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CHARACTERIZATIONS OF CONVEXITY

VIA HADAMARD’S INEQUALITY

MIHÁLY BESSENYEI AND ZSOLT PÁLES

(communicated by J. Pečarić )

Abstract. The classical Hermite–Hadamard inequality, under some weak regularity conditions,
characterizes convexity. The aim of the present paper is to give analogous result for the case of
generalized convexity induced by two dimensional Chebyshev systems. The basic tool of the
proofs is a characterization theorem of continuous, non-convex functions.

1. Introduction

As it is well known, the classical Hermite–Hadamard inequality (see [9] and [12]
for interesting historical remarks) is not merely the consequence of convexity but, under
some weak regularity assumptions, characterizes it ([11, Excersice 8, p. 205]). More
precisely, the following statements remain true:

THEOREM A. Let I ⊂ R be an open interval and f : I → R be a convex function.
Then, f is continuous and, for all elements x < y of I , satisfies the inequality

f

(
x + y

2

)
� 1

y − x

∫ y

x
f (t)dt � f (x) + f (y)

2
.

Conversely, if a function f : I → R is continuous and, for all elements x < y of I ,
satisfies either the inequality

f

(
x + y

2

)
� 1

y − x

∫ y

x
f (t)dt

or
1

y − x

∫ y

x
f (t)dt � f (x) + f (y)

2
,

then it is convex.
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Moreover, Jensen’s inequality, that is obtained by “dropping" the integral average
of the function from the Hermite–Hadamard inequality, also characterizes continuous
convex functions.

Most of the results of the theory of convexity and itself the notion of convexity,
too, are based on the geometric properties of affine functions. In fact, two of the
properties are crucial: each affine function is continuous and every two points of the
plain with distinct first coordinates can be interpolated by a unique affine function.
Keeping these properties, Beckenbach generalized the notion of convexity with the help
of two parameter interpolation families or, as it is named after him, Beckenbach families
(see [1]). In this paper we restrict our investigations only to the special case when the
Beckenbach family of the induced convexity notion has a linear structure.

DEFINITION. Let I ⊂ R be an interval. We say that a pair of functions (ω1,ω2)
is a positive Chebyshev system or simply a regular pair over I , if ω1,ω2 : I → R are
continuous and, for all elements x < y of I , fulfill the inequality

∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ > 0.

Given a regular pair (ω1,ω2) over I , a function f : I → R is said to be generalized
convexwith respect to (ω1,ω2) or shortly (ω1,ω2) -convex if, for all elements x < y < z
of I , it satisfies the inequality

∣∣∣∣∣∣
f (x) f (y) f (z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ � 0.

Clearly, in the particular case when the members of the underlying regular pairs are
the special functions ω1(x) := 1 and ω2(x) := x , the definition leads to the notion of
“classical" convexity. For simplicity, in the followings this setting is cited as standard
setting and the induced convexity notion as standard convexity.

In an earlier paper [4] we investigated some properties of regular pairs and gen-
eralized convexity induced by regular pairs. Among others it turned out that, on open
intervals, claiming positivity on the first component of a regular pair is not an essen-
tial restriction. Therefore, in many further theorems, we assume that the regular pair
(ω1,ω2) is a positive one, which means that ω1 is positive on its domain. It can easily
be checked that (ω1,ω2) is a positive regular pair on an open interval I if and only if
the functions ω1,ω2 are continuous, ω1 is positive, and the function ω2/ω1 is strictly
monotone increasing on I .

Also in the mentioned paper, Hermite–Hadamard-type inequalities were presented
for generalized convex functions which, in the standard setting, reduce to the classical
Hermite–Hadamard inequality. The result reads as follows (for a generalization, see
[7]):

THEOREM B. Let (ω1,ω2) be a positive regular pair on an open interval I and
let ρ : I → R be a positive integrable function. Define, for all elements x < y of I ,
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the points ξ(x, y) and the coefficients c(x, y), c1(x, y), c2(x, y) by the formulae

ξ(x, y) =
(
ω2

ω1

)−1
(∫ y

x ω2ρ∫ y
x ω1ρ

)
, c(x, y) =

∫ y
x ω1ρ
ω1(ξ)

(1)

and

c1(x, y) =

∣∣∣∣
∫ y

x ω1ρ ω1(y)∫ y
x ω2ρ ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
, c2(x, y) =

∣∣∣∣ ω1(x)
∫ y

x ω1ρ
ω2(x)

∫ y
x ω2ρ

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
. (2)

If f : I → R is an (ω1,ω2) -convex function, then it is continuous and, for all elements
x < y of I , satisfies the following Hermite–Hadamard-type inequality:

c(x, y)f (ξ(x, y)) �
∫ y

x
f ρ � c1(x, y)f (x) + c2(x, y)f (y).

The aim of the present paper is to give an analogous result to TheoremA in the case
of generalized convexity induced by regular pairs verifying the converse assertion of
Theorem B. To do this, first we investigate some geometrical properties of generalized
lines (see below). Then, we give characterization theorems for generalized convexity
and generalized non-convexity, respectively. Both theorems turns out to be very im-
portant in the proofs of the main results concerning the characterization of generalized
convexity via Hadamard’s inequality.

2. Auxiliary tools

Given a regular pair (ω1,ω2) over an interval I , denote the set of all linear
combinations of the base functions ω1 and ω2 by Ł(ω1,ω2) . A function ω : I → R

is said to be a generalized line if it belongs to the linear hull Ł(ω1,ω2) . Some results
concerning generalized lines were presented in [4]; one of the most important of them
states the existence of a generalized line “parallel" to the x -axis.

LEMMA 1. If (ω1,ω2) is a regular pair on an interval I , then there exists a
generalized line ω that is positive on the interior of I .

In fact, the statement of the lemma can be improved: on compact subintervals
of the domain, generalized lines are uniformly away from zero. As another important
property, let us mention that pointwise convergence is not only a necessary but also a
sufficient condition for the uniform convergence of sequences of generalized lines.

The notion of convexity can be characterized via the geometric properties of the
interpolation chords and support lines. Namely, a function is convex if and only if its
graph is “under" the chord joining any two points of the graph; further on, a function
is convex if and only if, in each point, its graph is “above" the supporting line. The
following result generalizes these properties for generalized convex functions and is the
basic tool in verifying Theorem B.
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THEOREM 1. Let (ω1,ω2) be a regular pair over an open interval I . The following
statements are equivalent:
(i) f : I → R is (ω1,ω2) -convex;
(ii) for all x0 ∈ I there exist α, β ∈ R such that

αω1(x0) + βω2(x0) = f (x0),
αω1(x) + βω2(x) � f (x) (x ∈ I);

(iii) for all elements x < p < y of I ,

f (p) � αω1(p) + βω2(p)

where the coefficients α, β are the solutions of the system of linear equations

f (x) = αω1(x) + βω2(x),
f (y) = αω1(y) + βω2(y).

Proof. Hint. The equivalence of the first and second assertions has already been
shown in [4], therefore we shall verify, for example, that the (ω1,ω2) -convexity of a
function f is equivalent to the third assertion.

For this purpose, express the unknowns α and β from the system of linear
equations of (iii) by Cramer’s rule. Then, multiplying both sides by the common
positive denominator of α and β , the inequality f (p) � αω1(p) + βω2(p) can be
rewritten into the form∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ f (p) �
∣∣∣∣ f (x) f (y)
ω2(x) ω2(y)

∣∣∣∣ω1(p) +
∣∣∣∣ f (y) f (x)
ω1(y) ω1(x)

∣∣∣∣ω2(p),

or equivalently, interchanging the columns of the coefficient of ω2(p) and applying the
expansion theorem “backwards”

0 �

∣∣∣∣∣∣
f (x) f (p) f (y)
ω1(x) ω1(p) ω1(y)
ω2(x) ω2(p) ω2(y)

∣∣∣∣∣∣ .

Under the assumption of continuity, functions that are not generalized convex can
be characterized via very similar properties. It turns out that these kind of functions are
necessarily locally strictly concave at some point of the domain. The obtained theorem
generalizes the analogous result known for convex functions (see [13], [14], [15], [8])
and also plays the key role in proving the main results of the paper.

THEOREM 2. Let (ω1,ω2) be a regular pair on an open interval I , furthermore
let f : I → R be a continuous function. Then, the following assertions are equivalent:
(i) f is not (ω1,ω2) -convex;
(ii) there exist elements x < y of I such that ω < f on ]x, y[ where ω is the

generalized line determined by the properties

ω(x) = f (x), ω(y) = f (y);



CHARACTERIZATIONS OF CONVEXITY VIA HADAMARD’S INEQUALITY 57

(iii) there exist elements x < p < y of I and a generalized line ω such that ω � f
on [x, y] , furthermore

f (x) < ω(x), f (p) = ω(p), f (y) < ω(y);

(iv) there exists p ∈ I such that f is locally strictly (ω1,ω2) -concave at p , that is,
there exist elements x < p < y of I such that, for all x < u < p < v < y , the
following inequality holds:∣∣∣∣∣∣

f (u) f (p) f (v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ < 0.

Proof. (i) ⇒ (ii) . If f is not (ω1,ω2) -convex, then, by assertion (iii) of
Theorem 1, there exist elements x0 < p < y0 of I such that ω(p) < f (p) , where ω is
the generalized line determined by the properties ω(x0) = f (x0) and ω(y0) = f (y0) .
Define the function F : [x0, y0] → R by F := f − ω , furthermore the elements x and
y by the formulae

x := sup{ t |F(t) = 0, x0 � t < p },
y := inf{ t |F(t) = 0, p < t � y0 }.

Clearly, x0 � x < p < y � y0 hold; moreover, F(x) = F(y) = 0 and F > 0 on ]x, y[
due to the continuity of F . That is, ω(x) = f (x) , ω(y) = f (y) and f (t) > ω(t) for
all t ∈]x, y[ .

(ii) ⇒ (iii) . Take the elements x < y of I such that ω < f hold on ]x, y[ where
ω is the generalized line determined by the interpolation properties ω(x) = f (x) and
ω(y) = f (y) . Denote the generalized line that is positive on I by ω0 and define t0 ∈ R

by the formula

t0 := max
[x,y]

f − ω
ω0

.

Clearly, t0 > 0 since ω < f on ]x, y[ . We show that the generalized line ω∗ :=
ω + t0ω0 satisfies the required properties. Indeed, by the positivity of t0ω0 and the
interpolation properties of ω , we get

ω∗(x) := ω(x) + t0ω0(x) > ω(x) = f (x),
ω∗(y) := ω(y) + t0ω0(y) > ω(x) = f (y).

On the other hand, the function (f − ω)/ω0 is continuous on [x, y] hence it takes its
maximum at some p ∈]x, y[ :

t0 =
f (p) − ω(p)

ω0(p)
.

Therefore,
ω∗(p) := ω(p) + t0ω0(p) = f (p).
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(iii) ⇒ (iv) . Due to the continuity of the functions f and ω , we may assume
that p is the minimal element of ]x, y[ fulfilling the properties of the assertion. Then,
f (u) < ω(u) if x < u < p and f (v) � ω(v) if p < v < y . Therefore,∣∣∣∣∣∣

f (u) f (p) f (v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ <

∣∣∣∣∣∣
ω(u) ω(p) ω(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣
since the adjoint determinants of f (u) and f (v) are positive, furthermore, f and ω
coincide at p . However, ω is a linear combination of ω1 and ω2 hence the left hand
side of the previous inequality equals zero.

(iv) ⇒ (i) . Trivial.

As a direct consequence of the theorem above, in the standard setting, we get the
characterization properties of continuous, non convex functions:

COROLLARY 1. Let I be an open interval and let f : I → R be a continuous
function. The following statements are equivalent:
(i) f is not convex;
(ii) there exists x < y elements of I and an affine function φ : I → R such that

φ(t) < f (t) on ]x, y[ , furthermore φ(x) = f (x) and φ(y) = f (y) hold;
(iii) there exists x < p < y elements of I and an affine function φ : I → R such that

φ(t) � f (t) on ]x, y[ , furthermore f (x) < φ(x) , f (p) = φ(p) and f (y) < φ(y)
hold;

(iv) there exists p ∈ I such that f is locally strictly concave at p , that is, there exist
elements x < p < y of I such that, for all x < u < p < v < y , the following
inequality holds: ∣∣∣∣∣∣

f (u) f (p) f (v)
1 1 1
u p v

∣∣∣∣∣∣ < 0.

For another application of Theorem 2, we get immediately that generalized con-
vexity, similarly to the standard one, is a localizable property.

COROLLARY 2. Let (ω1,ω2) be a regular pair over an open interval I , furthermore
f : I → R be a given function. Then, the following assertions are equivalent:
(i) f is (ω1,ω2) -convex;
(ii) f is locally (ω1,ω2) -convex, that is, each element of the domain has a neighbor-

hood where it is (ω1,ω2) -convex;
(iii) f is continuous and, for all p ∈ I , there exist elements x < p < y of I such that∣∣∣∣∣∣

f (u) f (p) f (v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ � 0

for all x < u < p < v < y (i. e., f is locally convex at each point).
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Proof. Hint. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial. For the
implication (iii) ⇒ (i) , assume that a continuous function f : I → R is not (ω1,ω2) -
convex. Then, by the last assertion of Theorem 2, it is locally strictly (ω1,ω2) -concave
at some p ∈ I , hence it cannot be locally (ω1,ω2) -convex at p .

3. The main results

The main results are presented in the subsequent three theorems. The first and the
second ones concern the left and right hand side inequalities of Theorem B indepen-
dently, while the third one is analogous to the classical Jensen inequality. In the proof
of each theorem, we shall deal only with the “necessity” part since the “sufficiency” is
due to Theorem B.

THEOREM 3. Let (ω1,ω2) be a positive regular pair on an open interval I and
let ρ : I → R be a positive integrable function. Define, for all elements x < y of I ,
the functions ξ(x, y) and c(x, y) by the formulae in 1 . Then, a continuous function
f : I → R is generalized convex with respect to (ω1,ω2) if and only if, for all elements
x < y of I , it satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
�
∫ y

x
f ρ.

Proof. Observe first that the mapping (x, y) �→ ξ(x, y) is continuous in each
variable and takes its value between x and y since it is a Lagrange-type mean-value.
Further on, c(x, y) and ξ(x, y) are constructed so that all generalized lines are the
solutions of the functional equation

c(x, y)ω
(
ξ(x, y)

)
=
∫ y

x
ωρ (x < y). (3)

Assume that f satisfies the inequality above and, indirectly, is not (ω1,ω2) -convex.
Then, by assertion (iii) of Theorem 2, there exist elements x < p < y of I and a
generalized line ω such that f � ω on [x, y] and

f (x) < ω(x), f (p) = ω(p), f (y) < ω(y).

If, for example, p � ξ(x, y) , then there exists u ∈]p, y] such that p = ξ(x, u) since
ξ is a Lagrange-type mean-value. The inequality f (x) < ω(x) and the continuity of
f implies that f < ω on a right neighborhood of x hence, applying 3 , we get the
contradiction

c(x, u)f (p) = c(x, u)f
(
ξ(x, u)

)
�
∫ u

x
f ρ <

∫ u

x
ωρ = c(x, u)ω

(
ξ(x, u)

)
= c(x, u)f (p).

The other case, when ξ(x, y) � p , can similarly be checked and also leads to a
contradiction.

THEOREM 4. Let (ω1,ω2) be a positive regular pair over an open interval I and
let ρ : I → R be a positive integrable function. Define, for all elements x < y of I ,
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the functions c1(x, y) and c2(x, y) by the formulae in 2 . Then, a continuous function
f : I → R is generalized convex with respect to (ω1,ω2) if and only if, for all elements
x < y of I , it satisfies the inequality∫ y

x
f ρ � c1(x, y)f (x) + c2(x, y)f (y).

Proof. Note first that c1(x, y) and c2(x, y) are constructed such that all generalized
lines are the solutions of the functional equation∫ y

x
ωρ = c1(x, y)ω(x) + c2(x, y)ω(y). (4)

Assume indirectly that f is not (ω1,ω2) -convex. Then, by assertion (ii) of Theorem2,
there exist elements x < y of I and a generalized line ω such that ω(x) = f (x) ,
ω(y) = f (y) and ω < f on ]x, y[ . Therefore,∫ y

x
ωρ <

∫ y

x
f ρ � c1(x, y)f (x) + c2(x, y)f (y) = c1(x, y)ω(x) + c2(x, y)ω(y)

which contradicts 4 .

Let us mention that, instead of the side condition of continuity, the function f
might be assumed only upper semicontinuous in Theorem 3; similarly, it suffices to
require that f is lower semicontinuous in Theorem 4.

THEOREM 5. Let (ω1,ω2) be a positive regular pair on an open interval I and
f : I → R be a continuous function. Keeping the notations of Theorem B, f is
(ω1,ω2) -convex if and only if, for all elements x < y of I , it satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
� c1(x, y)f (x) + c2(x, y)f (y).

Proof. Observe first that the functions c, c1, c2 and ξ are constructed so that all
the generalized lines are the solutions of the functional equation

c(x, y)ω
(
ξ(x, y)

)
= c1(x, y)ω(x) + c2(x, y)ω(y) (x < y)

since both sides have the common value
∫ y

x ωρ . Assume indirectly that f : I → R

is not generalized convex with respect to (ω1,ω2) . Then, by Theorem 2, there exist
elements x < y of I and a generalized line ω fulfilling the conditions

ω(x) = f (x), ω |]x,y[ < f |]x,y[, ω(y) = f (y).

Therefore, taking the observation above into consideration, one can immediately get
that

c(x, y)f
(
ξ(x, y)

)
� c1(x, y)f (x) + c2(x, y)f (y) = c1(x, y)ω(x) + c2(x, y)ω(y)

= c(x, y)ω
(
ξ(x, y)

)
< c(x, y)f

(
ξ(x, y)

)
,

which is a contradiction.
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In the proof we used a similar method that is applied in Theorem 4. However,
an alternative approach can also be followed using the idea of the proof of Theorem 3.
This shows that Theorem 5 remains true requiring either upper or lower semicontinuity
on the function f .

To give a unified view, the previous results are combined in the next corollary. This
corollary completes the assertions of Theorem1 and we get a muchmore comprehensive
characterization of generalized convex functions.

COROLLARY 3. Let (ω1,ω2) be a positive regular pair on an open interval I and
let ρ : I → R be a positive integrable function. Keeping the notations of Theorem B,
the following assertions are equivalent for any function f : I → R :
(i) f is generalized convex with respect to (ω1,ω2) ;
(ii) f is continuous and, for all elements x < y of I , satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
�
∫ y

x
f ρ;

(iii) f is continuous and, for all elements x < y of I , satisfies the inequality∫ y

x
f ρ � c1(x, y)f (x) + c2(x, y)f (y);

(iv) f is continuous and, for all elements x < y of I , satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
� c1(x, y)f (x) + c2(x, y)f (y).

To demonstrate the meaning of the above Corollary, we specify its result to
(cosh, sinh) -convexity. Then, for any continuous function f : I → R , we have
the equivalence of the following four properties (an analogous characterization of
(cos, sin) -convexity is left to the reader):
(i) f : [a, b] → R is a (cosh, sinh) -convex function;
(ii) for all x < y in I , f satisfies

2 sinh
(y − x

2

)
f
(x + y

2

)
�
∫ y

x
f (t)dt;

(iii) for all x < y in I , f satisfies∫ y

x
f (t)dt � tanh

(y − x
2

)(
f (x) + f (y)

)
;

(iv) for all x < y in I , f satisfies

f
(x + y

2

)
� f (x) + f (y)

2 cosh
( y−x

2

) .
In fact, the convexity notion induced by regular pairs are the very special case of

the convexity notion induced by Chebyshev systems (see [10]). Hadamard’s classical
inequality can also be extended for this setting (consult the papers [2] and [3, 4, 5, 6])
hence the question arises,quite evidently,whether Hermite–Hadamard-type inequalities
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also characterize generalized convexity in the general case or not. To give an affirmative
answer, even in the casewhen the underlyingChebyshev systemof the induced convexity
notion is the polynomial one (see [16] and [11]), remains an open problem and could be
the subject of further investigations.
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