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Abstract. The authors use several different methods to extend Gronwall’s inequality to more
general cases on a time scale. Two applications are also given.

1. Introduction

To unify the theory of continuous and discrete dynamic systems, in 1990, Hilger
[7] proposed the study of dynamic systems on a time scale and developed necessary
calculus for functions on a time scale (that is , any closed subset of reals).

Recently, the well-known Gronwall integral inequality has been established on a
time scale , see for example, Agarwal, Bohner and Peterson [1], Kaymakcalan, Ozgun
and Zafer [9] and the books of Lakshmikantham, Sivasun and Kaymakcalan [12] and
Bohner and Peterson [4].

In this paper, we use several different methods to extend the above-mentioned
results to more general cases on a time scale. Applying these results, we can obtain that
an initial value problem has at most one solution. For other related results, we refer to
[2, 3, 5, 6, 10, 11, 13, 14, 15, 16, 17].

2. Preliminaries and lemmas

We first briefly introduce the time scales calculus.
By a times scale T we mean any closed subset of R with order and topological

structure in a canonical way. Since a time scale T may or may not be connected, we
need the concept of jump operators.

DEFINITION. Let t ∈ T , where T is a time scale, then two mappings

σ, ρ : T → R

satisfying
σ(t) = inf{s ∈ T|s > t}, ρ(t) = sup{s ∈ T|s > t}
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are called the jump operators.
If σ(t) > t, t ∈ T , we say t is right-scattered. If ρ(t) < t, t ∈ T , we say t is

left-scattered. If σ(t) = t, t ∈ T we say t is right-dense. If ρ(t) = t, t ∈ T , we say t
is left-dense.

DEFINITION. A mapping f : T → R is called rd-continuous if
(a) f is continuous at each right-dense point or maximal point of T .
(b) lim

s→t−
g(s) = g(t−) exists for each left-dense point t ∈ T .

The set of all rd-continuous functions from T → R is denoted by Crd[T, R] .
Let

T
k :=

{
T − {m}, if T has a left-scattered maximal point m.

T, otherwise.

DEFINITION. The function p : T → R is called regressive provided

1 + μ(t)p(t) �= 0 for each t ∈ T,

whereμ : T → [0,∞) is defined by

μ(t) = σ(t) − t.

DEFINITION. Assume that f : T → R and t ∈ T
k , then we define f Δ(t) to be the

number (if it exists) with property that for any given ε > 0 , there exists a neighborhood
U of t such that ∣∣∣f (σ(t)) − f (s) − f Δ(t)[σ(t) − s]

∣∣∣ � ε|σ(t) − s|

for all s ∈ U . In this case f Δ(t) is called the delta-derivative of f (t) at t . If f is
differentiable at each t ∈ T , then f is called delta-differentiable on T.

DEFINITION. A function g : T → R is called an antiderivative of f : T → R if
gΔ(t) = f (t) for all t ∈ T

k , and in this case, we define the integral of f by∫ t

s
f (u)Δu = g(t) − g(s)

for all s, t ∈ T , and we say that f is integrable on T .

Throughout this paper, we suppose that
(a) R = (−∞,∞) , R

+ = [0,∞) ;
(b) T is a time scale with a as minimal element;
(c) �+ = {p : T → R| 1 + μ(t)p(t) > 0 for all t ∈ T}, that is, the set �+ is all

positively regressive functions;
(d) an interval means the intersection of a real interval with the given time scale.

For further information concerning time scales, see [4] and [12]. In order to
establish our main results, we need the following two lemmas which can be found in
[1], [4] and [12].
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LEMMA A. Let y, f ∈ Crd[T, R] and p ∈ �+ . If

yΔ(t) � p(t)y(t) + f (t), t ∈ T,

then

y(t) � y(a)ep(t, a) +
∫ t

a
ep(t,σ(s))f (s)Δs, t ∈ T,

where ep(t, a) is the solution of the initial value problem

yΔ(t) = p(t)y(t), y(a) = 1.

LEMMA B. (Gronwall’s inequality [1, 4, 12]) Let y, f ∈ Crd[T, R] and p ∈ �+

with p � 0 . If

y(t) � f (t) +
∫ t

a
y(s)p(s)Δs for t ∈ T

k,

then

y(t) � f (t) +
∫ t

a
ep(t,σ(s))f (s)p(s)Δs for t ∈ T

k.

3. Main results

We now can state and prove our main results as follows.

THEOREM 1. Let y ∈ Crd(T, R+). Suppose that h, g ∈ �+ with h � 0 , g � 0
and y0 ∈ R . If

y(t) � y0 +
∫ t

a
h(s)

[
y(s) +

∫ s

a
g(τ)y(τ)Δτ

]
Δs for t ∈ T

k,

then

y(t) � y0

[
1 +

∫ t

a
h(s)eh+g(s, a))Δs

]
for t ∈ T

k.

In particular, if y(a) = y0 = 0 , then y(t) ≡ 0 on T
k .

Proof. Let

x(t) = y0 +
∫ t

a
h(s)

[
y(s) +

∫ s

a
g(τ)y(τ)Δτ

]
Δs for t ∈ T

k.

Then
y(t) � x(t) for t ∈ T

k

and

xΔ(t) = h(t)
[
y(t) +

∫ t

a
g(s)y(s)Δs

]
� h(t)m(t) for t ∈ T

k, (1)
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where

m(t) = x(t) +
∫ t

a
g(s)x(s)Δs for t ∈ T

k. (2)

Then
x(t) � m(t), m(a) = x(a) = y0.

It follows from (1) , (2) and x(t) � m(t) that

mΔ(t) = xΔ(t) + g(t)x(t)
� h(t)m(t) + g(t)m(t)
= [h(t) + g(t)]m(t).

Applying Lemma A with f ≡ 0 ,

m(t) � m(a)eh+g(t, a) = y0eh+g(t, a).

It follows from (1) and the above inequality that

xΔ(t) � h(t)y0eh+g(t, a).

Integrating the above inequality from a to t ,

x(t) − x(a) � y0

∫ t

a
h(s)eh+g(s, a)Δs,

which implies that

x(t) � y0

[
1 +

∫ t

a
h(s)eh+g(s, a)Δs

]
.

Hence we obtain the desired result.

THEOREM 2. Let y, f ∈ Crd(T, R+) with f (t) be a nondecreasing function and
g, h ∈ �+ with g � 0 , h � 0 . If

y(t) � f (t) +
∫ t

a
h(s)

[
y(s) +

∫ s

a
g(τ)y(τ)Δτ

]
Δs for t ∈ T

k,

then the following two inequalities hold:

(a) y(t) � f (t)
[
1 +

∫ t

a
h(s)eh+g(s, a)Δs

]
for t ∈ T

k.

(b) y(t) � f (t)eh+g(t, a) for t ∈ T
k .

In particular, if f (t) ≡ 0 , then y(t) ≡ 0 for t ∈ T
k .

Proof. Since f (t) is nondecreasing, we see that, for any ε > 0 ,

p(t) : =
y(t)

f (t) + ε

� 1 +
∫ t

a
h(s)

y(s)
f (t) + ε

Δs +
∫ t

a
h(s)

(∫ s

a
g(τ)

y(τ)
f (t) + ε

Δτ
)
Δs

� 1 +
∫ t

a
h(s)

y(s)
f (s) + ε

Δs +
∫ t

a
h(s)

(∫ s

a
g(τ)

y(τ)
f (τ) + ε

Δτ
)
Δs

= 1 +
∫ t

a
h(s)p(s)Δs +

∫ t

a
h(s)

(∫ s

a
g(τ)p(τ)Δτ

)
Δs := u(t). (3)
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(a) It follows from Theorem 1 that

p(t) � 1 +
∫ t

a
h(s)eh+g(s, a)Δs.

Hence

y(t) � (f (t) + ε)
[
1 +

∫ t

a
h(s)eh+g(s, a)Δs

]
.

Letting ε → 0 , we obtain the desired result (a).
(b) By (3) , for t ∈ T

k ,

uΔ(t) = h(t)p(t) + h(t)
∫ t

a
g(s)p(s)Δs

� h(t)
[
u(t) +

∫ t

a
g(s)u(s)Δs

]
:= h(t)v(t).

Thus, for t ∈ T
k ,

v(a) = u(a) = 1, u(t) � v(t)

and
vΔ(t) = uΔ(t) + g(t)u(t) � [h(t) + g(t)]v(t).

However, it follows from Lemma A and (3) that

y(t)
f (t) + ε

= p(t) � u(t) � v(t) � eh+g(t, a),

which implies
y(t) � (f (t) + ε)eh+g(t, a).

Since ε > 0 was arbitrary, thus, we have the desired result (b).

In the following theorem we delete the nondecreasing property of f (t) in Theorem
2.

THEOREM 3. Let y, f ∈ Crd(T, R+) and h, g ∈ �+ with h � 0 , g � 0 . If

y(t) � f (t) +
∫ t

a
h(s)

[
y(s) +

∫ s

a
g(τ)y(τ)Δτ

]
Δs for t ∈ T

k, (4)

then

y(t) � f (t) +
∫ t

a
eh+g(t,σ(s))f (s)[h(s) + g(s)]Δs for t ∈ T

k.

In particular, if f (t) ≡ 0, then y(t) ≡ 0 on T
k .

Proof. Let

x(t) = y(t) +
∫ t

a
g(s)y(s)Δs for t ∈ T

k. (5)
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Then
y(t) � x(t) for t ∈ T

k.

By (4) and (5),

y(t) = x(t) −
∫ t

a
g(s)y(s)Δs � f (t) +

∫ t

a
h(s)x(s)Δs.

Thus,

x(t) � f (t) +
∫ t

a
h(s)x(s)Δs +

∫ t

a
g(s)y(s)Δs

� f (t) +
∫ t

a
h(s)x(s)Δs +

∫ t

a
g(s)x(s)Δs

= f (t) +
∫ t

a
[h(s) + g(s)]x(s)Δs.

Therefore, it follows from Lemma B that

y(t) � x(t) � f (t) +
∫ t

a
eh+g(t,σ(s))f (s)[h(s) + g(s)]Δs for t ∈ T

k.

Thus, the proof is complete.

COROLLARY 4. Let y, f ∈ Crd(T, R+) with f be nondecreasing in T and h, g ∈
�+ with h � 0 , g � 0 . If

y(t) � f (t) +
∫ t

a
h(s)

[
y(s) +

∫ s

a
g(τ)y(τ)Δτ

]
Δs for t ∈ T

k,

then

y(t) � f (t)
[
1 +

∫ t

a
eh+g(t,σ(s))[h(s) + g(s)]Δs

]
for t ∈ T

k.

DEFINITION. A function H ∈ C(R+, R+) is said to belong to the class S if H(u)
is nondecreasing and H(u) > 0 for u > 0.

We are in a position to generalize LaSalle’s integral inequality [10] (which was
established by LaSalle in 1949) on time scales as follows:

THEOREM 5. (LASALLE’S INEQUALITY) Let f ∈ Crd(T, R+) be nondecreasing and
g ∈ �+ with g � 0 . If H ∈ S and y ∈ Crd(T, R+) satisfies

y(t) � f (t) +
∫ t

a
g(s)H(y(s))Δs for t ∈ T

k, (6)

then ∫ y(t)

f (t)

Δs
H(s)

�
∫ t

a
g(s)Δs for t ∈ T

k.

In particular, if f (t) ≡ 0 for t ∈ T
k and

∫ c

0

Δs
H(s)

= ∞ for all c > 0 , then y(t) ≡ 0

for t ∈ T
k.
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Proof. For any given ε > 0 and any fixed x ∈ T
k . Let

p(t) := f (x) + ε +
∫ t

a
g(s)H(y(s))Δs on T

k ∩ [a, x].

Then, p(t) > 0 and is nondecreasing on T
k ∩ [a, x]. Thus, it follows from (6) that

y(t) < f (t) + ε +
∫ t

a
g(s)H(y(s))Δs,

� f (x) + ε +
∫ t

a
g(s)H(y(s))Δs = p(t), on T

k ∩ [a, x].

Hence
pΔ(t) = g(t)H(y(t)) � g(t)H(p(t)).

Therefore,
pΔ(t)

H(p(t))
� g(t).

Integrating the above inequality from a to x and using Theorem 1.98 in [2], we obtain
that ∫ y(x)

f (x)+ε

Δs
H(s)

�
∫ p(x)

p(a)

Δs
H(s)

=
∫ x

a

pΔ(s)
H(p(s))

Δs �
∫ x

a
g(s)Δs.

Letting ε → 0 in the above inequality, we obtain that∫ y(x)

f (x)

Δs
H(s)

�
∫ x

a
g(s)Δs.

This completes our proof.

In 1995, Ozgun, A. Zafer and B. Kaymakcalem [9] established Bihari’s inequality
[3] (which was established by Bihari in 1956) on time scales as follows:

THEOREM A. Let H ∈ S and g ∈ R+ with g � 0 . If y(t) ∈ Crd[T, R+] satisfies

y(t) � M +
∫ t

a
g(s)H(y(s))Δs for t ∈ T

k,

where M > 0 is a constant, then

y(t) � G−1
(
G(M) +

∫ t

a
g(s)Δs

)
, ∈ T

k,

where G satisfies condition:

(C) G is a solution of GΔ(u(t)) =
uΔ(t)

H(u(t))
and G is strictly increasing with

G(M) +
∫ t

a
g(s)Δs which is in the domain of G−1 for t ∈ T

k .

In order to generalize Bihari’s inequality [3], Dhongade and Deo [5] introduced the
following class S∗ .
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DEFINITION. A function H ∈ C(R+, R+) is said to belong to the class S∗ if H ∈ S
and

H(u)
t

� H(
u
t
) for u � 0 and t � 0. (∗)

However, looking closely at condition (∗) and letting x =
u
t

for u > 0 and t > 0 , we

see that
1
t

=
x
u
.

Hence, condition (∗) reduces to

xH(u) � uH(x).

In this case, the function H is limited to linear form: H(u) := cu on [0,∞) for some
nonzero constant c .

In order to eliminate this disadvantage, we modify the above definition as follows:

DEFINITION. A function H ∈ Crd(R+, R+) is said to belong to the class S∗τ if
H ∈ S and there exists a positive number τ such that

H(u)
t

� H(
u
t
),

for all u � 0 and t ∈ (0, τ] .
For example, if H(u) = up, p � 1 , then

H(
u
t
) =

up

tp
� up

t
=

H(u)
t

for t ∈ (0, 1].

Then we can improve Bihari’s inequality as follows:

THEOREM 6. (BIHARI’S INEQUALITY) Let f ∈ Crd(T, [0, τ)) be nondecreasing
and g ∈ �+ with g � 0 . If H ∈ S∗τ and y ∈ Crd(T, R+) satisfies

y(t) � f (t) +
∫ t

a
g(s)H(y(s))Δs for t ∈ T

k,

then

y(t) � f (t)G−1
(
G(1) +

∫ t

a
g(s)Δs

)
for t ∈ T

k,

where G satisfies condition (C) and G(1) +
∫ t

a
g(s)Δs is in the domain of G−1 . In

particular, if f (t) ≡ 0 for t ∈ T
k , then y(t) ≡ 0 for t ∈ T

k.

Proof. It follows from (6) and H ∈ S∗τ that, for any given ε > 0 with f (t)+ε � τ ,

y(t) < (f (t) + ε) +
∫ t

a
g(s)H(y(s))Δs for t ∈ T

k,
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which implies

y(t)
f (t) + ε

< 1 +
∫ t

a
g(s)H

( y(s)
f (s) + ε

)
Δs := u(t).

Thus,

u(a) = 1, uΔ(t) = g(t)H
( y(t)

f (t) + ε

)
� g(t)H(u(t)),

and hence

GΔ(u(t)) =
uΔ(t)

H(u(t))
� g(t).

Integrating the above inequality from a to t ∈ T
k , we obtain that

G(u(t)) − G(1) �
∫ t

a
g(s)Δs,

which implies
y(t)

f (t) + ε
� u(t) � G−1

(
G(1) +

∫ t

a
g(s)Δs

)
.

Therefore

y(t) � (f (t) + ε)G−1
(
G(1) +

∫ t

a
g(s)Δs

)
.

Letting ε → 0 , we obtain the desired result.

THEOREM 7. Let f ∈ Crd(T, [0, τ)) be nondecreasing, g ∈ �+ with g � 0 and
H ∈ S∗τ . If y ∈ Crd(T, R+) satisfies

y(t) � f (t) +
∫ t

a
g(s)

[
y(s) +

∫ s

a
g(r)H(y(r))Δr

]
Δs for t ∈ T

k,

then

y(t) � f (t)
[
1 +

∫ t

a
g(s)G−1(G(1) +

∫ t

a
g(r)Δr)Δs

]
for t ∈ T

k,

where G satisfies condition (C∗) G is a solution of GΔ(u(t)) =
uΔ(t)

u(t) + H(u(t))
and

G is strictly increasing with G(M) +
∫ t

a
g(s)Δs which is in the domain of G−1 for

t ∈ T
k .

Proof. Since f (t) is nonnegative, nondecreasing and H ∈ S∗τ , it follows that for
any given ε > 0 with f (t) + ε � τ ,

p(t) :=
y(t)

f (t) + ε
� 1 +

∫ t

a
g(s)

[ y(s)
f (s) + ε

+
∫ s

a

g(r)H(y(r))
f (r) + ε

Δr
]
Δs

� 1 +
∫ t

a
g(s)

[ y(s)
f (s) + ε

+
∫ s

a
g(r)H

( y(r)
f (r) + ε

)
Δr

]
Δs

= 1 +
∫ t

a
g(s)

[
p(s) +

∫ s

a
g(r)H(p(r))Δr

]
Δs := v(r).

(7)
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Then

vΔ(t) = g(t)
[
p(t) +

∫ t

a
g(s)H

(
p(s)

)
Δs

]
, v(a) = 1. (8)

It follows from H ∈ S∗τ , (7) and (8) that

vΔ(t) � g(t)
[
v(t) +

∫ t

a
g(s)H(v(s))Δs

]
:= g(t)m(t), (9)

where

m(t) = v(t) +
∫ t

a
g(s)H(v(s))Δs. (10)

Then m(a) = v(a) = 1 . It follows from (9), (10) and v(t) � m(t) that

mΔ(t) � g(t)
(
m(t) + H(m(t))

)
. (11)

Dividing both sides of (11) by m(t) + H(m(t)) and integrating it from a to t ,

G(m(t)) − G(m(a)) �
∫ t

a
g(s)Δs. (12)

Then from (9) and (12),

vΔ(t) � g(t)G−1
(
G(1) +

∫ t

a
g(s)Δs

)
. (13)

Integrating both sides of (13) from a to t and using (7), we see that

y(t)
f (t) + ε

� v(t) � 1 +
∫ t

a
g(s)G−1

(
G(1) +

∫ s

a
g(r)

)
Δs,

which implies

y(t) � (f (t) + ε)
[
1 +

∫ t

a
g(s)G−1

(
G(1) +

∫ s

a
g(r)Δr

)
Δs

]
.

Letting ε → 0 in the above inequality, we obtain the desired result.

4. Some applications

THEOREM 8. Suppose that r, g ∈ Crd([a, b], [0,∞)) with r > 0 on [a, b], g ∈ �+

with g � 0. If F : R → R satisfies

|F(x) − F(y)| � H(|x − y|) for x, y ∈ R

for some H ∈ S with ∫ c

0

Δt
H(t)

= ∞ for each c > 0,
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then the initial value problem

(IVP)

⎧⎪⎨
⎪⎩

r(t)xΔ(t) = r(a)xΔ(a) −
∫ t

a
g(s)F(x(s))Δs for t ∈ T

k,

x(a) = α, xΔ(a) = β

has at most one solution.

Proof. Suppose that the (IVP) has two solutions x(t) and y(t), then

xΔ(t) =
1

r(t)

[
r(s)xΔ(a) −

∫ t

a
g(s)F(x(s))Δs

]
and

yΔ(t) =
1

r(t)

[
r(s)yΔ(a) −

∫ t

a
g(s)F(y(s))Δs

]
.

Hence

x(t) = α +
∫ t

a

1
r(s)

[
r(s)β −

∫ s

a
g(u)F(x(u))Δu

]
Δs,

y(t) = α +
∫ t

a

1
r(s)

[
r(s)β −

∫ s

a
g(u)F(y(u))Δu

]
Δs,

which imply

|x(t) − y(t)| �
∫ t

a

1
r(s)

∫ s

a
g(u)H(|x(u) − y(u)|)ΔuΔs

�
(∫ b

a

Δs
r(s)

)(∫ t

a
g(u)H(|x(u) − y(u)|)Δu

)
.

By LaSalle’s inequality, |x(t) − y(t)| ≡ 0 on T
k . Therefore

x(t) = y(t) on T
k.

Similarly, using Theorem 6, we can prove the following:

THEOREM 9. Suppose that r, g ∈ Crd([a, b], [0,∞)) with r > 0 on [a, b] , g ∈ �+

with g � 0. If F : R → R satisfies

|F(x) − F(y)| � H(|x − y|) for x, y ∈ R

for some H ∈ S∗τ , then the initial value problem

(IVP)

⎧⎪⎨
⎪⎩

r(t)xΔ(t) = r(a)xΔ(a) −
∫ t

a
g(s)F(x(s))Δs for t ∈ T

k,

x(a) = α, xΔ(a) = β

has at most one solution.
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