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MONOTONICITY OF SEQUENCES INVOLVING
GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH
MONOTONICITY AND LOGARITHMICAL CONVEXITY

BAI-NTI GUO AND FENG QI

(communicated by N. Elezovic)

Abstract. Let f be a positive function such that x[f(x +1)/f (x) — 1] is increasing on [1, c0),
(oo}
then the sequence {1 [T, f () / fn+ 1)}":1 is decreasing. If f is alogarithmically concave
oo
and positive function defined on [1,00), then the sequence {"w /H?:lf(i)/\/f (n) } . is
n=

increasing. As consequences of these monotonicities, the lower and upper bounds for the ratio
'\’/ H;’;}f“ £@) / "“’\'/H?j]frlm £ (i) are obtained, where k is a nonnegative integer and m a

natural number. Some applications are given.

1. Introduction

It is known that, for n € N, the following double inequality was proved in [7]:

Yn!
n n!

< < 1, 1
n+1 n+1/(n+l)! ( )

which can be rearranged as

(14 m)J7 < [D(2+ n))m @)
and 1 }
LA +m)n L@ +n)]mT 3)
n n+1
Using analytic method and Stirling’s formula, in [2, 11, 18, 19], for n,m € N and
k being a nonnegative integer, the author and others proved the following inequalities:

n 1/n ntm 1/(n+m)
nbktl ﬁk . ﬁk. _ [k @
_ i i <y ————,
n+m+k+1 n+m+k

i=k+1 i=k+1
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2 BAI-NI GUO AND FENG QI

the equality in (4) is valid for n = 1 and m = 1, which extend and refine those in (1).
In [1], the left inequality in (1) was refined by

n+1 1/ nl’li
n+1 ( Z /n+1 ) < n+1/(n—+1)! (5)

for all positive real numbers r. Both bounds are the best possible.
There is a rich literature on refinements, extensions, and generalizations of the
inequalities in (5), for examples, [3, 9, 10, 14, 15, 20] and references therein. Note

that the inequalities in (5) are direct consequences of a conjecture which states that the

function (1S, /A S i")""" is decreasing with r. Please refer to [21].

In[12, 13] using the ideas and method in [4, 6, 16] and the mathematical induction,
the following inequalities were obtained: For all nonnegative integers k& and natural

numbers n and m, we have

1

an+k+1)+b |:Hz k+1(‘”+b)in < aln+k)+b
a(n+m+k+1)+b< ek i (n+m+k)+b’
[Hi:kﬂ (a H‘b)i

where a is a positive constant, and b is a nonegative constant. The equality in (6) is
validforn=1and m=1.

In [5], the following monotonicity results for the gamma function were established:
The function [[(1+ 1)]* decreases with x > 0 and x[['(1+1)}* increases with x > 0,
which recover the inequalities in (1) which refer to integer Values of r. These are
IX (l+x]

(6)

equivalent to the function [['(1+x)]'/* being increasing and being decreasing
n (0,00), respectively. In addition, it was proved that the functlon xYO(1 4 1)
decreases for 0 < x < 1, where y = 0.57721566 - - - denotes the Euler’s constant,

which is equivalent to M being increasing on (1, 00).

In [2], the following monotonicity result was obtained: The function

[C(x+y+1)/T(y+ D]'”
x+y+1

(7)

is decreasing in x > 1 for fixed y > 0. Then, for positive real numbers x and y, we
have

x+y+1 _ [C(x+y+1)/T(y+ 1]/~ ®)
x+y+2  [D(x+y+2)/T(y+ 1)Y/en
Inequality (8) extends and generalizes inequality (4), since T'(n + 1) = n!.
Several results mentioned above can be found, for example, in three articles written
by J. Sandor [22].
DEFINITION 1. [[8, p. 7]] A positive function f : I — R, I aninterval in R, is said
to be logarithmically convex (log-convex, multiplicatively convex) if Inf is convex, or
equivalently if for all x,y € I and all a € [0, 1],

flox+ (1= a)y) <f@F (). 9)
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It is said to be logarithmically concave (log-concave) if the inequality in (9) is reversed.

DEFINITION 2. Let {a;}icn be a positive sequence. If a;11a;_1 > a? for i > 2,
we call {a;}ien a logarithmically convex sequence; if a;1a;—1 < al-2 fori > 2, we
call {a;}ien alogarithmically concave sequence.

2. Main results

In this article, we will further generalize the inequalities in (6) and obtain the
following

fOt1)
fx)

{ V1= f (0 } 10)

fln+1)

THEOREM 1. Let f be a positive function such that x[
on [1,00). Then the sequence

— 1] is increasing

n=1

is decreasing. As a consequence, we have the following

\ H:l:/fﬂf(l) S f(n+k+ 1)
win [Ttk p gy~ fEm k1)’
i=k+

where m is a natural number and k a nonnegative integer.

REMARK 1. The relatively complicated condition that the function x[f ;x&;) - 1]

is increasing on [1,00) holds if f is logarithmically convex and increasing.

oo

oo iti [ -
. CQROLLARY 1. Let {a;}°, be a positive sequence such that {l[ o 1] }i:l is
increasing, then the sequence

n ' o0
{ an! } (12)
An+1 el

is decreasing. As a consequence, we have the following

n

a,! Ap+1
> (13)
= )

n+n\/1 Ant+m ' Ap+m+1

where m is a natural number and a,! is the sequence factorial defined by []\_, a;.

THEOREM 2. Let f be a logarithmically concave and positive function defined

on [1,00). Then the sequence
{ vV Hi—lf(l)} (14)

f(n)

n=1
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is increasing. As a consequence, we have the following

n+k
H, —er1f (n+k) (15)
n+m n+m+kf + m —+ k
\/ i=k+1

where m is a natural number and k a nonnegative integer. The equality in (15) is
validforn =1 and m = 1.

COROLLARY 2. Let {a;}°, be a logarithmically concave and positive sequence.

Then the sequence
oo
Vay!
{_L} (16
aﬂ
n=1
is increasing. Therefore, we have

Ja,! < [ a, (17)
n+mv an+m! = aner7

where m is a natural number and a,! is the sequence factorial defined by T[], a;.
The equality in (17) is validfor n =1 and m = 1.
At last, in Section 4., some applications of Theorem 1 and Theorem 2 are given.
REMARK 2. It is well known that the left hand side term in (11) or (15) is a ratio
of two geometric means of sequence {f (i)}, .

3. Proofs of Theorem 1 and Theorem 2

Proof. [Proof of Theorem 1] The monotonicity of the sequence (10) and inequality
(11) are equivalent to the following

n . 1/n a1 . 1/(n+1)
7L - ﬁ £ ()
Sf+1) ) T\ f(n+2) ’

R LU W o M ()

- > 18

(:}nglnf(n+l)/nJrl;lnf(nJrZ)’ (18)
n+1 . n
n 1) 1)
<= 1 < 1
n+1§nf(n+2) l;nf( +1)
Since Inx is concave on (0,00), by definition of concaveness, it follows that, for
1<i<n,
i f(i+1)+n7i+11 A0

n+llnf(n+2) n+1 nf(n+2)

i fi+l) n—itl  f()
<1“<n+1'f(n+2)+ n+ 1 'f(n+2)> (19)

_ if(i-l—l)—&-(n—i—&-l)f(i)
‘m< CENVCES) )
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Since the function x[-M — 1] is increasing on [1,00), forall 1 <i < n, we have

f(x)
D4 )
D R T
(nt+Vf(n+2) UAGRR)
D
FU+D)+m—i+1f 3G o (n+1)f (n+2)
70 STIwrD

flirD+—i+ Vr@ _ £
(n+1)f (n+2) S fn+1)

Combining the last line above with (19) yields

i fi+1) n—i+1 A0 f()
1 ) T Ak Mt S e (20)

Summing up on both sides of (20) from 1 to n and simplifying reveals inequality
(18). The proof is complete. [J

Proof. [Proof of Theorem 2] The monotonicity of the sequence (14) and inequality
(15) are equivalent to the following

"HLﬂ0<”WHZV®

Fn) i+l

1 n . 1 n+1 . 1
<:>Z;lnf(l)_mglnf(l)éE[lnf(n)—lnf(n—&-l)], o
n+l

— <1 + %) Zlnf(i) —Zlnf(i) < "er 1 [Inf (n) —Inf (n+1)],

n+1 n—1 1 .
= ——Inf(n) - — 1nf(n+1)>;§lnf(z).

For n = 1, the equality in (21) holds.
Suppose inequality (21) is valid for some n > 1. Since, by the inductive hypothesis

1 , no |1 , Inf(n+1)
1 = N ALY/
n—&—l;nf(l) n+1 n;nf(l) + n+1
n |n+1 n—1 Inf(n+1)
< 1 — 1 1 _
porl e nf (n) nf(n+1)| + p—
n n—2

ZInf(n) = “5=f (n+ 1),
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by induction, it is sufficient to prove

Sinf ) - "2 ) < T 2 Inp k1) - S inf(nt 2),
= ninf (n) < nlnf(n+ ) —nlnf (n+2),
= Inff (n)f (n +2)] < Inf2(n+ 1),
= f)f (n+2) <f2(n+1),

this follows from the logarithmic concaveness of the function f . The proof is com-
plete. O

REMARK 3. If the function f in Theorem 1 is differentiable, then we can give
the following proof of Theorem 1 by Cauchy’s mean value theorem and mathematical
induction.

Proof. [Proof of Theorem 1 under condition such that f being differentiable] The
monotonicity of the sequence (10) and inequality (11) are equivalent to

n+1

%Zn:mf( ——Zlnf >Inf(n+ 1) —Inf(n+2),
—- Zlnf —Inf(n+1)>@n+[Inf(n+1)—Inf(n+2)],  (22)

—=m+2)Inf(n+1)—(n+1)Inf(r+2) < Zlnf

For n = 1, inequality (22) can be rewritten as f(1)[f (3)]*> > [f(2)]*. Since f is
logarithmically convex and increasing, we have f (1)f (3) > [f(2)]*> and £ (3) > f(2),
respectively. Therefore, inequality (22) holds for n = 1.

Suppose inequality (22) is valid for some n > 1. Then, by inductive hypothesis,
we have

[ Zlnf ] n+11)

- 1[(n+2)lnf(n+1)f(n+1)lnf(n+2)] +
=(m+1)Inf(n+1)—nlnf(n+2).

hence, by induction, it is sufficient to prove the following

S

fn+1)
n+1

WV

_|_

(n+1)Inf(n+1)—nlnf(n+2) > (n+3)Inf(n+2) — (n+2)Inf (n +3),
which can be rearranged as

(n+1)[Inf(n+1) = Inf(n+2)] = (n+2)[Inf (n +2) — Inf (n+ 3)],
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further, since f is increasing,

Inf(n+2) —Inf(n+1
Inf(n+3)—Inf(n+2

Using Cauchy’s mean values applied to g(x) = Inf(n 4+ 1 + x) and h(x) =
Inf(n+2+x) for x € [0,1] in inequality (23), it follows that there exists a point
& € (0,1) such that

flint148) fnt2+48) n+2

frn+14+E) fln+2+E) “n+1

Since the positive function f* is logarithmically convex and differentiable, then [Inf (x)]’ =

'@
f®

n+2
Sn+1

(23)

~— | —

is increasing. Thus
[+ 148) _fln+2+8)

fln+1+48&) = f(n+2+8)’

and then
ffn+1+¢) f(n+2+§)< n-+2

I < .
fn+1+8&) ffn+2+¢) n+1
Inequality (23) follows. The proof is complete. [J

4. Applications

4.1. The affine function f(x) = ax+ b for x > —2, where ¢ > 0 and b € R are
constants, is positive and logarithmically concave. From Theorem 2 applied to this
affine function, the right hand side inequality in (6) follows.

4.2. The left hand side inequality in (6) follows from Corollary 1.
4.3. Applying Theorem 1 or Corollary 1 to f (x) = I'(x + 1) or a; = i! respectively

yields n+l—i n n+k .
H;;z(i+k)+ - Hi:kJrl(l!)
n+my. nemil—i T n+m .
Hi:Z (i + k) mom ”H\"/ Hi:k++1k(’!) (24)
(n+k+1) 1
T tmtk+ DU T (kL)
Similarly, we have
n ntk .
I ) - (n+k+1)!
[ ——— k+ 1)1
+m (n+m+k+1)
YT (i) 2n+k+ 1)
k+1 2(n+k+1)] (25)

’(/H?ifﬂ((% - L _Ret+Ro 1
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Where n and m are natural numbers and & a nonnegative integer.

4.4.1f {a;}{°, is increasing and logarithmically convex, the sequence {i[%- —1]}~
is increasing. In Corollary 1, considering the sequence {Ina;}2°, is 1ncreasmg, convex,

and positive, we obtain the following
PROPOSITION 1. Let {a;}$°, be an increasing convex positive sequence and A, =
% >, a; an arithmetic mean. Then the sequence A, — a,., decreases. This gives a
lower bound for difference of two arithmetic means:
Ay —Auim 2 Quil — Quyme, (26)
where m is a natural number.

4.5. In Corollary 2, considering the sequence {Ina;}>°, being concave and positive,
we have

PROPOSITION 2. Let {a;}?°, be a concave and positive sequence and A, =
% >, a; an arithmetic mean. Then the sequence A, — 9 increases. This implies an
upper bound for difference of two arithmetic means:

An - An+m < W> (27)

where m is a natural number.

4.6. For real numbers b > 1 and ¢ > 0 such that b*> > 2c¢, the function x> + bx + ¢
is logarithmically concave and satisfies conditions of Theorem 2, then we have

n+k .
(n+k+12+bn+k+1)+ \/Hﬁm P +bito)
2 \
(n+m+k+1) +b(n+m+k+ n+m\/l—[:z+:1++lk 4 bitc)

(n+k2+bn+k)+c
(n+m+k?2+bn+m+k)+c’

where m is a natural number and k£ a nonnegative integer.
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