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AN INEQUALITY FOR MIXED Lp –NORMS

HARI BERCOVICI AND DIRK VAN GUCHT

(communicated by G. Bennett)

Abstract. Consider a nonnegative measurable function f defined on Ω1 × Ω2 , where Ωj is a
probability space with probability measure μj . We prove the inequality[∫∫

Ω1×Ω2

f dμ1dμ2

]p
+

∫∫
Ω1×Ω2

f p dμ1dμ2 �
∫
Ω1

[∫
Ω2

f dμ2

]p
dμ1 +

∫
Ω2

[∫
Ω1

f dμ1

]p
dμ2

provided that 1 � p � 2 . The inequality fails in general if p > 2 . It also fails if one of the
measures μj has total mass greater than one. Curiously however, the inequality is true for all
p ∈ [1,∞) if the measures μj are counting measures. This last fact follows from a subadditivity
result proved by G. A. Raggio for p -entropies. Our inequality also has a formulation in terms of
p -entropies.

1. Counting measure

Consider a partition A = {A1, A2, . . . , An} of a probability space Ω , with prob-
ability measure μ . For p > 0 one defines the p -entropy of this partition by the
formula

hp(A ) = (p − 1)−1

⎡
⎣1 −

n∑
j=1

μ(Aj)p

⎤
⎦ .

This quantity was introduced by Z. Daróczy [1] (with a different normalization) and C.
Tsallis[3], and it approximates the classical Shannon entropy as p → 1 . It was shown
by G. A. Raggio [2] that

hp(A ∨ B) � hp(A ) + hp(B)

provided that p � 1 ; here A ∨ B denotes the common refinement of A and B .
As noted in [2], this inequality does not generally hold for p < 1 . Denoting aij =
μ(Ai ∩ Bj) , the subadditivity of hp can be rewritten as

1 +
∑
i,j

ap
ij �

∑
i

[∑
j

aij

]p

+
∑

j

[∑
i

aij

]p
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provided that aij � 0 ,
∑

aij = 1 , and p � 1 . This inequality can be extended to
arbitrary arrays of nonnegative numbers aij replacing each amn by amn/

∑
aij :[∑

i,j

aij

]p

+
∑
i,j

ap
ij �

∑
i

[∑
j

aij

]p

+
∑

j

[∑
i

aij

]p

for p � 1 .
The main result of this section is that, at least for p ∈ [1, 2] , the sums in this

inequality can be replaced by averages.

THEOREM 1.1. For any N×N matrix [aij]Ni,j=1 with nonnegative entries, and every
p ∈ [1, 2] , we have[

1
N2

∑
i,j

aij

]p

+
1
N2

∑
i,j

ap
ij � 1

N

∑
i

[
1
N

∑
j

aij

]p

+
1
N

∑
j

[
1
N

∑
i

aij

]p

.

For the proof it will be enough to assume that 1 < p < 2 . Denoting by A the
N × N matrix in the statement, consider the function

f t(A) = t2
[∑

i,j

aij

]p

+
∑
i,j

ap
ij − t

{∑
i

[∑
j

aij

]p

+
∑

j

[∑
i

aij

]p}

defined for real values of t . The proposition asserts that f t(A) � 0 for t = N1−p . The
subadditivity inequality discussed above amounts to f 1(A) � 0 .

LEMMA 1.2. Fix an N × N matrix A with nonnegative entries, and p � 1 . The
function f t(A) attains its minimum in the interval [N1−p, 1] .

Proof. The minimum of f t occurs at

t0 =

∑
i

[∑
j aij

]p
+

∑
j

[∑
i aij

]p

2
[∑

i,j aij

]p .

Since p � 1 , we have

∑
i

[∑
j

aij

]p

�
[∑

i

[∑
j

aij

]]p

.

This, and a similar inequality with the roles of i and j reversed, yields t0 � 1 . On the
other hand, Hölder’s inequality yields[∑

i

[∑
j

aij

]]p

� Np−1
∑

i

[∑
j

aij

]p

.

This easily implies t0 � N1−p . �
Once the theorem above is proved, it follows easily that f t(A) � 0 if t /∈ (N1−p, 1)

and p ∈ (1, 2) . Note that the interval where f t can be negative increases with N .
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We need one more observation.

LEMMA 1.3. For fixed real numbers p ∈ (1, 2) and c > 0 , the function u(t) =
(tp−1 + c)1/(p−1) is strictly concave on the interval (0,∞) .

Proof. u′′(t) = c(p − 2)tp−3(tp−1 + c)(1−2p)/(p−1). �
We are now ready to prove the theorem.

Proof. We assume that p ∈ (1, 2) , and proceed by induction noting that the
result is trivial for N = 1 . By the preceding remarks, the induction hypothesis can
be reformulated as follows: if A is an N × N matrix with nonnegative entries and
it has a zero row and a zero column, then f t(A) � 0 for t /∈ ((N − 1)1−p, 1) , and
consequently f t(A) � 0 for t = N1−p . To prove the result we only need to show that,
for t = N1−p , the minimum values of the function f t(A) on the simplex defined by
aij � 0 ,

∑N
i,j=1 aij = 1 are nonnegative. From this point on we will fix t = N1−p , and

assume that B = [bij]Ni,j=1 is a minimum point for f t on this simplex. If bk� �= 0 �= bmn ,
the matrix obtained replacing bk� by bk� + ε and bmn by bmn − ε also belongs to the
simplex if |ε| is small enough. We deduce that

∂f t

∂ak�
(B) =

∂f t

∂amn
(B)

for such k, �, m, n . The same argument applies if bk� = 0 �= bmn , except that in this
case ε must be restricted to positive values. This yields the inequalities

∂f t

∂ak�
(B) � ∂f t

∂amn
(B), bmn �= 0.

Calculating the partial derivatives, and taking into account the fact that
∑

i,j bij = 1 ,
this can be rewritten as

bp−1
k� − tRp−1

k − tCp−1
� � bp−1

mn − tRp−1
m − tCp−1

n

whenever bmn �= 0 , with equality if bk� �= 0 as well, where we denote by Ri the sum
of the entries in the i th row of B , and by Cj the sum of the entries in the j th column.
We claim that the following pattern of zero entries is impossible: b11 �= 0 �= b22 ,
b12 = b21 = 0 Indeed, if that pattern occurs, we deduce

bp−1
11 −tRp−1

1 −tCp−1
1 = bp−1

22 −tRp−1
2 −tCp−1

2 � −tRp−1
1 −tCp−1

2 ,−tRp−1
2 − tCp−1

1 ,

hence

bp−1
11 +bp−1

22 −tRp−1
1 −tCp−1

1 −tRp−1
2 −tCp−1

2 � −tRp−1
1 −tCp−1

1 −tRp−1
2 −tCp−1

2 ,

which is impossible. The claim just proved can be restated as follows: the index sets
Si = {j : bij �= 0} are totally ordered by inclusion. Without loss of generality, we
may assume that S1 is the largest of these sets. Similarly, we may assume that among
the sets S′j = {i : bij �= 0} , S′1 is the largest. If both S1 and S′1 have fewer than N
elements then the last row and last column of B are zero, and the inequality f t(B) � 0
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follows from the induction hypothesis. We may therefore assume that one of these sets,
say S1 , contains N elements. In other words, b1j �= 0 for j = 1, 2, . . . , N . Let us
consider the entries in the second row. We have

bp−1
1j − tRp−1

1 − tCp−1
j � bp−1

2j − tRp−1
2 − tCp−1

j

or, equivalently
bp−1

1j − bp−1
2j � tRp−1

1 − tRp−1
2 ,

with equality whenever b2j �= 0 . If all the entries in the second row are equal to zero, we
deduce that the entries in the first row are all equal; indeed, because of the special value
of t , the inequalities above reduce to bp−1

1j � (R1/N)p−1 . If the second row contains

both zero and nonzero entries, the quantity c = tRp−1
1 − tRp−1

2 is strictly positive, and
the above inequalities can be rewritten as

b1j � u(b2j),

where u(x) = (c+xp−1)1/(p−1) . Since t = N1−p and the function u is strictly concave,
we also have

R1

N
= u

(
R2

N

)
>

1
N

N∑
j=1

u(b2j) � R1

N

unless all the entries in the second row are equal, and therefore so are the entries in the
first row. In summary, if the second row contains entries different from zero, then all of
these entries are different from zero, and either they are constant, or they are identical
with the ones in the first row. This is because c > 0 leads to the above contradiction,
and so does c < 0 by symmetry.

These considerations can be applied to the other rows of B , and the conclusion
is that this matrix must have constant columns or constant rows. If the columns are
constant, we can now calculate

f t(B) = N(tNp−1 − 1)

⎛
⎝t

⎡
⎣ N∑

j=1

b1j

⎤
⎦

p

−
N∑

j=1

bp
1j

⎞
⎠ ,

so that f t(B) = 0 for t = N1−p . �

2. Probability measures

In this section we prove our main result.

THEOREM 2.1. Consider probability spaces Ω1,Ω2 with probability measures
μ1,μ2 , and a nonnegative measurable function f defined on Ω1 ×Ω2 . The following
inequality holds[∫∫

Ω1×Ω2

f dμ1dμ2

]p

+
∫∫

Ω1×Ω2

f p dμ1dμ2 �
∫
Ω1

[∫
Ω2

f dμ2

]p

dμ1+
∫
Ω2

[∫
Ω1

f dμ1

]p

dμ2

for p ∈ [1, 2] .
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Proof. Every nonnegative measurable function is the supremum of a sequence of
simple functions, so the monotone convergence theorem allows us to assume that f is
simple. A measurable subset of Ω1 × Ω2 can be approximated arbitrarily well by a
finite union of rectangles, and this allows us to further restrict ourselves to the case in
which f is constant on sets of the form Ai × Bj , where A1, A2, . . . , An form a partition
of Ω1 , and B1, B2, . . . , Bm form a partition of Ω2 . If we denote by f ij the value of this
constant, and we set αi = μ1(Ai), βj = μ1(Bj) , the inequality to be proved is

[∑
i,j

αiβjf ij

]p

+
∑
i,j

αiβjf
p
ij �

∑
i

αi

[∑
j

βjf ij

]p

+
∑

j

βj

[∑
i

αif ij

]p

whenever f ij � 0 , αi, βj � 0 , and
∑

i αi =
∑

j βj = 1 . Clearly it suffice to prove this
inequality under the additional assumption that αi and βj are rational numbers, so that
pi = Nαi, qj = Nβj are integers for some integer N . Write now the set {1, 2, . . . , N}
as the union of disjoint sets C1, C2, . . . , Cn (resp. D1, D2, . . . , Dm ) with p1, p2, . . . , pn

(resp. q1, q2, . . . , qm ) elements, and set aij = f k� if i ∈ Ck and j ∈ D� . The inequality
to be proved reduces then to the inequality in Theorem 1.1. �

As mentioned earlier, the above theorem is not true if one of the measures μj has
mass greater than one. The simplest example is obtained by considering a singleton Ω1

with mass 1/2 , and a set Ω2 with two elements and endowed with countingmeasure. If
f is defined to be equal to 1 on Ω1×Ω2 , the difference between the left- and right-hand
sides of the inequality in the above theorem is

2 − 2p−1 − 21−p = −(2(p−1)/2 − 2(1−p)/2)2,

and this is negative unless p = 1 .
To see that the results in this paper do not hold for p > 2 , consider an N×N matrix

with entries equal to one in the first row and in the first column, and zero elsewhere.
The difference between the left- and right-hand sides of the inequality in Theorem 1.1
is now[
2N − 1

N2

]p

+
2N − 1

N2
− 2

N

[
1 + (N − 1)

[
1
N

]p]
=

1
N2

[
(2N − 1)p

N2p−2
− 1 − 2(N − 1)

Np−1

]
.

Clearly this expression is negative for large values of N , provided that p > 2 .
We would like to formulate the result of Theorem 1.1 in terms of p -entropy. The

proof of the following result is a simple calculation.

PROPOSITION 2.2. Given two partition A , B with N elements of a probability
space, we have

hp(A ∨ B) � N1−p[hp(A ) + hp(B)] +
1

p − 1
(1 − N1−p)2

for all p ∈ (1, 2] .
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Wewould like to remark that one canmake a similar analysis forRaggio’s inequality
to conclude that the equality hp(A ∨ B) = hp(A ) + hp(B) only occurs when one of
the two partitions is trivial (i.e., it contains a set of probability one). Equality in the
preceding proposition holds precisely when μ(Ai ∩ Bj) depends only on i or only on
j . If, for instance, μ(Ai ∩ Bj) depends only on i , then clearly μ(Bj) =

∑
i μ(Ai ∩ Bj)

does not depend on j , whence μ(Bj) = 1/N for all j . Thus μ(Ai) = Nμ(Ai ∩ Bj) so
that μ(Ai ∩ Bj) = μ(Ai)μ(Bj) , i.e., the partitions A and B are independent.

We conclude with a result obtained from Theorem 2.1 as p → 1 .

PROPOSITION 2.3. Consider probability spaces Ω1,Ω2 with probability measures
μ1,μ2 , and a nonnegative measurable function f defined on Ω1 × Ω2 . Assume
that

∫∫
Ω1×Ω2

f dμ1dμ2 = 1 , and define f 1(ω1) =
∫
Ω2

f (ω1,ω2) dμ2(ω2) , f 2(ω2) =∫
Ω1

f (ω1,ω2) dμ1(ω1) for ω1 ∈ Ω1 and ω2 ∈ Ω2 . We have then

−
∫∫

Ω1×Ω2

f log f dμ1dμ2 � −
∫
Ω1

f 1 log f 1 dμ1 −
∫
Ω2

f 2 log f 2 dμ2.

Proof. Standard approximation arguments allow us to assume that f and 1/f are
bounded, so that

lim
p↓1

f − f p

p − 1
= −f log f

uniformly. The result follows because the inequality in Theorem 2.1 can be rewritten as∫∫
Ω1×Ω2

f − f p

p − 1
dμ1dμ2 �

∫
Ω1

f 1 − f p
1

p − 1
dμ1 +

∫
Ω2

f 2 − f p
2

p − 1
dμ2.

�
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