max{f , g} : X → R1 by

max{f , g}(x) = max{f (x), g(x)}, x ∈ X. (1.1)

Denote by Z the set of all integers and by Z+ the set of all nonnegative integers.
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Let n � 1 be an integer. We consider the n -dimensional Euclidean space Rn with
the Euclidean norm | · | . Denote by (x, y) the scalar product of vectors x, y ∈ Rn . Let
k � 1 be an integer and let φ : Rn → R1 be a bounded from below function such that

lim
|x|→∞

φ(x) = ∞. (1.2)

Denote by M the set of all pairs of functions (f , g) such that f , g : Rn → R1 ,
f , g ∈ Ck(Rn) , f is convex and

max{f (x), g(x)} � φ(x) for all x ∈ Rn. (1.3)

Denote by Mco the set of all (f , g) ∈ M such that g is convex.
For each r > 0 set B(r) = {z ∈ Rn : |z| � r} . For each α = (α1, . . . ,αn) ∈ Zn

+
set

|α| =
n∑

i=1

αi.

We equip the set M with the uniformity determined by the following base:

Es(ε, m) = {((f 1, g1), (f 2, g2)) ∈ M × M :

|∂|α|f 1(z)/∂xα1
1 . . . ∂xαn

n − ∂|α|f 2(z)/∂xα1
1 . . . ∂xαn

n | � ε

for all z ∈ B(m) and all α ∈ Zn
+ such that |α| � k

and |∂|α|g1(y)/∂xα1
1 . . . ∂xαn

n − ∂|α|g2(y)/∂xα1
1 . . . , ∂xαn

n | � ε

for all y ∈ Rn and all α ∈ Zn
+ such that |α| � k},

(1.4)

where ε, m > 0 .
It is not difficult to see that the space M with this uniformity is metrizable [6] (by

a metric ds ) and complete. The topology induced by this uniformity is denoted by τs

and it is called the strong topology.
We equip the set M with the uniformity determined by the following base:

Ew(ε, m) = {((f 1, g1), (f 2, g2)) ∈ M × M :

|∂|α|f 1(z)/∂xα1
1 . . . ∂xαn

n − ∂|α|f 2(z)/∂xα1
1 . . . ∂xαn

n | � ε

and |∂|α|g1(z)/∂xα1
1 . . . ∂xαn

n − ∂|α|g2(z)/∂xα1
1 . . . , ∂xαn

n | � ε

for all z ∈ B(m) and all α ∈ Zn
+ such that |α| � k},

(1.5)

where ε, m > 0 . It is not difficult to see that the space M with this uniformity is
metrizable [6] (by a metric dw ) and complete.

We do not write down the explicit expressions for the metrics dw and ds because
we are not going to use them in the sequel.

The topology induced by this uniformity is denoted by τw and it is called the weak
topology.

Clearly Mco is a closed subset of M with the weak topology. We equip the
subspace Mco ⊂ M with the relative weak and strong topologies.

Denote by M0 the set of all (f , g) ∈ M for which there is x ∈ Rn such that

f (x) = g(x) = inf(max{f , g}) (1.6)
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and denote by G the set of all (f , g) ∈ M such that there is x ∈ Rn which satisfies
(1.6) and the following equality:

∇f (x) = ∇g(x). (1.7)

Here
∇f (x) = ((∂f /∂x1)(x), . . . , (∂f /∂xn)(x)) ∈ Rn.

In this paper we will establsih the following results.

PROPOSITION 1.1. M0 and G are closed subsets of (M , dw) .

We consider the topological subspaces M0 , Mco ∩ M0 ⊂ M with the relative
weak and strong topologies.

THEOREM 1.1. M \ G is an open (in the weak topology) everywhere dense (in
the strong topology) subset of M and M0 \ G is an open (in the weak topology)
everywhere dense (in the strong topology) subset of M0 .

THEOREM 1.2. Mco \G is an open everywhere dense in the weak topology subset
of Mco and (Mco ∩M0) \G is an open everywhere dense in the weak topology subset
of Mco ∩ M0 .

2. Proof of Proposition 1.1

Assume that {(f q, gq)}∞q=1 ⊂ M0 (respectively {(f q, gq)}∞q=1 ⊂ G ) and

(f q, gq) → (f , g) as q → ∞ in (M , dw). (2.1)

We show that (f , g) ∈ M0 (respectively (f , g) ∈ G ).
In view of (1.6) and (1.7) for each natural number q there is xq ∈ Rn such that

f q(xq) = gq(xq) = inf(max{f q, gq}), (2.2)

if (f q, gq) ∈ G, then ∇f q(xq) = ∇gq(xq). (2.3)

By (1.2) and (1.3) there is x̄ ∈ Rn such that

max{f (x̄), g(x̄)} = inf(max{f , g}). (2.4)

(2.1) and (1.5) imply that

max{f (x̄), g(x̄)} = lim
q→∞max{f q(x̄), gq(x̄)}. (2.5)

Combined with (2.2) equality (2.5) implies that the sequence

{max{f q(xq), gq(xq)}}∞q=1 = {inf(max{f q, gq})}∞q=1

is bounded from above.
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Together with (1.3) this implies that the sequence {φ(xq)}∞q=1 is bounded from
above. In view of (1.2) the sequence {xi}∞i=1 is bounded. Choose a natural number n0

such that
|xq| � n0 for all natural numbers q and |x̄| � n0. (2.6)

(2.1) and (1.5) imply that

sup{|f (x) − f q(x)|, |g(x) − gq(x)| : x ∈ B(n0)} → 0 as q → ∞, (2.7)

sup{|∇f (x) −∇f q(x)|, |∇g(x) −∇gq(x)| : x ∈ B(n0)} → 0 as q → ∞. (2.8)

It follows from (2.6) and (2.7) that

lim sup
q→∞

(inf(max{f q, gq})) � max{f (x̄), g(x̄)}. (2.9)

By (2.2)

lim inf
q→∞ (inf(max{f q, gq})) = lim inf

q→∞ (max{f q(xq), gq(xq)})
= lim inf

q→∞ (max{f (xq), g(xq)}) � inf(max{f , g}). (2.10)

Combined with (2.9) and (2.4) this relation implies that

lim
q→∞ inf(max{f q, gq}) = inf(max{f , g}). (2.11)

By extracting a subsequence and re-indexing, we may assume that there is

x̃ = lim
q→∞ xq. (2.12)

It follows from (2.12), (2.7), (2.6), (2.2) and (2.11) that

(f (x̃), g(x̃)) = lim
q→∞(f (xq), g(xq)) = lim

q→∞(f q(xq), gq(xq))

= lim
q→∞(inf(max{f q, gq}), inf(max{f q, gq}))

= (inf(max{f , g}), inf(max{f , g}))

and
f (x̃) = g(x̃) = inf(max{f , g}).

Thus (f , g) ∈ M0 .
Assume that (f q, gq) ∈ G , q = 1, 2, . . . Then by (2.6), (2.8), (2.3) and (2.12)

∇f (x̃) = lim
q→∞∇f (xq) = lim

q→∞∇f q(xq) = lim
q→∞∇gq(xq)

= lim
q→∞∇g(xq) = lim

q→∞∇g(x̃)

and (f , g) ∈ G . Proposition 1.1 is proved.
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3. Auxiliary results

LEMMA 3.1. Let (f , g) ∈ G, x ∈ Rn ,

f (x) = g(x) = inf(max{f , g}) (3.1)

and

∇f (x) = ∇g(x). (3.2)

Then ∇f (x) = 0 .

Proof. Let us assume the converse. Then there are Δ > 0 , h ∈ Rn such that

|h| = 1, (∇f (x), h) < −Δ. (3.3)

There is δ > 0 such that

(∇f (z), h) < −Δ/2, (∇g(z), h) < −Δ/2 (3.4)

for each z ∈ Rn satisfying

|z − x| � δ. (3.5)

Choose

t0 ∈ (0, δ). (3.6)

By the mean value theorem there exist

t1, t2 ∈ [0, δ ] (3.7)

such that

f (x + t0h) − f (x) = t0(∇f (x + t1h), h), (3.8)

g(x + t0h) − g(x) = t0(∇g(x + t2h), h). (3.9)

In view of (3.7), (3.3) and the choice of δ (see (3.4), (3.5))

(∇f (x + t1h), h), (∇g(x + t2h), h) < −Δ/2.

Combined with (3.8) and (3.9) this inequality implies that

f (x + t0h) < f (x), g(x + t0h) < g(x),

max{f (x + t0h), g(x + t0h)} < max{f (x), g(x)},
a contradiction (see (3.1)). The contradiction we have reached proves Lemma 3.1.
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4. Proof of Theorem 1.1

By Proposition 1.1 M \ G is an open subset of M with the weak topology and
M0 \ G is an open subset of M0 with the weak topology. In order to prove Theorem
1.1 it is sufficient to show that M \ G is an everywhere dense subset of M with the
strong topology and M0 \ G is an everywhere dense subset of M0 with the strong
topology.

Assume that ε, m > 0 ,
(f , g) ∈ G, x̄ ∈ Rn, (4.1)

f (x̄) = g(x̄) = inf(max{f , g}) (4.2)

and
∇f (x̄) = ∇g(x̄). (4.3)

In view of (4.2), (4.3) and Lemma 3.1,

∇f (x̄) = ∇g(x̄) = 0. (4.4)

Since f is convex it follows from (4.4) that

f (x) � f (x̄) for all x ∈ Rn. (4.5)

There is a function φ : R1 → [0, 1] such that φ ∈ C∞(R1) ,

φ(t) = 1 if|t| � 1/2, φ(t) = 0 if |t| � 1, 0 < φ(t) < 1 if 1/2 < |t| < 1. (4.6)

Choose positive numbers
c0 < ε/16 (4.7)

and
c1 < 32−1ε(m + |x̄| + 1)−2. (4.8)

For x ∈ Rn set
ψ(x) = φ(|x − x̄|2)((1, 1, . . . , 1), x − x̄). (4.9)

Clearly, ψ ∈ C∞(Rn) . By (4.9) and (4.6)

ψ(x) = 0 if |x − x̄| � 1, (4.10)

ψ(x) = ((1, . . . , 1), x − x̄) if |x − x̄| � 2−1/2. (4.11)

Choose a positive number c2 such that

c2(sup{|∂|α|ψ(z)/∂zα1
1 . . . ∂zαn

n | : z ∈ Rn, α ∈ Zn
+ and |α| � k} + 1) < c0/8.

(4.12)
Define

f 1(x) = f (x) + c0 + c1|x − x̄|2, x ∈ Rn, (4.13)

g1(x) = g(x) + c0 + c2ψ(x), x ∈ Rn. (4.14)

Clearly, f 1, g1 ∈ Ck(Rn) . (4.13), (4.14), (4.4) and (4.11) imply that

∇f 1(x̄) = ∇f (x̄) = 0,

∇g1(x̄) = ∇g(x̄) + c2∇ψ(x̄) = c2∇ψ(x̄) = c2(1, . . . , 1)
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and
∇f 1(x̄) �= ∇g1(x̄). (4.15)

(4.13) implies that
f 1(x) � f (x) for all x ∈ Rn. (4.16)

By (4.14) and (4.12)
g1(x) � g(x) for all x ∈ Rn. (4.17)

In view of (4.16), (4.17) and (1.3)

max{f 1(x), g1(x)} � φ(x) for all x ∈ Rn. (4.18)

Therefore (f 1, g1) ∈ M . By (4.14), (4.12) and (4.7)

sup{|∂|α|g1(z)/∂zα1
1 . . . ∂zαn

n −∂|α|g(z)/∂zα1
1 . . . ∂zαn

n | : z ∈ Rn, α ∈ Zn
+ and |α| � k}

� c0 + c0/8 � ε/4. (4.19)

It follows from (4.13), (4.7) and (4.8) that for each x ∈ Rn satisfying |x| � m and
each α ∈ Zn

+ which satisfies |α| � k the following inequality holds:

|∂|α|f 1(x)/∂zα1
1 . . . ∂zαn

n − ∂|α|f (x)/∂zα1
1 . . . ∂zαn

n |
� max{c0 + c1(m + |x̄|)2, 2c1(m + |x̄|), 2c1} � ε/4. (4.20)

(4.19), (4.20) and (1.4) imply that

((f , g), (f 1, g1)) ∈ Es(ε, m). (4.21)

(4.13) implies that
f 1(x̄) = f (x̄) + c0. (4.22)

In view of (4.14), (4.9), (4.2) and (4.22)

g1(x̄) = g(x̄) + c0 = f (x̄) + c0 = f 1(x̄). (4.23)

We show that for each x ∈ Rn \ {x̄}
max{f 1(x̄), g1(x̄)} < max{f 1(x), g1(x)}. (4.24)

Let x ∈ Rn \ {x̄} . By (4.13), (4.5), (4.22) and (4.23)

max{f 1(x), g1(x)} � f 1(x) = f (x) + c0 + c1|x − x̄|2 � f (x̄) + c0 + c1|x − x̄|2
= max{f 1(x̄), g1(x̄)} + c1|x − x̄|2 > max{f 1(x̄), g1(x̄)}.

Thus (4.24) holds for all x ∈ Rn \{x̄} . By (4.24), (4.23) and (4.15) (f 1, g1) ∈ M0 \G .
Since ε, m are arbitrary positive numbers we have shown that M \G is an everywhere
dense subset of M with the strong topology and M0 \G is an evrywhere dense subset
of M0 with the strong topology. Theorem 1.1 is proved.



724 ALEXANDER J. ZASLAVSKI

5. Proof of Theorem 1.2

By Proposition 1.1 Mco \ G is an open subset of Mco with the weak topology
and (Mco ∩ M0) \ G is an open subset of Mco ∩ M0 with the weak topology.

In order to proveTheorem 1.2 it is sufficient to show that Mco\G is an everywhere
dense subset of Mco with the weak topology and (Mco ∩ M0) \ G is an everywhere
dense subset of Mco ∩ M0 with the weak topology.

Let ε, m > 0 ,
(f , g) ∈ G ∩ Mco, x̄ ∈ Rn, (5.1)

f (x̄) = g(x̄) = inf(max{f , g}) (5.2)

and
∇f (x̄) = ∇g(x̄). (5.3)

By Lemma 3.1, (5.2) and (5.3)

∇f (x̄) = ∇g(x̄) = 0. (5.4)

Since f , g are convex functions the inequality (5.4) implies that

f (x) � f (x̄), g(x) � g(x̄) for all x ∈ Rn. (5.5)

Choose positive numbers c0, c1, c2 such that

c2 < ε/8, (5.6)

nc0(m + |x̄| + 4)2 < ε/8, (5.7)

c1n(|x̄| + m + 1) < ε/8, 2c2
1n

2 < c0c2. (5.8)

Define
f 1(x) = f (x) + c2 + c0|x − x̄|2, x ∈ Rn, (5.9)

g1(x) = g(x) + c2 + c1((1, . . . , 1), x − x̄) + c0|x − x̄|2, x ∈ Rn. (5.10)

Clearly, f 1, g1 are convex functions, f 1, g1 ∈ Ck(Rn) and

f 1(x) � f (x) for all x ∈ Rn. (5.11)

Let x ∈ Rn . We show that
g1(x) � g(x).

By (5.10)

g1(x)−g(x)=c2+c0|x−x̄|2+c1((1, 1, ..., 1), x−x̄) � c2+c0|x−x̄|2−c1|x−x̄|n. (5.12)

There are two cases:
|x − x̄| � c2(2nc1)−1; (5.13)

|x − x̄| > c2(2nc1)−1. (5.14)

If (5.13) is valid, then it follows from (5.12) that

g1(x) − g(x) � c2 − c1|x̄ − x|n � c2/2. (5.15)
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Now assume that (5.14) is true. It follows from (5.12), (5.14) and (5.8) that

g1(x) − g(x) � c0|x − x̄|2 − c1|x − x̄|n � |x − x̄|(c0|x − x̄| − c1n)

� |x − x̄|(c0c2(2nc1)−1 − c1n) � 0.

Thus in both cases
g1(x) � g(x). (5.16)

(5.11), (5.16) and (1.3) imply that for all x ∈ Rn

max{f 1(x), g1(x)} � max{f (x), g(x)} � φ(x).

Therefore (f 1, g1) ∈ Mco .
Now we show that

((f , g), (f 1, g1)) ∈ Ew(ε, m). (5.17)

Assume that x ∈ Rn satisfies
|x| � m. (5.18)

By (5.9), (5.18) and (5.6)

|f 1(x) − f (x)| = c2 + c0|x − x̄|2 � c2 + c0(|x| + |x̄|)2

� c2 + c0(m + |x̄|)2 < ε/4. (5.19)

In view of (5.9), (5.19), (5.8) and (5.7)

|∇f 1(x) −∇f (x)| � 2c0|x − x̄| � 2c0(m + |x̄|) < ε/8. (5.20)

It follows from (5.10), (5.18) and (5.6)-(5.8) that

|g1(x) − g(x)| � c2 + c1|x − x̄|n + c0|x − x̄|2 (5.21)

� c2 + c1n(|x̄| + m) + c0(m + |x̄|)2 � ε.

(5.10), (5.18) and (5.8) imply that

|∇g1(x) −∇g(x)| � c1n + 2c0|x − x̄| � c1n + 2c0(m + |x̄|) � ε/4. (5.22)

In view of (5.19)-(5.22), (5.9), (5.10) and (5.7) the inclusion (5.17) is true. By (5.9),
(5.10) and (5.2)

f 1(x̄) = f (x̄) + c2 = g(x̄) + c2 = g1(x̄). (5.23)

It follows from (5.9) and (5.4) that

∇f 1(x̄) = ∇f (x̄) = 0.

(5.10) and (5.4) imply that

∇g1(x̄) = ∇g(x̄) + c1(1, . . . , 1) = c1(1, . . . , 1).

Thus
∇f 1(x̄) �= ∇g1(x̄). (5.24)
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Let x ∈ Rn \ {x̄} . By (5.9), (5.5) and (5.23)

max{f 1(x), g1(x)} � f 1(x) = f (x) + c2 + c0|x − x̄|2
� f (x̄) + c2 + c0|x − x̄|2 = f 1(x̄) + c0|x − x̄|2
> f 1(x̄) = max{f 1(x̄), g1(x̄)}.

Thus
max{f 1(x), g1(x)} > max{f 1(x̄), g1(x̄)} (5.25)

for all x ∈ Rn \ {x̄} . In view of (5.23), (5.24) and (5.25)

(f 1, g1) ∈ (Mco ∩ M0) \ G. (5.26)

Since ε, m are arbitrary positive numbers it follows from (5.26) and (5.17) that Mco\G
is an everywhere dense subset of Mco with the weak topology and (Mco ∩ M0) \ G
is an evrywhere dense subset of Mco ∩ M0 with the weak topology. Theorem 1.2 is
proved.

Acknowledgment. The results of the paper are a partial solution of a problem
suggested to the author by Alexander Rubinov.

RE F ER EN C ES

[1] A. CELLINA, C. MARICONDA, The existence question in the calculus of variations: A density result,
Proc. Amer. Math. Soc. 120 (1994), 1145–1150.

[2] F. S. DE BLASI, J. MYJAK, Generic flows generated by continuous vector fields in Banach spaces, Adv.
in Math. 50 (1983), 266–280.

[3] V. F. DEMYANOV, V. L. VASIL’EV, Nondifferentiable Optimization. Translations Series in Mathematics
and Engineering, Optimization Software, Inc., New York, 1985.

[4] V. F. DEMYANOV, V. N. MALOZEMOV, Introduction to Minimax, Dover Publications, Inc., New York,
1990.

[5] V. F. DEMYANOV, A. M. RUBINOV, Constructive Nonsmooth Analysis, Peter Lang, Frankfurt am Main,
1995.

[6] J. L. KELLEY, General topology, Van Nostrand, Princeton NJ, 1955.
[7] S. REICH, A. J. ZASLAVSKI, Convergence of generic infinite products of nonexpansive and uniformly

continuous operators, Nonlinear Analysis: Theory, Methods and Applications 36 (1999), 1049–1065.
[8] A. M. RUBINOV, A. J. ZASLAVSKI, Two porosity results in monotonic analysis, Numerical Functional

Analysis and Optimization 23 (2002), 651–668.
[9] A. J. ZASLAVSKI, Generic well-posedness of optimal control problems without convexity assumptions,

SIAM J. Control Optim. 39 (2000), 250–280.

(Received February 28, 2005) Department of Mathematics
The Technion-Israel Institute of Technology

32000 Haifa
Israel

e-mail: ajzasl@tx.technion.ac.il

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


