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BOUNDS FOR THE MULTIPLICITIES OF THE ROOTS
FOR SOME CLASSES OF COMPLEX POLYNOMIALS

ANCA IULIANA BONCIOCAT, NICOLAE CIPRIAN
BONCIOCAT AND ALEXANDRU ZAHARESCU

(communicated by A. Laforgia)

Abstract. We use some of Ostrowski’s conditions for nonvanishing of determinants in order to
provide explicit upper bounds for the multiplicities of the roots for some classes of complex
polynomials. In particular, some simple separability criteria are obtained. We finally provide
bounds for the multiplicities of the roots for some classes of integral polynomials, in terms of the
prime decomposition of their coefficients.

1. Introduction

In the present paper we are concerned with the problem of bounding the multiplic-
ities of the roots for some classes of complex polynomials. Our idea is to consider the
resultant between two different derivatives of a given polynomial, and then make use of
certain nonvanishing results for determinants. Among the criteria for nonvanishing of
determinants, one of the most famous is given by Hadamard’s Theorem [3]:

If the elements of a n X n complex matrix A = (ay) satisfy

|ai| >Z\aij| i=1,...,n, (1)

J#i
then det(A) # 0.

A complete bibliography of this theorem is contained in [11]. Several other criteria
of this type can be found in [10].

Other conditions for the nonvanishing of a determinant were obtained by Ostrowski
in [4], [5] and [7]-[9], using only the moduli of the elements of A and some simple
combinations of these moduli. The results of Ostrowski use essentially the expressions:

Rizz‘alﬂa C,:Z|a],\ 1.217...,717 (2)
J#i J#i
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Ri,s = (Z ‘ai/'|s)l/s7 Ci,s = (Z ‘aji|s)l/s i=1,...,n, (3)
J# J#
m; = max |a;j| = Ri o, m; = max |a;| = Ci oo i=1,...,n (4)
J#i J#i
One criterion derived in [8] is that det(A) # O if for an arbitrarily chosen fixed o,
0 < o<1, wehave
laz| > R¥C!™*  i=1,...,n. (5)
The most general criterion using R; and C; was then given by replacing the
conditions (5) with
|aiaz| > RYCI™“RICI ™% i), ij=1,...,n (6)
Asto R;s and Cjy, the corresponding criterion derived in [7] is that det(A) # O if

> i < )
— 1+ |ai|?/Rlp
for a fixed but arbitrary choice of p > 1 and g > 1 such that
1 1
-+ - = 1a (8)
P q

and the criterion obtained by replacing R;, by C;,. For ¢ = 1 we have p = oo and
(7) becomes

1
; L+ Jaal/m; = . ©)

Introducing a new parameter, Ostrowski derived in [5] the following criterion:
det(A) # 0 if we have

- :
|aii| > Rgapci,(l(ia)q i=1

. (10)
for fixed but arbitrarily chosen o with 0 < o« < 1 and p and ¢ satisfying (8). More
generally, we have det(A) # 0 if we replace (10) by

laiay] > Ry Cii® R Ciin g 170 Li=1...n. (11)

By using ideas from [5], some results bounding the spectral radius of an iteration
matrix arising in various iterative methods have been derived in [2].

In [6] Ostrowski obtained parametric representations of the most general non-
singular matrices for which equality in (10) holds for each i. Some of the results in [6]
have been generalized in [1] to the case of monotonic norms, where estimates for the
moduli of eigenvalues of matrices were also obtained.

In this paper we first use some of Ostrowski’s results in order to provide upper
bounds for the multiplicities of the roots for some classes of complex polynomials, in
terms of the moduli of their coefficients. In particular, some simple separability criteria
are obtained. In the final section we derive bounds for the multiplicities of the roots
for some classes of integral polynomials, in terms of the prime decomposition of their
coefficients. The results in Sections 2 and 3 below are quite flexible, and might prove
to be useful in various applications.
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2. Bounds for the multiplicities of the roots for some classes of complex
polynomials

We use the following notation. For a nonconstant complex polynomial f (X),
which decomposes as

fX) =a](x—6)"
i=1
with a, 0y, ...,0, € C, 6; pairwise distinct, and n; € N, n; > 1, we let

e(f) = max{n,...,ns}.

PROPOSITION 1. Let f(X) = ap + a1X + - - + a, X" € C[X] be a polynomial of
degree n > 2 and fix integers j and k such that 0 <j <k <n. If

it n " ik
>3 (" Yl and ()l > 30 (U el (12)

i=1 i=0
then e(f) < k.

Proof. The proof relies on the fact that e(f) < k < n if for a fixed but arbitrarily
chosen integer j with 0 < j < k, the resultant of the j-th and th¢ k-th derivatives
of f does not vanish. Let Ajx = Res(f%),f®). Denoting “ﬂ)!arﬂ by b, for

r!

r=0,...,n—jand Ut!k)!aﬂrk by ¢, for r=0,...,n—k, we have
n—j n—k
FOx) = Zb’Xr> FOX) =N ¢Xx",
r=0 r=0
and
by by by - . - by
by by by - . N
bO bl b2 : : . bnfj
¢ C1 - © Cn—k
Bk = co ¢+ Cnk ’
co ¢ © Cnk
c 1 © Cn—k

where there are n — k rows of b’s and n — j rows of ¢’s, the matrix being filled out
with zeros. Recalling the definition of R; we find that

|
—_

{ (SO :
Yo b = >0 Elangl, i=1,....n—k
1

n—k—1 o
S oel= Y Yl i=n—k+1,....2n—j—k
0

r!
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and the conclusion follows now by applying to A, the nonvanishing condition (1).

COROLLARY 1. Let f(X) = ap + a1 X + -+ - + a.X" € C[X] be a polynomial of
degree n > 2, such that

n—1

lao| > Z la;| and nla,| > Zl\al|

Then f (X) is a separable polynomial.

Some more complicated conditions, which produce the same upper bound for the
multiplicities of the roots of a complex polynomial f , are provided by the following
result.

PROPOSITION 2. Let f(X) = ap + a1X + - - + a, X" € C[X] be a polynomial of
degree n > 2 and let integers j and k such that 0 < j < k < n. If the coefficients of

f satisfy:

n—k—1 n—k—1
k! i+k i+j
ol > 53 (T e 2 (7l (13

i=0 i=1

n—k—1 n—k
n i+k r4+i+j
(O > 5 (7 st oo, 30 (74 Y 10

i=0

(i > S (Yt o2 S () 13

i=1 i=k—j+1

then e(f) <k

Proof. Using the same notation as in Proposition 1 and recalling the definition of
C;, we find succesively

|C()‘ i=1
Z|c,|+2|b\ i=2,....n—k
n— k 1
C = S ed + Z |brl, i=n—k+1,....,n—j
r=0 r=i—n+k
n—k—1 n—j
SNoled+ > by, i=n—j+1,...2n—j—k—1
r=i—n+j r=i—n+k
b, i=2n—j—k

Therefore we have

max C;=C,_; and max Ci=Chjt1. (16)
1<i<n—k n—j+1<i<on—j—k

Applying now conditions (5) with o = 0, we find in view of (16) that A;x # 0 provided
that the inequalities (13)—(15) hold, and this completes the proof of the proposition.
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Conditions (13)—(15) take a particularly simple form for j =0 and k = 1, when
the maximum in the right side of (14) reduces to |aj| + - - + |a,—1|. In this case we
find the following separability criterion.

COROLLARY 2. Let f(X) = ap+ a1X + -+ - + a,X" € C[X] be a polynomial of
degree n > 2, such that

lao| > (n—1)|ay—1| + Z D)|a;| and
1 n—1 1 n—1
lan| > max{;;(l+l)ai|a mg(l+1)|ai}~

Then f (X) is a separable polynomial.

REMARK One may apply (5) with a fixed, arbitrarily chosen real a such that
0 < a < 1, and combine conditions (12) and (13)—(15) in order to obtain bounds for
the multiplicities of the roots under more general assumptions on the moduli of the a; ’s
In particular, for j = 0 and k = 1 one finds that f(X) = ap + @1 X + -+ + a,X" isa
separable polynomial if the coefficients satisfy

n o 1—o
ol > (Zm) ( Dl 1|+z al|) |
i=1

n—1 o n—1 l-a
nla,| > (Zi|a,-> ~<Z(i+1)|ai|> and
i=1 i=1
n—1 o n—1 -«
nla,] > (Zi|a,-> .<an+2(i+1)|a,->
i=1 i=2

PROPOSITION 3. Let f(X) = ap + a1X + - - + a,X" € C[X] be a polynomial of
degree n = 2, and let p,q > 1 such that 1/p + 1/q = 1. Fix an arbitrarily chosen
real number € > 0 and integers j and k such that 0 <j <k <n. If

n—j 1/p
) > [(1+£)(nk)1}1/‘1~<z (’f’) |a,+j|”> and (17

i=1

()l > [0+ e -1 ((*") |>/ (13)

then e(f) <k
Proof. Condition (7) applied to A;; may be written in the form

n—k n—j
B Tl

N i NP
(S ) >l
i=1 i=0

<1,

I+
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or, equivalently

Mi+1—(n—k] - Ma4+1—m—))]>m—-k{n-—j), (19)
with
q i g

Ml = ‘b0| — (] |aJD and

n—j q/p n—j (1)1 p q/p

(Bwr) " (B (en))
i=1

M, = [ _ ((nﬁ!k)! Jan|)?

n—k—1 a/p n—k—1 e p alp”
(Ther) (T (“Ral))
=0 i=0

Therefore the inequality e(f) < k will hold for large enough values of M,
and M, fulfilling (19). Thus, for an arbitrarily fixed € > 0, we find e(f) < k if
My +1—(n—k)>e(m—k) and My +1— (n—j) > €' (n—j), which after division
by j! and k! are precisely conditions (17) and (18) respectively.

REMARKS 1) For some particular values of € one may obtain several simpler
forms of (17) and (18). Let A= (1 +¢&)(n—k)—1 and B= (1 + & )(n—j) — 1.

Then e(f) < k if
g 1/p
laj| > AY7. (Z (’ ]> |a,-+j|P> and

i=1

okl ik 1/p
n l
(})ial > 0. (2: ("t ) |> ,
i=0

in each one of the following four cases:

=1 A=2mn—k -1 B=2(n—j)—1
e=nj A=m—-k)(n—j+1)—1 B=n—j 0
e=l A=n—k B=(n—j)n—k+1)—1 (20)
e="2 A=2n—j—k-1 B=2n—j—k—1

2) For p = q =2 we find e(f) < k if for a fixed, arbitrarily chosen € > 0 we
have

n—j ,. N 2
4 > [<1+e><n—k>—1]-2(1?) @i and

i=1

(Yt > wreon 1S ()

i=0
In particular e(f) < k if

n ] n—k—1 l+k
o >4 3 (7] N oot and (1) > 5 > (% ) el
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with A and B given by (20).
3) For ¢ =1 and p = oo we find that e(f) < k if for a fixed, arbitrarily chosen

€ > 0 we have
i+j
; [

<i + k>
. Aitk| -
1
<i + k>
; Atk

By considering j = 0 and k = 1 in Proposition 3, we obtain the following:

lajl > [(1+¢€)(n—k)—1] max and

1<i<n—j

(:>|an| > [(1+&)n—j)—1 max

0<i<n—k—1

In particular e(f) < k if

i+j
; Adj+tj

again with A and B given respectively by (20).

laj| > A - max
1<i<n—j

and (Z) |a,| > B- max

0<i<n—k—1

)

COROLLARY 3. Let f(X) = ap+ a1X + -+ - + a,X" € C[X] be a polynomial of
degree n > 2, and let p,q > 1 such that 1/p + 1/q = 1. Fix an arbitrarily chosen
real number € > 0. If

/p
lao] > [(1+¢&)(n—1)—1]"9. (Za |”> and
n—1 1/p
nlan| > [(1+5_1)”—1]1/q'(Zliailp> :

i=1
then f(X) is separable.
REMARKS 1) For j =0 and k = 1, (20) transforms into

A=2n—-3, B=2n—-1
A=n*-2, B=n

L A=n—-1, B=n*-1
=2 A=2n-2, B=2n-2

(I
S =

;™ oM om o,
I

Therefore f is separable if

n 1/p n—1 1/p
|ag| > AV (Z |a,-p> and |na,| > B/ (Z |iai|”> )
i=1

i=1

in each one of the four cases given by (21).
2) For p = g = 2 we find that f is separable if for a fixed, arbitrarily chosen
€ > 0 we have

@l > [+ =1 =13 laf

n—1
na,> > [(1+e Hn—1]->_ lia;|.
i=1
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In particular this conclusion holds if

n—1

laol> > A - Z\a,|2 and |na,|> > B- Z\la,\
i=1 i=1

with A and B given by (21).
3) For g = 1 and p = oo we find that f is separable if for a fixed, arbitrarily
chosen € > 0 we have

lao] > [(14+€)(n—1)—1]- max |a;] and

1<ign

71 —_ . / .
lna,| > [(14+€& " )n—1] 1<1}1\<a}_1|1a1|.

For € < n one may replace the first inequality by |ag| > [(1+¢€)(n—1)—1]-]a,|, since
in this case the second inequality implies |a,| > max{|ai],...,|a,—1|}. In particular
we see that the polynomial f is separable if

lap| > A - |a,| and |na,| > B -  Jnax_ |ia;|,

again with A and B given respectively by (21).

Next, we apply to A;; the nonvanishing condition

n

1
— < 1. 22
; EPRIET 22)

PROPOSITION 4. Let f(X) = ap + a1X + - - - + a, X" € C[X] be a polynomial of
degree n > 3. Let us fix two arbitrarily chosen integers j and k such that 0 < j <

k<n—2andlet[5’—1—[(n_J)va/l<c If

k+i
P ez e (Yl @)

n k+i n j+i
> > i
(j) lan] > Jv 1< ( )'akﬂ (]) lan] > k11 < i >|aj+l|(24)

]_'\i k) ((n) ] _k—j) n—k k—j
(k! e Vw5 )T T 5 P

then e(f) <k

Proof. Note that the maximum in the second inequality of (24) makes sense only
for k < n— 2. By using (23) for the first n — j columns of A;x, and (24) for the rest
of n — k columns, one finds according to the definition of b;’s and c¢;’s that

, k! \ak\ 1<i<n—j
i = an], n—j+1<i<2n—j—k

//\
//\

(26)
(ﬂ 7
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Therefore condition (22) applied to A;; reads
n—k k—j n—=k
T g Nl TG o
1+§g_l_] 1+(k) 1+(nfk)'

Tag] lag]

which, using the definition of § becomes
n—k k—j
LHf 1+ 6

lay] ||

< B.

The proof finishes by observing that this inequality is equivalent to (25).

Conditions (23)—(25) take a simple form for j = 0 and k = 1, when 8 =
2/(n+ 1). In this case we obtain the following separability criterion.

COROLLARY 4. A complex polynomial f (X) = ag + a1X + - - - + a,X" of degree
n >3 is separable if |a)| > max |ia;|, |a,| > max |ia;| and
2<i<n—1 2<i<n—1

(2|a_0 —(n* - 3)) : (zn|“" —(n— 1)) > (n—1)(n+1)>% (27)

|ai] |ai]

For a fixed, arbitrarily chosen € > 0, one may replace (27) by
(e+1)(n—1) (n+1)>+¢e(n*—3)
la,| > —————
2n 2¢e

Here too, some particular values of € lead to simpler conditions for separability. Thus,
for € = 1 we obtain that f is separable if

lay| and |ag| > “ay]. (28)

1 . .
|ai| and min{|a, [, |a,|} > max ia],

n—
lao| > (1w +n = Dlail, |an| > .
2<i<n—1

while for € = (n+1)/(n — 1) we find f separable if
lao| > (n* —2)|a;| and |a,| > |ai| > max |iai|.
2<i<n—1
Several other more complicated conditions giving a specified bound for the mul-
tiplicities of the roots, may be obtained using (6), (10) and (11). We end this section
by noting that one may obtain similar results by using the same arguments above for

the reciprocal X"f (1/X) instead of f(X). For instance, instead of Corollary 1 and
Corollary 2, one finds that f (X) is separable if

n—1 n—1
1 .
lan| > " |a;| and [ag| > - > (n—iail,
i=0 i=1

respectively if
n—1
lan| > (n—Dlar] + (n+1—i)|a] and
i=2

n—1 n—2
1
> - 17 i i
o max{n2< 1], —— a|}

i=1 i=1
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3. Further results for integral polynomials

Let p be a prime number. For a non-zero integer x we shall denote by m,(x)
the exponent of p in the prime decomposition of x ( @,(0) = oo ). The results in this
section rely on the following basic lemma.

LEMMA 1. Let A = (a;;) be a n X n matrix with integer entries. If all the elements
on the main diagonal satisfy

oy(aii) < wp(ay) for j<i and w,(ai) < wy(ay) for j> i, (29)

then det(A) # 0. The same conclusion holds if we replace (29) by one of the following
three conditions:

op(aii) < wp(a;) for j<i and wy(ai) < wy(aji) for j > i, (30)
wy(ai) < wp(ay) for j<i and w,(ai) < wy(a;) for j > i, (31)
wp(ai) < wp(ap) for j<i and wy(a;) < wp(aj) for j>i. (32)
Proof. For every permutation o of {1,...,n} with o # id., the corresponding

term X = Qi5(1) * * * Guo(n) appearing in the formula of det(A) must have at least one
component a;q(;) situated below the main diagonal. Therefore w,(xs) > w,(ai; - - - auwm)
for every o # id., which prevents det(A) from vanishing. The proof is similar for the
remaining cases (30)—(32).

The following results give bounds for the multiplicities of the roots, in particular
separability criteria, for some classes of integral polynomials in terms of the prime
decomposition of their coefficients.

PROPOSITION 5. Let f(X) = ap + a1X + -+ - + a,X" € Z[X] be a polynomial
of degree n > 2, and let us fix two arbitrarily chosen integers j and k such that
0 <j < k < n. If there exists a prime number p such that

@) < min o ((7)an).

n : i (33)
wp ((k)an) < Ogigglk—l Wp ((k,+ )ak+i) )
or N
. 3 J+i .
0y ()) < 1<Izn<1£zlﬁ @, (1) aji) 4

Wp ((Z)a’l) < Ogig}fk_l Wp ((k,ﬂ)akﬂ') )
then e(f) < k.

Proof. The conclusion follows by observing that conditions (33) and (34) coincide
with conditions (29) and (31) applied to Ay, respectively.

In particular, for j = 0 and k = 1 we obtain:
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COROLLARY 5. Let f(X) = ap+ aiX + - -+ + a,X" € Z[X] be a polynomial of
degree n > 2. If there exists a prime number p such that

py(ag) < 121}%1" w,(a;) and m,(na,) < 1<rin<i£171 oy (ia;),

or

min o, (ia;),

i i <
y(ao) < min y(a;) and wpy(na,) < | Jmin_

then f(X) is a separable polynomial.

REMARK In the case when f is a primitive polynomial one may replace the above
condition w,(ag) < 11212 o, (a;) by the conditions p | ai,..., p|a, and p faq.
<ikn

PROPOSITION 6. Let f(X) = ap + a1X + -+ + a,X" € Z[X] be a polynomial
of degree n > 3, and let us fix two arbitrarily chosen integers j and k such that
0 <j < k < n. If there exists a prime number p such that

wp(aj) min @, ((J + l) Clj+,'> s
1<i<n—k—1 i
P\ k)™ 1<i<n—j 7 i)
wy(aj) < min = © (E <k+ i>ak )
P o<i<n—k—1 T\ I\ i )

w " a < min kti Qi
PAN\K) ™ 0<i<n—k—1 F i kvi )

Proof. The conclusion follows by applying conditions (30) to Ajx.

N

N

then e(f) < k.

We remark that conditions (32) are not suitable to obtain an analog of Proposition

. . k! (n . i\ .
6, since they would require o, (j—! (k)an) < lgl}lglgl_j @y ((F")aj+i) , which can not hold,

since a)p((nf—!k)!an) 2 a)p((n"T!jﬂan) .

COROLLARY 6. Let f(X) = ap+ aiX + -+ + a,X" € Z[X] be a polynomial of
degree n > 3. If there exists a prime number p such that
< i : < mi :
Wp(ag) < 1on Wp(ai), wp(nay) < o wp(ai),
my(ag) < | Jnin_ w,(ia;), wy(na,) < \Jnin_ oy (ia;),
then f (X) is a separable polynomial. In particular, the polynomial f is separable if
plai,...,p| a1 and p Jnapa,.
We end by noting that the results in this section may be adapted to polynomials
with coefficients in more general unique factorization domains.
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