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Abstract. In this study, we have obtained bounds for extreme singular values of a complex matrix
A of order n × n .

In addition, we have found a bounds for the extreme singular values of Hilbert matrix, its
Hadamard square root, Cauchy-Toeplitz matrix, Cauchy-Hankel matrix in the forms

H = (1(i + j − 1))ni,j=1 , H◦1/2 = (1 (i + j − 1)1/2)ni,j=1,

Tn = [1(g + (i − j)h)]ni,j=1 and Hn = [1(g + (i + j)h)]ni,j=1 ,

respectively.

1. Introduction and preliminaries

Let A = (aij) be an n × n symmetric matrix with all positive entries. Then the
Hadamard inverse of A given by A◦(−1) = (1/aij)n

i,j=1 is positive semidefinite and the

Hadamard square root by A◦1/2 = (a1/2
ij )n

i,j=1 [6].
The matrix

H = (1/(i + j − 1))n
i,j=1 (1.1)

is well known as Hilbert matrix. Hence the Hadamard square root of Hilbert matrix,
denoted by

H◦1/2 = (1/(i + j − 1)1/2)n
i,j=1. (1.2)

Let C = [1/(xi− yj)]ni,j=1(xi �= yj) be a Cauchy matrix and Tn = [tj−i]n−1
i,j=0 be a Toeplitz

matrix. In generally Cauchy-Toeplitz matrix is being defined as

Tn =
[

1
g + (i − j)h

]n

i,j=1

(1.3)

where h �= 0, g and h are any numbers and g/h is not an integer. Toeplitz matrices
are precisely those matrices that have constant values along all diagonals parallel to the
main diagonal and thus a Toeplitz matrix is determined by its first row and column.
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On the other hand, let Hn = [hi+j]n−1
i,j=0 be a Hankel matrix. Every n × n Cauchy-

Hankel matrix is of the form

Hn =
[

1
g + (i + j)h

]n

i,j=1

(1.4)

where h �= 0, g and h are any numbers and g/h is not an integer. Hankel matrices are
symmetrical.

Recently, there have been several papers on the norms of Cauchy-Toeplitz matrix
and Cauchy-Hankel matrix [1, 2, 4, 5]. Refs. [4, 5] are related to the spectral norm
of Cauchy-Toeplitz matrix. In [5], a lower bound for the spectral norm of Cauchy-
Toeplitz matrix was obtained by Tyrtyshnikov taking g = 1/2 and h = 1 in the
(1.3) . Parter proved that singular values could be related to eigenvalues of certain
Hermitian Toeplitz matrices corresponding to Laurent-Fourier series [4]. Güngör [9]
obtained lower bounds for the spectral norm and Euclidean norm of Cauchy-Toeplitz
and Cauchy-Hankel matrices in the forms (1.3) and (1.4) by taking g = 1/2 and
h = 1 using B matrix which is defined in [8].

In this paper, firstly, we have established a lower and upper bound extreme singular
values of a complex matrix A of order n × n using B matrix is defined in [8]. In
Section 3, we have obtained an upper and lower bound for extreme singular values
of the Hilbert matrix and its Hadamard square root. In Section 4, we have obtained
bounds for extreme singular values of Cauchy-Toeplitz and Cauchy-Hankel matrices.
Consequently, we have given an example related to this bounds which are found.

Now, we give some preliminaries related to our study. Let A be an n× n complex
matrix. Let σi (A) -s (i = 1, . . . , n) such that σ1(A) � σ2(A) � · · · � σn(A) be the
singular values of A .

A function Ψ is called a psi (or digamma) function if

Ψ(x) =
d

d(x)
{log[Γ(x)]} where Γ(x) =

∞∫
0

e−ttx−1dt.

The n -th derivate of a psi function is called a polygamma function, i.e.

Ψ(n, x) =
d

dxn
[Ψ(x)] =

d
dxn

{
d
dx

(ln [Γ(x)])
}

[5].

If n = 0 then Ψ(n, x) = Ψ(x) = d
dx {ln [Γ(x)]} . On the other hand, if a > 0 and b

are any numbers and n is a positive integer, then

lim
n→∞Ψ(a, n + b) = 0 [3].

To minimize the numerical round-off errors in solving the system Ax = b , it is normally
convenient that the rows of A be properly scaled before the solution procedure begins.
One way is to premultiply by the diagonal matrix

D = diag

{
α1

r1(A)
,

α2

r2(A)
, . . . ,

αn

rn(A)

}
, (1.5)
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where ri(A) is the Euclidean norm of the i -th row of A and α1,α2, . . . ,αn are positive
real numbers such that

α2
1 + α2

2 + · · · + α2
n = n. (1.6)

Clearly, the Euclidean norm of the coefficient matrix B = DA of the scaled system is
equal to

√
n and if α1 = α2 = · · · = αn = 1 then each row of B is a unit vector in the

Euclidean norm. Also, we can define B = AD ,

D = diag

{
α1

c1(A)
,

α2

c2(A)
, . . . ,

αn

cn(A)

}
, (1.7)

where ci(A) is the Euclidean norm of the i -th columm of A. Again, ‖ B‖E =
√

n and
if α1 = α2 = · · · = αn = 1 then each column of B is a unit vector in the Euclidean
norm.

Since the matrices PA, AP and A have the same singular values for any permu-
tation matrix P , we assume, without loss of generality, that the rows and columns of A
are such that

r1(A) � r2(A) � · · · � rn (A) , (1.8)

c1(A) � c2(A) � · · · � cn (A) , (1.9)

and αi -s in (1.6) are ordered in such a way that

0 < αn � · · · � α2 � α1. (1.10)

THEOREM 1. [10] Assume that A and B are two arbitrary n × n matrices with
the singular values

σn(A) � · · · � σ1(A), σn(B) � · · · � σ1(B).

Then the singular values
σn (AB) � · · · � σ1 (AB)

of the matrix AB satisfy
(a) σi(AB)=θiσi(A)=ηiσi(B),σn(B) � θi � σ1(B),σn(A) � ηi � σ1(A), 1 � i � n,

(b) σi (AB) = wi

√
σi (A)σi(B),

√
σn(A)σn(B) � wi �

√
σ1(A)σ1(B)1 � i � n

2. Bounds for extreme singular values of a complex matrix

THEOREM 2. Let A be an n× n complex matrix. Let αi -s and ri(A) -s (ci(A)-s)
be as in (1.10) and (1.8) ((1.9)) , respectively. Then

σn(A) �

⎡
⎣n

(
n∑

i=1

α2
i

min {r2
i , c2

i }

)−1
⎤
⎦

1/2

(2.1)

and ⎡
⎣n

(
n∑

i=1

α2
i

max {r2
i , c2

i }

)−1
⎤
⎦

1/2

� σ1(A). (2.2)
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Proof. Firstly, we can write Theorem 1 (a) in the form

σi(AB) = θiσi(A) = ηiσi(B)

where σn(B) � θi � σ1(B),σn(A) � ηi � σ1(A), 1 � i � n. Hence, we obtain that

σn(B)σi(A) � σi (AB) � σ1(B)σi (A) (2.3)

and
σn(A)σi(B) � σi (AB) � σ1(A)σi(B). (2.4)

By applying B = DA and B = AD matrices to (2.3) and (2.4) , respectively, we have

σn(A)σi(D) � σi(B) � σ1(A)σi(D).

Hence, (2.1) and (2.2) are obvious. �

3. Bounds for extreme singular values of Hilbert matrix and its Hadamard
square root

THEOREM 3. Let the matrix H and αi -s (i = 0, . . . , n − 1 and α2
0 + α2

1 + · · ·+
α2

n−1 = n) be as in (1.1) and (1.10) , respectively. Then

σn(H) �
[
n(

n−1∑
i=0

α2
i

−Ψ(1, n + i + 1) + Ψ(1, i + 1)
)−1

]1/2

� σ1 (H) . (3.1)

Proof. For the matrix H in (1.1) we have

n−1∑
i=0

α2
i

min {r2
i , c2

i }
=

n−1∑
i=0

α2
i

max {r2
i , c2

i }
=

n−1∑
i=0

α2
i

−Ψ(1, n + i + 1) + Ψ(1, i + 1)
.

By applying this equality to Theorem 2, we obtain (3.1) . �

THEOREM 4. Let the matrix H◦1/2 and αi -s (i = 0, . . . , n − 1 and α2
0 + α2

1 +
· · · + α2

n−1 = n) be as in (1.2) and (1.10) , respectively. Then

σn

(
H◦1/2

)
�

⎡
⎣n

(
n−1∑
i=0

α2
i

Ψ(n + i + 1) −Ψ(i + 1)

)−1
⎤
⎦

1/2

� σ1

(
H◦1/2

)
. (3.2)

Proof. For the matrix H◦1/2 in (1.2) we have

n−1∑
i=0

α2
i

min {r2
i , c2

i }
=

n−1∑
i=0

α2
i

max {r2
i , c2

i }
=

n−1∑
i=0

α2
i

Ψ(n + i + 1) −Ψ(i + 1)
.

By applying this equality to Theorem 2, we obtain (3.2) . �
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4. Bounds for extreme singular values of Cauchy-Toeplitz and Cauchy-Hankel
matrices

THEOREM 5. Let the matrix Tn and αi -s be as in (1.3) and (1.10) , respectively.
Then

σn (Tn) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
n

a1 + a2
, if n is odd

√
n
a3

, if n is even

(4.1)

and √
n

a4 + a5
, if n is odd√

n
a6

, if n is even

⎫⎪⎪⎬
⎪⎪⎭ � σ1 (Tn) . (4.2)

a1 =
(n−1)/2∑

j=1

α2
j

−Ψ (1, n + 3
2 − j

)
+ Ψ

(
1, 3

2 − j
) +

α2
(n+1)

2

−Ψ (1, n
2

)
+ Ψ

(
1,− n

2

) ,
a2 =

n∑
i=(n+3)/2

α2
i

−Ψ (1, n + 1
2 − i

)
+ Ψ

(
1, 1

2 − i
) ,

a3 =
n/2∑
j=1

α2
j

−Ψ
(

1,n+ 3
2−j

)
+Ψ
(

1,
3
2−j

) +
n∑

i= n
2 +1

α2
i

−Ψ(1,n+ 1
2−i)+Ψ(1, 1

2−i) ,

a4 =
(n−1)/2∑

i=1

α2
i

−Ψ (1, n + 1
2 − i

)
+ Ψ

(
1, 1

2 − i
) +

α2
(n+1)

2

−Ψ (1, n
2

)
+ Ψ

(
1,− n

2

) ,
a5 =

n∑
j=(n+3)/2

α2
j

−Ψ (1, n + 3
2 − j

)
+ Ψ

(
1, 3

2 − j
)

and
a6 =

n/2∑
i=1

α2
i

−Ψ(1,n+ 1
2−i)+Ψ

(
1,

1
2−i

) +
n∑

j= n
2 +1

α2
j

−Ψ(1,n+ 3
2−j)+Ψ(1, 3

2−j) .

Proof. For the matrix Tn in (1.3) we have

n∑
i=1

α2
i

min {r2
i , c2

i }
=

{
a1 + a2, if n is odd

a3, if n is even

and n∑
i=1

α2
i

max {r2
i , c2

i }
=

{
a4 + a5, if n is odd

a6, if n is even

where a1, a2, a3, a4, a5 and a6 are as in Theorem 5.
By applying this equality to Theorem 2, we obtain (4.1) and (4.2) . �
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THEOREM 6. Let the matrix Hn and αi -s be as in (1.4) and (1.10) , respectively.
Then

σn (Hn) �

⎡
⎣n

(
n∑

i=1

α2
i

−Ψ(1, n + 3
2 + i) + Ψ(1, 3

2 + i)

)−1
⎤
⎦

1/2

� σ1 (Hn). (4.3)

Proof. For the matrix Hn in (1.4) we have

n∑
i=1

α2
i

min {r2
i , c2

i }
=

n∑
i=1

α2
i

max {r2
i , c2

i }
=

n∑
i=1

α2
i

−Ψ(1, n + 3
2 + i) + Ψ(1, 3

2 + i)
.

By applying this equality to Theorem 2, we obtain (4.3) . �

THEOREM 7. Let Tn and Hn be Cauchy-Toeplitz and Cauchy-Hankel matrices as
in (1.3) and (1.4) , respectively, where g = 1/2 and h = 1 . Let αi -s (i = 1, . . . , n
and α2

1 + α2
2 + · · · + α2

n = n) be as in (1.10) . Let the operation "◦ " be a Hadamard
product i.e., if A = (aij) and B = (bij) are n× n matrices, then A ◦B = (aijbij) .Then

σn (Tn ◦ Hn) �

⎡
⎣n

(
α2

1

a
+

n∑
i=2

α2
i

b + c

)−1
⎤
⎦

1/2

(4.4)

and ⎡
⎢⎣n

⎛
⎝ α2

1

d + e
+

n∑
j=2

α2
j

f + g

⎞
⎠

−1
⎤
⎥⎦

1/2

� σ1 (Tn ◦ Hn) (4.5)

where

a =
2
[−n + 4(n + 1)2 + 4(n + 1)3

]
(3 + 2n)2 (2n + 1)2 − 1

2
Ψ
(

1, n +
1
2

)
− 16

9
+

π2

4
,

b =
2
[
Ψ
(
i + 3

2 + n
)−Ψ

(−i + 1
2 + n

)−Ψ
(
i + 3

2

)
+ Ψ

(−i + 1
2

)]
8i3 + 12i2 + 6i + 1

,

c =
−Ψ (1, i + 3

2 + n
)−Ψ

(
1,−i + 1

2 + n
)

+ Ψ
(
1, i + 3

2

)
+ Ψ

(
1,−i + 1

2

)
4i2 + 4i + 1

,

d =
8
27

−26 − 53n + 144 (n + 1)2 − 88 (n + 1)3 − 48 (n + 1)4 + 48 (n + 1)5

(3 + 2n)2 (2n + 1)2 (−1 + 2n)2 ,

e = −2
9
Ψ
(

1, n − 1
2

)
− 8

81
+

π2

9
,

f =
1

4j3

[
−Ψ
(
−j +

3
2

+ n

)
+ Ψ

(
j +

3
2

+ n

)
+ Ψ

(
−j +

3
2

)
−Ψ

(
j +

3
2

)]

and

g = 1
4j2
[−Ψ (1,−j + 3

2 + n
)−Ψ

(
1, j + 3

2 + n
)

+ Ψ
(
1,−j + 3

2

)
+ Ψ

(
1, j + 3

2

)]
.
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Proof. For the matrix Tn ◦ Hn, we have

n∑
i=1

α2
i

min {r2
i , c2

i }
=

α2
1

a
+

n∑
i=2

α2
i

b + c

and n∑
i=1

α2
i

max {r2
i , c2

i }
=

α2
1

d + e
+

n∑
j=2

α2
j

f + g

where a, b, c, d, e, f and g are as in Theorem 7.
By applying this equalities to (2.1)and (2.2) , we obtain (4.4) and (4.5) . �

5. Numerical results

We will take α1 = α2 = · · · = αn = 1 in the following examples.
EXAMPLE 8. Let

x1 =

⎡
⎣n

(
n−1∑
i=0

1
−Ψ(1, n + i + 1) + Ψ(1, i + 1)

)−1
⎤
⎦

1/2

.

For extreme singular values of the matrix H in (1.1) , we have the following values:

n σn (H) x1 σ1 (H)
5 0.6869025215.10−5 0.4861024028 1.567050691
10 0.00001397578013I 0.3456005779 1.751919670
20 0.00002191694535I 0.2447829834 1.907134720
50 0.00003397388936I 0.1548996056 2.076296683

EXAMPLE 9. Let

x2 =

⎡
⎣n

(
n−1∑
i=0

1
Ψ(n + i + 1) −Ψ(i + 1)

)−1
⎤
⎦

1/2

.

For extreme singular values of the matrix H◦1/2 in (1.2) , we have the following
values:

n σn
(
H◦1/2

)
x2 σ1

(
H◦1/2

)
5 0.8127124207.10−5 1.052417644 2.533602599
10 0.00003360072413I 1.056539471 3.638302962
20 0.00005898325435I 1.058039521 5.180584414
50 0.0001170827199I 1.058039521 8.219123246

EXAMPLE 10. Let

x3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
n

a1 + a2
, if n is odd

√
n
a3

, if n is even

and x4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
n

a4 + a5
, if n is odd

√
n
a6

, if n is even
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where a1, a2, a3, a4, a5 and a6 are as in Theorem 5 . For extreme singular values of
the matrix Tn in (1.3) , we have the following values:

n σn (Tn) x3 x4 σ1 (Tn)
5 1.461864493 2.559714228 2.983318099 3.141589238
10 1.300969070 2.794198068 3.045265297 3.141592654
20 1.170504602 2.944783251 3.083324183 3.141592654
50 1.032417049 3.053228776 3.112592124 3.141592655

EXAMPLE 11. Let

x5 =

⎡
⎣n

(
n∑

i=1

1

−Ψ(1, n + 3
2 + i) + Ψ(1, 3

2 + i)

)−1
⎤
⎦

1/2

.

For extreme singular values of the matrix Hn in (1.4) , we have the following values:

n σn ( Hn) x5 σ1 ( Hn)
5 0.8421550433.10−5I 0.3612400002 0.928688586
10 0.8548979537.10−5I 0.2937871206 1.167692602
20 0.00002039511516I 0.2247586482 1.387415414
50 0.00002991650413I 0.1495377488 1.639373809

EXAMPLE 12. Let

x6 =

⎡
⎣n

(
1
a

+
n∑

i=2

1
b + c

)−1
⎤
⎦

1/2

and x7 =

⎡
⎢⎣n

⎛
⎝ 1

d + e
+

n∑
j=2

1
f + g

⎞
⎠

−1
⎤
⎥⎦

1/2

where a, b, c, d, e, f and g are as in Theorem 7. For extreme singular values of matrix
Tn ◦ Hn , we have the following values:

n σn (Tn ◦ Hn) x6 x7 σ1 (Tn ◦ Hn)
5 0.2018166931 0.3548145602 0.4524704029 0.999474704
10 0.0996616243 0.2120012139 0.2477198597 1.000163696
20 0.0477063748 0.1181900193 0.1294206340 1.000261912
50 0.0176375260 0.0510986596 0.0532203114 1.000276124
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Selçuk University

42031 (Campus) Konya
Turkey

e-mail: agungor@selcuk.edu.tr

Ramazan Türkmen
Department of Mathematics

Art and Science Faculty
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