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NOTE ON SOME INEQUALITIES FOR

GENERALIZED CONVEX FUNCTIONS

M. KLARIČIĆ BAKULA AND J. PEČARIĆ

(communicated by Z. Páles)

Abstract. We give several Jensen’s type inequalities for functions convex with respect to a
Tchebycheff system {ω1,ω2} . Results of Bessenyei and Páles from [1] are generalized.

1. Introduction

Let real function f be defined on some nonempty interval I of the real line R.
We say that function f is convex on I if inequality

f [λx + (1 − λ ) y] � λ f (x) + (1 − λ ) f (y)

holds for all x, y ∈ I and λ ∈ (0, 1) . Geometrically, this means that if P, Q and R
are three distinct points on the graph of f with Q between P and R, then Q is on or
below chord PR. In paper [2] Beckenbach generalized this geometric idea by replacing
straight lines, i.e. elements of the family

F1 = {F : R → R | F (x) = αx + β , α, β ∈ R} ,

by elements of a two parameter family F of continuous functions defined on I such
that for any pairs (x1, y1) , (x2, y2) ∈ I × R with x1 �= x2 there exists a unique element
F (· ; x1, x2) ∈ F such that F (xi ; x1, x2) = yi, i = 1, 2.

We say that a function f : I → R is convex with respect to F if

f (x) � F (x ; x1, x2) for all (x1, x2)

whenever x1 < x2, and x1, x2 ∈ I.
Special attention has been given to the case in which F is a linear family. By

definition, this is a family F such that any F ∈ F may be expressed in the form

F = αω1 + βω2,

where α, β are real numbers and ω1,ω2 are two fixed continuous functions on I. The
condition on the family F that for any pairs (x1, y1) , (x2, y2) ∈ I × R with x1 �= x2
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there exists a unique element F (· ; x1, x2) ∈ F such that F (xi ; x1, x2) = yi, i = 1, 2,
turns out to be equivalent to the requirement∣∣∣∣ω1 (x1) ω1 (x2)

ω2 (x1) ω2 (x2)

∣∣∣∣ �= 0 (1.1)

whenever x1 �= x2. Since this determinant is continuous function it must have the same
sign for all (x1, x2) ∈ I2, x1 �= x2, and we shall assume the basis functions ω1 and
ω2 chosen so that the determinant (1.1) is positive whenever x1 < x2 . Such a set of
functions {ω1,ω2} is called a Tchebycheff system. Also, if {ω1,ω2} is a Tchebycheff
system on a interval I such that ω1 is a positive function, then a simple calculation
shows us that the function ω2

ω1
is continuous and strictly increasing on I.

We say that a function f : I → R is convex with respect to a Tchebycheff system
{ω1,ω2} if ∣∣∣∣∣∣

f (x1) f (x2) f (x)
ω1 (x1) ω1 (x2) ω1 (x)
ω2 (x1) ω2 (x2) ω2 (x)

∣∣∣∣∣∣ � 0

whenever x1 < x2 < x , and x1, x2, x ∈ I . It can be easily seen that if for all x ∈ I
ω1 (x) = 1 and ω2 (x) = x, the notion of the convexity with respect to a Tchebycheff
system {ω1,ω2} reduces to the notion of standard convexity.

These notions can be further generalized using n points instead of just two to
determine the functions of the family F , in which case we obtain an n -parameter
family Fn. More abut generalized convex functions can be found for example in [4].

In paper [1] Bessenyei and Pales considered the notion of (ω1,ω2) -convexity,
which is a particular case of generalized convexity in the sense of Beckenbach [2], and
hence a generalization of standard convexity. It can be easily seen that their definition
of (ω1,ω2) -convexity, where (ω1,ω2) is a positive regular pair, is equivalent to the
definition of the convexitywith respect to a Tchebycheff system {ω1,ω2} , so generally
wherever is stated "... (ω1,ω2) is a positive regular pair..." can stay "...{ω1,ω2} is a
Tchebycheff system...". In that paper Bessenyei and Pales gave characterization theorems
and Hadamard-type inequalities for (ω1,ω2) -convex functions. The main results from
[1] are stated here as follows.

THEOREM A: Let (ω1,ω2) be a positive regular pair on a nonempty interval I
such that ω1 is positive. The following statements are equivalent:
(i) f : I → R is (ω1,ω2) -convex;
(ii) for all x, y, z ∈ I such that x < y < z we have that∣∣∣∣ f (y) f (z)

ω1 (y) ω1 (z)

∣∣∣∣∣∣∣∣ω1 (y) ω1 (z)
ω2 (y) ω2 (z)

∣∣∣∣ �

∣∣∣∣ f (x) f (y)
ω1 (x) ω1 (y)

∣∣∣∣∣∣∣∣ω1 (x) ω1 (y)
ω2 (x) ω2 (y)

∣∣∣∣ ;
(iii) for all x0 ∈ Int (I) there exist α, β ∈ R such that

αω1 (x0) + βω2 (x0) = f (x0) ,

αω1 (x) + βω2 (x) � f (x) , ∀x ∈ I;
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(iv) for all n ∈ N, x0, x1, ..., xn ∈ I and λ1, ..., λn � 0 satisfying the conditions

n∑
k=1

λkω1 (xk) = ω1 (x0)

n∑
k=1

λkω2 (xk) = ω2 (x0)

we have that
f (x0) �

n∑
k=1

λkf (xk) ; (1.2)

(v) for all x0, x1, x2 ∈ I and λ1, λ2 � 0 satisfying the conditions

λ1ωj (x1) + λ2ωj (x2) = ωj (x0) , j = 1, 2

we have that
f (x0) � λ1f (x1) + λ2f (x2) .

THEOREM B: Let (ω1,ω2) be a positive regular pair on a nonempty open interval
I such that ω1 is positive. The function f : I → R is (ω1,ω2) -convex if and only if
the function g : ω2

ω1
(I) → R defined by

g :=
f
ω1

◦
(
ω2

ω1

)−1

(1.3)

is convex in the standard sense.

THEOREM C: Let (ω1,ω2) be a positive regular pair on the interval [a, b] such
that ω1 is positive on [a, b] . If f : [a, b] → R is an (ω1,ω2) -convex function, then
the inequalities

cf (ξ) �
∫ b

a
f (x) dx � c1f (a) + c2f (b) (1.4)

hold, where

ξ =
(
ω2

ω1

)−1
(∫ b

a ω2 (x) dx∫ b
a ω1 (x) dx

)
, c =

∫ b
a ω1 (x) dx

ω1 (ξ)

and

c1 =

∣∣∣∣∣
∫ b

a ω1 (x) dx ω1 (b)∫ b
a ω2 (x) dx ω2 (b)

∣∣∣∣∣∣∣∣∣ω1 (a) ω1 (b)
ω2 (a) ω2 (b)

∣∣∣∣ , c2 =

∣∣∣∣∣ω1 (a)
∫ b

a ω1 (x) dx

ω2 (a)
∫ b

a ω2 (x) dx

∣∣∣∣∣∣∣∣∣ω1 (a) ω1 (b)
ω2 (a) ω2 (b)

∣∣∣∣ .

It can be easily seen that if function f : [a, b] → R is an (1, x) -convex func-
tion (i.e. convex in the standard sense), then (1.4) becomes well-known Hadamard’s
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inequality for convex functions (see [3, p. 137] or [5, p. 10])

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x) dx � f (a) + f (b)

2
.

We may note here that the main results of paper [1] are Theorem A and Theorem
C, but the use of Theorem B will enable us to generalize some standard inequalities
for convex functions. In Section 2 we give several inequalities of Jensen’s type for
functions convex with respect to a Tchebycheff system {ω1,ω2} (i.e. for (ω1,ω2) -
convex functions), and two of them are generalizations of (1.2) and (1.4) . In Section
3 we give one inequality of Giaccardi’s type for functions convex with respect to a
Tchebycheff system {ω1,ω2} .

2. Two inequalities of Jensen’s type

Let (Ω, A , ν) be a measure space with 0 < ν (Ω) < ∞ , and let h : Ω → I, I ⊂
R, be a function from L1 (ν) . Then for any convex function ϕ : I → R inequality

ϕ
(

1
ν (Ω)

∫
Ω

hdν
)

� 1
ν (Ω)

∫
Ω

(ϕ ◦ h) dν (2.1)

holds. This inequality is well known as the integral Jensen’s inequality (see [3, p. 45]
or [5, p. 10]). If I = [c, d] , function h is measurable and function ϕ is convex and
continuous on I , then the converse Jensen’s inequality (see [3, p. 98]) states

1
ν (Ω)

∫
Ω

(ϕ ◦ h) dν � d − h
d − c

ϕ (c) +
h − c
d − c

ϕ (d) , (2.2)

where h = 1
ν(Ω)

∫
Ω hdν. We will use (2.1) , (2.2) and Theorem B to obtain two

Jensen’s type inequalities for functions convex with respect to a Tchebycheff system
{ω1,ω2} .

Throughout the rest of the paper, we assume that:
(i) (Ω, A ,μ) is a measure space with 0 < μ (Ω) < ∞;
(ii) f : [m, M] → R, m < M, is a continuous and convex function with respect to a

Tchebycheff system {ω1,ω2} on [m, M] , where ω1 is positive on [m, M] ;
(iii) u : Ω → [m, M] is a measurable function.

THEOREM 1. Let functions f and u be as the above. Then the inequalities

kf (ξ) �
∫
Ω

(f ◦ u) dμ � c1f (m) + c2f (M) (2.3)

hold, where

Pω1 =
∫
Ω

(ω1 ◦ u) dμ,

Pω2 =
∫
Ω

(ω2 ◦ u) dμ,

ξ =
(
ω2

ω1

)−1(Pω2

Pω1

)
, k =

Pω1

ω1 (ξ)
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and

c1 =

∣∣∣∣Pω1 ω1 (M)
Pω2 ω2 (M)

∣∣∣∣∣∣∣∣ω1 (m) ω1 (M)
ω2 (m) ω2 (M)

∣∣∣∣ , c2 =

∣∣∣∣ω1 (m) Pω1

ω2 (m) Pω2

∣∣∣∣∣∣∣∣ω1 (m) ω1 (M)
ω2 (m) ω2 (M)

∣∣∣∣ .
Proof. From Theorem B we know that function g defined by (1.3) is continuous

and convex in the standard sense. We define functions ν on A and h on Ω as

dν = (ω1 ◦ u) dμ, (2.4)

h (x) =
(
ω2

ω1
◦ u

)
(x) . (2.5)

Since functions ω1 and ω2
ω1

are continuous on [m, M] and function u is measurable, we
know that function ν defined with (2.4) is a measure on A and that 0 < ν (Ω) < ∞ ,
and we also know that function h defined with (2.5) is measurable. Now we can apply
integral Jensen’s inequality (2.1) on function ϕ = g to obtain

g

(
Pω2

Pω1

)
= g

(
1

Pω1

∫
Ω

(ω1 ◦ u)
(
ω2

ω1
◦ u

)
dμ
)

= g

(
1

ν (Ω)

∫
Ω

(
ω2

ω1
◦ u

)
dν
)

� 1
ν (Ω)

∫
Ω

(
g ◦ ω2

ω1
◦ u

)
dν

=
1

ν (Ω)

∫
Ω

(f ◦ u) dμ =
1

Pω1

∫
Ω

(f ◦ u) dμ.

On the other hand, from the definition of function g we know that

g

(
Pω2

Pω1

)
=

[
f
ω1

◦
(
ω2

ω1

)−1
](

Pω2

Pω1

)
,

so we obtain
f (ξ)
ω1 (ξ)

� 1
Pω1

∫
Ω

(f ◦ u) dμ,

from which we can easily get the left side of (2.3) .
To obtain the right side of (2.3) we use (2.2) for the same functions ϕ, h and ν

as before. We obtain

1
Pω1

∫
Ω

(f ◦ u) dμ =
1

Pω1

∫
Ω

(
g ◦ ω2

ω1
◦ u

)
dν

�
d − Pω2

Pω1

d − c
g (c) +

Pω2
Pω1

− c

d − c
g (d) ,

(2.6)

since in this case h = Pω2
Pω1

. Multiplying (2.6) by Pω1 and using the monotonicity
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property of the function ω2
ω1

we obtain∫
Ω

(f ◦ u) dμ =
∫
Ω

(
g ◦ ω2

ω1
◦ u

)
dν

� dPω1 − Pω2

d − c
g (c) +

Pω2 − cPω1

d − c
g (d)

=
ω2(M)
ω1(M)Pω1 − Pω2

ω2(M)
ω1(M) − ω2(m)

ω1(m)

· f (m)
ω1 (m)

+
Pω2 − ω2(m)

ω1(m)Pω1

ω2(M)
ω1(M) − ω2(m)

ω1(m)

f (M)
ω1 (M)

= c1f (m) + c2f (M) .

This completes the proof.

REMARK 1. If in Theorem 1 μ is Lebesgue measure on set Ω = [a, b] ⊂ R, and
if function u is defined as

u (x) = x, x ∈ [a, b] ,

then inequalities (2.3) become inequalities (1.4) from Theorem C.

COROLLARY 1. Let functions f and u be as in Theorem 1. If x0 ∈ [m, M]
satisfies the conditions

Pω1

μ (Ω)
= ω1 (x0) (2.7)

Pω2

μ (Ω)
= ω2 (x0) , (2.8)

then the inequalities

f (x0) � 1
μ (Ω)

∫
Ω

(f ◦ u) dμ

� ω1 (x0)ω2 (M) − ω1 (M)ω2 (x0)
ω1 (m)ω2 (M) − ω1 (M)ω2 (m)

f (m)

+
ω1 (m)ω2 (x0) − ω1 (x0)ω2 (m)
ω1 (m)ω2 (M) − ω1 (M)ω2 (m)

f (M)

(2.9)

hold.

Proof. If conditions (2.7) and (2.8) are satisfied, then inequality (2.3) reduces
to (2.9) because of

ξ = x0, k = μ (Ω) ,

and

c1 =

∣∣∣∣ μ (Ω)ω1 (x0) ω1 (M)
μ (Ω)ω2 (x0) ω2 (M)

∣∣∣∣∣∣∣∣ω1 (m) ω1 (M)
ω2 (m) ω2 (M)

∣∣∣∣ , c2 =

∣∣∣∣ω1 (m) μ (Ω)ω1 (x0)
ω2 (m) μ (Ω)ω2 (x0)

∣∣∣∣∣∣∣∣ω1 (m) ω1 (M)
ω2 (m) ω2 (M)

∣∣∣∣ .
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REMARK 2. If ω1 (x) = 1 and ω2 (x) = x for all x ∈ Ω , conditions (2.7) and
(2.8) become

ω1 (x0) =
1

μ (Ω)

∫
Ω

(ω1 ◦ u) dμ =
1

μ (Ω)

∫
Ω

dμ = 1,

ω2 (x0) =
1

μ (Ω)

∫
Ω

(ω2 ◦ u) dμ =
1

μ (Ω)

∫
Ω

udμ = u = x0 ∈ [m, M] ,

so if function f : [m, M] → R is convex on [m, M] in the standard sense, then
inequalities (2.9) give us

f

(
1

μ (Ω)

∫
Ω

udμ
)

� 1
μ (Ω)

∫
Ω

(f ◦ u) dμ

� M − u
M − m

f (m) +
u − m
M − m

f (M) ,

i.e. inequalities (2.9) reduce to the integral Jensen’s inequality (2.1) and its converse
(2.2) .

THEOREM 2. Let {ω1,ω2} be a Tchebycheff system on an interval [m, M] such
that ω1 is positive on [m, M] . If f : [m, M] → R is an (ω1,ω2) -convex function,
xk ∈ [m, M] (k = 1, 2, ..., n) and p = (p1, · · · , pn) a nonnegative n -tuple such that
Pn =

∑n
k=1 pk �= 0 , then the inequalities

kf (ξ) �
n∑

k=1

pkf (xk) � c1f (m) + c2f (M) (2.10)

hold, where

Pω1 =
n∑

k=1

pkω1 (xk) ,

Pω2 =
n∑

k=1

pkω2 (xk) ,

ξ =
(
ω2

ω1

)−1(Pω2

Pω1

)
, k =

Pω1

ω1 (ξ)

and

c1 =

∣∣∣∣Pω1 ω1 (M)
Pω2 ω2 (M)

∣∣∣∣∣∣∣∣ω1 (m) ω1 (M)
ω2 (m) ω2 (M)

∣∣∣∣ , c2 =

∣∣∣∣ω1 (m) Pω1

ω2 (m) Pω2

∣∣∣∣∣∣∣∣ω1 (m) ω1 (M)
ω2 (m) ω2 (M)

∣∣∣∣ . (2.11)

Proof. Directly from Theorem 1. We simply choose

Ω = {1, 2, ..., n} ,

μ ({i}) = pi, i = 1, 2, ..., n,

u (i) = xi, i = 1, 2, ..., n.
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COROLLARY 2. Let {ω1,ω2} be a Tchebycheff system on an interval [m, M] such
that ω1 is positive on [m, M] . If f : [m, M] → R is an (ω1,ω2) -convex function,
p=(p1, · · · , pn) a nonnegative n-tuple such that Pn =

∑n
k=1 pk �= 0 and xk ∈ [m, M]

(k = 0, 1, 2, ..., n) satisfying the conditions

Pω1

Pn
= ω1 (x0) (2.12)

Pω2

Pn
= ω2 (x0) , (2.13)

then the inequalities

f (x0) � 1
Pn

n∑
k=1

pkf (xk)

� ω1 (x0)ω2 (M) − ω1 (M)ω2 (x0)
ω1 (m)ω2 (M) − ω1 (M)ω2 (m)

f (m)

+
ω1 (m)ω2 (x0) − ω1 (x0)ω2 (m)
ω1 (m)ω2 (M) − ω1 (M)ω2 (m)

f (M)

(2.14)

hold.

Proof. Directly from Corollary 1 for Ω, μ and u as in Theorem 2.

REMARK 3. We may note here that the left hand side inequality in (2.14) is
inequality (1.2) from Theorem A.

REMARK 4. If function f : [m, M] → R is convex in the standard sense then,
similarly as in Remark 2, from inequality (2.14) we obtain

f

(
1
Pn

n∑
k=1

pkxk

)
� 1

Pn

n∑
k=1

pkf (xk)

� M − x
M − m

f (m) +
x − m
M − m

f (M) ,

where

x =
1
Pn

n∑
k=1

pkxk,

i.e. we obtain discrete Jensen’s inequality and its converse (see for example [5, p. 69]).

3. One inequality of Giaccardi’s type

THEOREM 3. Assume that {ω1,ω2} is a Tchebycheff system on interval [m, M]
such that ω1 is positive on [m, M] , and that f : [m, M] → R is an (ω1,ω2) -convex
function. Let p=(p1, · · · , pn) be a nonnegative n -tuple such that Pn =

∑n
k=1 pk �= 0

and xk (k = 0, 1, ..., n) be real numbers such that x0, x̃ =
∑n

k=1 pkxk ∈ [m, M] . If

(xi − x0) (x̃ − xi) � 0 (i = 1, 2, ..., n), x̃ �= x0, (3.1)
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then the inequality
n∑

k=1

pkf (xk) � Ãf (x̃) + B̃f (x0) (3.2)

holds, where

Ã =
ω1 (x0) Pω2 − ω2 (x0) Pω1

ω1 (x0)ω2 (x̃) − ω1 (x̃)ω2 (x0)
,

B̃ =
ω2 (x̃) Pω1 − ω1 (x̃) Pω2

ω1 (x0)ω2 (x̃) − ω1 (x̃)ω2 (x0)
.

Proof. We can easily see that conditions (3.1) imply either

x0 � xi � x̃, i = 1, 2, ..., n,

or
x̃ � xi � x0, i = 1, 2, ..., n.

Since x0, x̃ ∈ [m, M] , this means that we can apply Theorem 2 on (ω1,ω2) -convex
function f either on the subinterval [x0, x̃] ⊆ [m, M] or on the subinterval [x̃, x0] ⊆
[m, M] . Therefore, in case when x0 < x̃, the right hand side inequality in (2.10) with
m and M replaced by x0 and x̃ respectively, gives

n∑
k=1

pkf (xk) � c1f (x0) + c2f (x̃) ,

where by (2.11):

c1 =

∣∣∣∣Pω1 ω1 (x̃)
Pω2 ω2 (x̃)

∣∣∣∣∣∣∣∣ω1 (x0) ω1 (x̃)
ω2 (x0) ω2 (x̃)

∣∣∣∣ = B̃, c2 =

∣∣∣∣ω1 (x0) Pω1

ω2 (x0) Pω2

∣∣∣∣∣∣∣∣ω1 (x0) ω1 (x̃)
ω2 (x0) ω2 (x̃)

∣∣∣∣ = Ã,

which means that inequality (3.2) is valid in this case. Similarly, in case when x̃ < x0,
we apply the right hand side inequality in (2.10) with m and M replaced by x̃ and x0

respectively, to obtain

n∑
k=1

pkf (xk) � c1f (x̃) + c2f (x0) .

We can easily check, using (2.11) again, that in this case c1 = Ã and c2 = B̃ , which
means that (3.2) remains valid.

REMARK 5. Assume that f : [m, M] → R is a convex function. Let p=(p1, · · · , pn)
be a nonnegative n -tuple such that Pn =

∑n
k=1 pk �= 0 and let xk (k = 0, 1, ..., n) be

real numbers such that x0,
∑n

k=1 pkxk ∈ [m, M] . If conditions (3.1) are satisfied, we
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can apply Theorem 3 on such f , xxx and ppp , where ω1(x) = 1 and ω2(x) = x for all
x ∈ [m, M] . It can be easily checked that in this case we obtain

n∑
k=1

pkf (xk) � Af

(
n∑

k=1

pkxk

)
+ B (Pn − 1) f (x0)

where

A =
∑n

k=1 pk (xk − x0)∑n
k=1 pkxk − x0

, B =
∑n

k=1 pkxk∑n
k=1 pkxk − x0

,

i.e., we obtain well known Giaccardi’s inequality (see [5, p. 11]).

From these results we see that if we combine Theorem B and some standard
inequalities for convex functions we can obtain in rather easy way variants of those
inequalities for (ω1,ω2) -convex functions.
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