athematical
nequalities
& Papplications
Volume 9, Number I (2006), 103-106

SHARPENING OF JORDAN’S INEQUALITIES AND ITS APPLICATIONS

LING ZHU

(communicated by A. M. Fink)

Abstract. In this paper, we establish the following inequalities

sinx sinr  r—sinr
(P -y IE

sin r n sinr — rcosr
r 2r3 x r r

for x € (0,r],r < m/2. An application of inequalities above leads to the following refinement
of Yang Le inequalities:

sinr A sinr—rcosr, H A A3 A
4C'21[T §n+ T(rzznf ?rﬁ)]z cos’ 57

n
<(n71)Zcosz)LAk72cos/ln: Z cos AA; cos AA;

=1 1<igi<n
sinr A r—sinr, 5 A A3
<4C31[T§”+ 3 (r2§”*§”3)]2:

where, A; > 0(i=1,2,---,n),> " | A <7,0 <A <1 and n > 2 is anatural number.

1. Introduction

The following Theorem is know as Jordan’s inequalities [1]:
THEOREM 1. If 0 < x < 1/2, then

2 sy (1)
T X

The equality in (1) holds if and only if x = /2.
Qi, Cui and Xu [2] showed a new lower and upper bounds for the function “—‘;” R
and obtained the following results.

THEOREM 2. If 0 < x < /2, then

3 4 sinx 4(mr—2
3odg s dmo), o
T T X T
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Theorem 2 is equivalent to the following
THEOREM 3. If 0 < x < /2, then
2 1 sinx 2 mw—2

2 2

(m? — 4x?). (3)

Debnath and Zhao [3] proved the left inequality in (3) using other method. In fact,
T

let g(x) = Lw,then hm g(x) = Z* and lim g(x) = 2, we find that & and

x—Z7

Z=2 are best constants in (3).

Now, let 0 < x < r < Z, then (¥2) = M < 0,s0 ¥ jg decreasing
n (0, r], we obtain
THEOREM 4. If 0 < x < r < /2, then
sinr< sinx<1. @)
r X
The equality in (4) holds if and only if x =r.
Put r = /2 in (4), then (1) holds by (4).
In this paper, we obtain the further results described as Theorem 5 and show a
simple proof of Theorem 5.
THEOREM 5. If 0 < x < r < m/2, then

sinr  sinr —rcosr, , sinx _sinr r—sinr, ,

2 2
T+T(V 7X)<T<T+ 3 (V *X). (5)
Furthermore, S1=LE8T g I=S0C qre best constants in (5).

Clearly, Theorem 5 is the generalization of Theorem 2 or Theorem 3.
In the other hand, [4] improved Yang Le inequality as the applications of the left
inequality of (3) and the right inequality of (1), and obtained the following results.

THEOREM 6. If A; > 0(i = 1,2, ,n), > A < m,0< A < 1. Let n > 2 be

a natural number. Then

A
C2A2(3—A%)% cos? En (n—1) Zcos AA—2cosAm Z cos AA;cos AA; < C2A%m?.

k=1 1<i<j<n
(6)

Using Theorem 5, we sharpen Yang Le inequality as follows

THEOREM 7. If A; > 0(i = 1,2,--- ,n), > ;A <m0<A<1,and 0<r<
m/2. Let n > 2 be a natural number. Then
sinr A sinr —rcosr, , A A3
ST+ 33—

A
J— _ 2 J—
53 (rr=m 7)) cos 57

4C?
= 2 8

< (n—l)ZcoszkAk—2cos)Ln Z cos AA; cos AA;

k=1 1<i<j<n

sinr A r—sinr, ,A A3
<4C[— PR — (rzzn—§7r)}2 (7)
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2. One Lemma
LEMMA 1. ([5,6]) Let f,g : [a,b] — R be two continuous functions which are

differentiable on (a,b). Further, let g’ # 0 on (a,b). If f'/g’ is decreasing on (a,b),
then the functions

fx) —f(b)

g(x) —g(b)
and

fx) —f(a)

g(x) —gla)

are also decreasing on (a,b).

3. A simple proof of Theorem 5

Now, let fl(x) = S £ (x) = —x%,f3(x) = sinx — xcosx,f4(x) = x°, and

x ’

€ (0, r], where r < /2. Then we have

fi(x)  1sinx—xcosx 1f3(x)
fi0 2 X 2fa(x)’
filx Isinx 1
3/( ) _ Lsinx_ f1(x)
filx) 3 x 3
Since fi(x) = ¥ is decreasing on (0,r) or ?:—8 is decreasing on (0,r), then
He
28 = }cizg;:ﬁgg; is decreasing on (0, r) g Etg . 0,7),

- () =fi(r)

and h(x) = —— = ﬁ(i):ﬁg:) is decreasing on (0, r) by Lemma 1.

r—sinr : __ sinr—rcosr sinr—rcosr
=5 and xl_1)r:17 h(x) = 55, SO >3 and

Furthermore, linol+ h(x) =

r—sinr

L are best constants in (5).

4. The proof of Theorem 6
Let Hj = cos’AA; + cos?AA; — 2 cos AT cos AA; cos AA;, we have
sin? Am < Hj < 4 sin? /Zlﬂ
or
4 sin? %ncoszgngHij <4sin2%n (8)

from [4]. If 1 < i <j < n, taking the sum for all inequalities of (8), then

Z 4 sin? %ncos -7 < Z H; < Z 4sin2%n. 9)

1<i<jgn 1<i<j<n 1<i<jgn
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In fact,we have

Z H; = Z (cos*AA; + cos’AA; — 2 cos ATt cos AA; cos AA;)

1<i<jgn 1<i<jgn

n (10)

=(n-1) Zcos2 AAg —2cosAm Z cos AA; cos AA;
k=1 1<i<j<n
and
A
Z 4sin’ 7rcos2 7
1<i<jgn (11)
A inr— A A3 A
4C2[51nr 74 ST Zrzcosr(rzin—§n3)]2cosz 2x
A — si A A3
3 4sin2 4c2[s“” Smt rrii“”(rzin - ) (12)

1<i<j<n

by (5). Putting (10), (11) and (12) in (9), we obtain (7).
Finally, let r = /2 in (7), then we obtain the following results.

THEOREM 8. If A; > 0(i = 1,2, ,n), > A < m,0< A < 1. Let n > 2 be
a natural number. Then

C2A%(3 — A%)? cos? /Zlﬁ

g(nfl)Zcosz/lAkuCos)Ln Z cos AA; cos AA;

k=1 1<i<j<n
Al —A2)

<4CC(A3 + 5

m)2.
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