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Abstract. Let f be a positive function such that x
[
f (x + 1)/f (x)− 1

]
is increasing on [1,∞) ,

then the sequence
{

n
√∏n

i=1 f (i)
/

f (n + 1)
}∞

n=1
is decreasing. If f is a logarithmically concave

and positive function defined on [1,∞) , then the sequence
{

n
√∏n

i=1 f (i)
/√

f (n)
}∞

n=1
is

increasing. As consequences of these monotonicities, the lower and upper bounds for the ratio
n
√∏n+k

i=k+1 f (i)
/

n+m
√∏n+k+m

i=k+1 f (i) are obtained, where k is a nonnegative integer and m a

natural number. Some applications are given.

1. Introduction

It is known that, for n ∈ N , the following double inequality was proved in [7]:

n
n + 1

<
n√n!

n+1
√

(n + 1)!
< 1, (1)

which can be rearranged as

[Γ(1 + n)]
1
n < [Γ(2 + n)]

1
n+1 (2)

and
[Γ(1 + n)]

1
n

n
>

[Γ(2 + n)]
1

n+1

n + 1
. (3)

Using analytic method and Stirling’s formula, in [2, 11, 18, 19], for n, m ∈ N and
k being a nonnegative integer, the author and others proved the following inequalities:

n + k + 1
n + m + k + 1

<

(
n+k∏

i=k+1

i

)1/n/(
n+m+k∏
i=k+1

i

)1/(n+m)

�
√

n + k
n + m + k

, (4)
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the equality in (4) is valid for n = 1 and m = 1 , which extend and refine those in (1).
In [1], the left inequality in (1) was refined by

n
n + 1

<

(
1
n

n∑
i=1

ir
/

1
n + 1

n+1∑
i=1

ir
)1/r

<
n√n!

n+1
√

(n + 1)!
(5)

for all positive real numbers r . Both bounds are the best possible.
There is a rich literature on refinements, extensions, and generalizations of the

inequalities in (5), for examples, [3, 9, 10, 14, 15, 20] and references therein. Note
that the inequalities in (5) are direct consequences of a conjecture which states that the

function
(

1
n

∑n
i=1 ir

/
1

n+1

∑n+1
i=1 ir

)1/r
is decreasing with r . Please refer to [21].

In [12, 13], using the ideas and method in [4, 6, 16] and the mathematical induction,
the following inequalities were obtained: For all nonnegative integers k and natural
numbers n and m , we have

a(n + k + 1) + b
a(n + m + k + 1) + b

<

[∏n+k
i=k+1(ai + b)

] 1
n

[∏n+m+k
i=k+1 (ai + b)

] 1
n+m

�
√

a(n + k) + b
a(n + m + k) + b

, (6)

where a is a positive constant, and b is a nonegative constant. The equality in (6) is
valid for n = 1 and m = 1 .

In [5], the following monotonicity results for the gamma function were established:
The function [Γ(1+ 1

x )]
x decreases with x > 0 and x[Γ(1+ 1

x )]
x increases with x > 0 ,

which recover the inequalities in (1) which refer to integer values of r . These are

equivalent to the function [Γ(1+x)]1/x being increasing and [Γ(1+x)]1/x

x being decreasing
on (0,∞) , respectively. In addition, it was proved that the function x1−γ [Γ(1 + 1

x )
x]

decreases for 0 < x < 1 , where γ = 0.57721566 · · · denotes the Euler’s constant,

which is equivalent to [Γ(1+x)]1/x

x1−γ being increasing on (1,∞) .
In [2], the following monotonicity result was obtained: The function

[Γ(x + y + 1)/Γ(y + 1)]1/x

x + y + 1
(7)

is decreasing in x � 1 for fixed y � 0 . Then, for positive real numbers x and y , we
have

x + y + 1
x + y + 2

� [Γ(x + y + 1)/Γ(y + 1)]1/x

[Γ(x + y + 2)/Γ(y + 1)]1/(x+1) . (8)

Inequality (8) extends and generalizes inequality (4), since Γ(n + 1) = n! .
Several results mentioned above can be found, for example, in three articles written

by J. Sándor [22].
DEFINITION 1. [[8, p. 7]] A positive function f : I → R , I an interval in R , is said

to be logarithmically convex (log-convex, multiplicatively convex) if ln f is convex, or
equivalently if for all x, y ∈ I and all α ∈ [0, 1] ,

f (αx + (1 − α)y) � f α(x)f 1−α(y). (9)
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It is said to be logarithmically concave (log-concave) if the inequality in (9) is reversed.

DEFINITION 2. Let {ai}i∈N be a positive sequence. If ai+1ai−1 � a2
i for i � 2 ,

we call {ai}i∈N a logarithmically convex sequence; if ai+1ai−1 � a2
i for i � 2 , we

call {ai}i∈N a logarithmically concave sequence.

2. Main results

In this article, we will further generalize the inequalities in (6) and obtain the
following

THEOREM 1. Let f be a positive function such that x
[ f (x+1)

f (x) − 1
]

is increasing
on [1,∞) . Then the sequence

{ n
√∏n

i=1 f (i)

f (n + 1)

}∞

n=1

(10)

is decreasing. As a consequence, we have the following

n
√∏n+k

i=k+1 f (i)

n+m
√∏n+m+k

i=k+1 f (i)
� f (n + k + 1)

f (n + m + k + 1)
, (11)

where m is a natural number and k a nonnegative integer.

REMARK 1. The relatively complicated condition that the function x
[ f (x+1)

f (x) − 1
]

is increasing on [1,∞) holds if f is logarithmically convex and increasing.

COROLLARY 1. Let {ai}∞i=1 be a positive sequence such that
{
i
[ ai+1

ai
− 1

]}∞
i=1

is
increasing, then the sequence {

n√an!
an+1

}∞

n=1

(12)

is decreasing. As a consequence, we have the following

n√an!
n+m√an+m!

� an+1

an+m+1
, (13)

where m is a natural number and an! is the sequence factorial defined by
∏n

i=1 ai .

THEOREM 2. Let f be a logarithmically concave and positive function defined
on [1,∞) . Then the sequence

{ n
√∏n

i=1 f (i)√
f (n)

}∞

n=1

(14)
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is increasing. As a consequence, we have the following

n
√∏n+k

i=k+1 f (i)

n+m
√∏n+m+k

i=k+1 f (i)
�

√
f (n + k)

f (n + m + k)
, (15)

where m is a natural number and k a nonnegative integer. The equality in (15) is
valid for n = 1 and m = 1 .

COROLLARY 2. Let {ai}∞i=1 be a logarithmically concave and positive sequence.
Then the sequence {

n√an!√
an

}∞

n=1

(16)

is increasing. Therefore, we have
n√an!

n+m√an+m!
�
√

an

an+m
, (17)

where m is a natural number and an! is the sequence factorial defined by
∏n

i=1 ai .
The equality in (17) is valid for n = 1 and m = 1 .

At last, in Section 4., some applications of Theorem 1 and Theorem 2 are given.
REMARK 2. It is well known that the left hand side term in (11) or (15) is a ratio

of two geometric means of sequence {f (i)}∞i=1 .

3. Proofs of Theorem 1 and Theorem 2

Proof. [Proof of Theorem 1] The monotonicity of the sequence (10) and inequality
(11) are equivalent to the following(

n∏
i=1

f (i)
f (n + 1)

)1/n

�
(

n+1∏
i=1

f (i)
f (n + 2)

)1/(n+1)

,

⇐⇒ 1
n

n∑
i=1

ln
f (i)

f (n + 1)
� 1

n + 1

n+1∑
i=1

ln
f (i)

f (n + 2)
,

⇐⇒ n
n + 1

n+1∑
i=1

ln
f (i)

f (n + 2)
�

n∑
i=1

ln
f (i)

f (n + 1)
.

(18)

Since ln x is concave on (0,∞) , by definition of concaveness, it follows that, for
1 � i � n ,

i
n + 1

ln
f (i + 1)
f (n + 2)

+
n − i + 1

n + 1
ln

f (i)
f (n + 2)

� ln

(
i

n + 1
· f (i + 1)
f (n + 2)

+
n − i + 1

n + 1
· f (i)
f (n + 2)

)

= ln

(
if (i + 1) + (n − i + 1)f (i)

(n + 1)f (n + 2)

)
.

(19)
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Since the function x
[ f (x+1)

f (x) − 1
]

is increasing on [1,∞) , for all 1 � i � n , we have

(n + 1)f (n + 2)
f (n + 1)

− (n + 1) � nf (n + 1)
f (n)

− n,

⇐⇒ (n + 1)f (n + 2)
f (n + 1)

− (n + 1) � if (i + 1)
f (i)

− i,

⇐⇒ if (i + 1) + (n − i + 1)f (i)
f (i)

� (n + 1)f (n + 2)
f (n + 1)

,

⇐⇒ if (i + 1) + (n − i + 1)f (i)
(n + 1)f (n + 2)

� f (i)
f (n + 1)

.

Combining the last line above with (19) yields

i
n + 1

ln
f (i + 1)
f (n + 2)

+
n − i + 1

n + 1
ln

f (i)
f (n + 2)

� ln
f (i)

f (n + 1)
. (20)

Summing up on both sides of (20) from 1 to n and simplifying reveals inequality
(18). The proof is complete. �

Proof. [Proof of Theorem 2] The monotonicity of the sequence (14) and inequality
(15) are equivalent to the following

n
√∏n

i=1 f (i)√
f (n)

�
n+1
√∏n+1

i=1 f (i)√
f (n + 1)

,

⇐⇒ 1
n

n∑
i=1

ln f (i) − 1
n + 1

n+1∑
i=1

ln f (i) � 1
2

[
ln f (n) − ln f (n + 1)

]
,

⇐⇒
(

1 +
1
n

) n∑
i=1

ln f (i) −
n+1∑
i=1

ln f (i) � n + 1
2

[
ln f (n) − ln f (n + 1)

]
,

⇐⇒ n + 1
2

ln f (n) − n − 1
2

ln f (n + 1) � 1
n

n∑
i=1

ln f (i).

(21)

For n = 1 , the equality in (21) holds.
Suppose inequality (21) is valid for some n > 1 . Since, by the inductive hypothesis

1
n + 1

n+1∑
i=1

ln f (i) =
n

n + 1

[
1
n

n∑
i=1

ln f (i)

]
+

ln f (n + 1)
n + 1

� n
n + 1

[
n + 1

2
ln f (n) − n − 1

2
ln f (n + 1)

]
+

ln f (n + 1)
n + 1

=
n
2

ln f (n) − n − 2
2

f (n + 1),
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by induction, it is sufficient to prove

n
2

ln f (n) − n − 2
2

ln f (n + 1) � n + 2
2

ln f (n + 1) − n
2

ln f (n + 2),

⇐⇒ n ln f (n) � 2n ln f (n + 1) − n ln f (n + 2),

⇐⇒ ln[f (n)f (n + 2)] � ln f 2(n + 1),

⇐⇒ f (n)f (n + 2) � f 2(n + 1),

this follows from the logarithmic concaveness of the function f . The proof is com-
plete. �

REMARK 3. If the function f in Theorem 1 is differentiable, then we can give
the following proof of Theorem 1 by Cauchy’s mean value theorem and mathematical
induction.

Proof. [Proof of Theorem 1 under condition such that f being differentiable] The
monotonicity of the sequence (10) and inequality (11) are equivalent to

1
n

n∑
i=1

ln f (i) − 1
n + 1

n+1∑
i=1

ln f (i) � ln f (n + 1) − ln f (n + 2),

⇐⇒1
n

n∑
i=1

ln f (i) − ln f (n + 1) � (n + 1)
[
ln f (n + 1) − ln f (n + 2)

]
,

⇐⇒(n + 2) ln f (n + 1) − (n + 1) ln f (n + 2) � 1
n

n∑
i=1

ln f (i).

(22)

For n = 1 , inequality (22) can be rewritten as f (1)[f (3)]2 � [f (2)]3 . Since f is
logarithmically convex and increasing, we have f (1)f (3) � [f (2)]2 and f (3) � f (2) ,
respectively. Therefore, inequality (22) holds for n = 1 .

Suppose inequality (22) is valid for some n > 1 . Then, by inductive hypothesis,
we have

1
n + 1

n+1∑
i=1

ln f (i) =
n

n + 1

[
1
n

n∑
i=1

ln f (i)
]

+
f (n + 1)

n + 1

� n
n + 1

[
(n + 2) ln f (n + 1) − (n + 1) ln f (n + 2)

]
+

f (n + 1)
n + 1

= (n + 1) ln f (n + 1) − n ln f (n + 2).

hence, by induction, it is sufficient to prove the following

(n + 1) ln f (n + 1) − n ln f (n + 2) � (n + 3) ln f (n + 2) − (n + 2) ln f (n + 3),

which can be rearranged as

(n + 1)[ln f (n + 1) − ln f (n + 2)] � (n + 2)[ln f (n + 2) − ln f (n + 3)],
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further, since f is increasing,

ln f (n + 2) − ln f (n + 1)
ln f (n + 3) − ln f (n + 2)

� n + 2
n + 1

. (23)

Using Cauchy’s mean values applied to g(x) = ln f (n + 1 + x) and h(x) =
ln f (n + 2 + x) for x ∈ [0, 1] in inequality (23), it follows that there exists a point
ξ ∈ (0, 1) such that

f ′(n + 1 + ξ)
f (n + 1 + ξ)

· f (n + 2 + ξ)
f ′(n + 2 + ξ)

� n + 2
n + 1

.

Since the positive function f is logarithmically convex and differentiable, then [ln f (x)]′ =
f ′(x)
f (x) is increasing. Thus

f ′(n + 1 + ξ)
f (n + 1 + ξ)

� f ′(n + 2 + ξ)
f (n + 2 + ξ)

,

and then
f ′(n + 1 + ξ)
f (n + 1 + ξ)

· f (n + 2 + ξ)
f ′(n + 2 + ξ)

� 1 <
n + 2
n + 1

.

Inequality (23) follows. The proof is complete. �

4. Applications

4.1. The affine function f (x) = ax + b for x > − b
a , where a > 0 and b ∈ R are

constants, is positive and logarithmically concave. From Theorem 2 applied to this
affine function, the right hand side inequality in (6) follows.

4.2. The left hand side inequality in (6) follows from Corollary 1.

4.3. Applying Theorem 1 or Corollary 1 to f (x) = Γ(x + 1) or ai = i! respectively
yields ∏n

i=2(i + k)
n+1−i

n∏n+m
i=2 (i + k)

n+m+1−i
n+m

=
n
√∏n+k

i=k+1(i!)

n+m
√∏n+m+k

i=k+1 (i!)

� (n + k + 1)!
(n + m + k + 1)!

=
1∏m

i=1(n + k + 1 + i)
.

(24)

Similarly, we have

n
√∏n+k

i=k+1(i!!)

n+m
√∏n+m+k

i=k+1 (i!!)
� (n + k + 1)!!

(n + m + k + 1)!!
,

n
√∏n+k

i=k+1((2i)!!)

n+m
√∏n+m+k

i=k+1 ((2i)!!)
� [2(n + k + 1)]!!

[2(n + m + k + 1)]!!
,

n
√∏n+k

i=k+1((2i − 1)!!)

n+m
√∏n+m+k

i=k+1 ((2i − 1)!!)
� [2(n + k) + 1]!!

[2(n + m + k) + 1]!!
.

(25)
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Where n and m are natural numbers and k a nonnegative integer.

4.4. If {ai}∞i=1 is increasing and logarithmically convex, the sequence
{
i
[ ai+1

ai
−1

]}∞
i=1

is increasing. In Corollary 1, considering the sequence {ln ai}∞i=1 is increasing, convex,
and positive, we obtain the following

PROPOSITION 1. Let {ai}∞i=1 be an increasing convex positive sequence and An =
1
n

∑n
i=1 ai an arithmetic mean. Then the sequence An − an+1 decreases. This gives a

lower bound for difference of two arithmetic means:

An − An+m � an+1 − an+m+1, (26)

where m is a natural number.

4.5. In Corollary 2, considering the sequence {ln ai}∞i=1 being concave and positive,
we have

PROPOSITION 2. Let {ai}∞i=1 be a concave and positive sequence and An =
1
n

∑n
i=1 ai an arithmetic mean. Then the sequence An − an

2 increases. This implies an
upper bound for difference of two arithmetic means:

An − An+m � an − an+m

2
, (27)

where m is a natural number.

4.6. For real numbers b � 1 and c � 0 such that b2 > 2c , the function x2 + bx + c
is logarithmically concave and satisfies conditions of Theorem 2, then we have

(n + k + 1)2 + b(n + k + 1) + c
(n + m + k + 1)2 + b(n + m + k + 1) + c

�
n
√∏n+k

i=k+1(i2 + bi + c)

n+m
√∏n+m+k

i=k+1 (i2 + bi + c)

�
√

(n + k)2 + b(n + k) + c
(n + m + k)2 + b(n + m + k) + c

,

where m is a natural number and k a nonnegative integer.
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