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ESTIMATES FOR THE MODULII OF THE ZEROS OF A POLYNOMIAL
ABDUL AZIZ AND ALIYA QAYOOM

(communicated by T. M. Rassias)

Abstract. In this paper, we prove a more general result concerning the location of the zeros
of a polynomial in a ring shaped region from which we deduce an interesting and significant
refinement of a classical result of Cauchy. A variety of other results, which in particular include
several known extensions and generalizations of Enestrom - Kakeya Theorem, can be established
from this result by a fairly uniform procedure.

1. Introduction and statement of results

It is a fundamental problem of algebra to find the solution of algebraic equations.
Quite a few results giving bounds for some or all the zeros of a polynomial in terms
of its coefficients may be found in [1, 2, 5, 6-8]. More recently, J. L. Diaz-Barrero [3]
has obtained an annulus containing all the zeros of a polynomial involving binomial
coefficients and Fibonacci’s numbers Fy = Fy_; + Fy_, for k > 2, where Fy = 0
and F; = 1. In fact, he has proved the following result.

THEOREM A. Let

P(z) = ay" + ap 12" + -+ a1z + ao,

be a non-constant complex polynomial of degree n. Then all the zeros of P(z) lie in the
annulus R={z€ C:ry < |z| < rn}, where

3 (2"FC(n k) |ao|) "
rfi=—- min { ————~ |— and

2 1<k<n Fy, ai

2 F4n An—k 1k
= — max .
27 3 ickan 2"FiC(nyk) | ay

The main aim of this paper is to prove the following more general result (Theorem 1)
which includes not only Theorem A as a special case but also a variety of other interesting
results can be established from Theorem 1 by a fairly uniform procedure.

THEOREM 1. Let
P(z) = ay2" + ap12 '+ + a1z + ao,
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be a non-constant complex polynomial of degree n. If Ay, Ay, ..., A, is any set of n real

or complex numbers such that
n

Z ‘A‘k| g 17

k=1
then all the zeros of P(z) lie in the annulus R = {z € C : r; < |z| < ra}, where

1/k 1/k
. ao 1 Ap—k
ri = min |Ay— and 1) = max |—
1<k<n | ag 1<k<n | Ay ap
REMARK 1. If we take in Theorem 1,
3K 2"FiC(n, k
ay = 22 EC k) k=1,2,....n,

2 Py ’
and make use of the identity [3],

n

> 2" *3 FC(n, k) = Fay
k=1

involving binomial coefficients and Fibonacci’s numbers, then

Sl =) a=1
P k=1

and we get Theorem A immediately.
If in Theorem 1, we take

Fy

dp= —k
g Fn+2717

k=1,2,...,n,

and make use of another identity [10, p. 99] concerning Fibonacci’s numbers Fy namely

n
> Fi=Fup—1,
k=1

which can be easily established with the help of mathematical induction, we shall obtain
the following interesting result.

COROLLARY 1. Let
P(z) = ay" + ap12'" + -+ a1z + ao,

be a non-constant complex polynomial of degree n. Then all the zeros of P(z) lie in the
annulus R ={z € C:ry < |z| < rn}, where
}l/k

1/k

. Fy / Fupz — 1

ry1= min { ————— and r, = max { ————
1<ksn | Frap — 1 1<k<n Fi

ao
Ak

an—k
An
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Let

n
an—k

R:Z o

k=1

1 an—k
A==
g R{ an}

- )

k=1 k=1 n

In Theorem 1, we take

then

and it can be easily seen that

r» = max R'/* = max {R,Rl/”} .
1<k<n

Hence we get the following result.

COROLLARY 2. Let
P(z) = ay2" + ap12" ' + -+ a1z + ao,
be a non-constant polynomial of degree n then all the zeros of P(z) lie in the disk
2| < max {R,Rl/”}

where

k=1

Next we use Theorem 1 to prove the following interesting and significant refinement
of a classical result of Cauchy [5, p. 123] which states that all the zeros of a polynomial

an—k
an

P(z) = a2 +ap 12+ -+ aiz+ap, ay #0, (1)
lie in the disk
|zl <1+M where M = max Gn—k
1<k<n | ay

THEOREM 2. Let
P(z) = ay" + ap12'" + -+ a1z + ao,
be a non-constant polynomial of degree n, then all the zeros of P(z) lie in the disk

A <{A+M)"— 11" where M = max <pen | 2=

an
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REMARK 2. Using
{(1+M) =1} <14 M,

in Theorem 2, we immediately get the above mentioned classical result of Cauchy.
REMARK 3. Let r be the positive root of the equation

Jaol + larlz -+ lawa |27 — Janl2 =0, a, £0, 2)
then clearly
ap| 1 ar| 1 a,—1|1
__n - n71+...+ —:1 (3)
a,| r a,| r a, |r
If we choose
n— 1
M—(ak>7,k_Lme
a, ) r
then by (3), we have
n n 1/k
an—k 1 1 an—k
;Mﬂ:; o FZI and rzzlrgl?én T a =r.

Hence from Theorem 1, it follows that all the zeros of P(z) defined by (1) lie in the
closed disk |z| < r where r is the positive root of the equation defined by (2). This is
another classical result also due to Cauchy [5, p.122].

Many other interesting results can be easily deduced from Theorem 1. Here we
mention a few of these. First we state the following result which is obtained by applying
Theorem 1 to the (n + 1)th degree polynomial

P(z) = (z—1)P(z)
where P(z) is defined by (1) and t is any real or a complex number.
THEOREM 3. Let
P(2) = a,d" + a1+ 4 a1z + ao,

be a non constant complex polynomial of degree n. If Ay, Ay, ..., Ay, Any1 is any set of
(n+ 1) real or complex numbers such that

n

Z Al <1,

k=1
then for any real or a complex number t, all the zeros of P(z) lie in the annulus

R:{ZGCZF1<|Z‘<I‘2}

where /

1/k
. tap

r1= min |[Afg——m—— ,  (ant1=0)
1<k<<n+1 ((lk,1 — tak)
and "
1 (anfk - tan7k+1)
= max |———————~ , (a_1=0)

1<k<n+1 | A a,
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The following corollary immediately follows from Theorem 3 by taking t = 1.
COROLLARY 3. Let
P(z) = ayd" + ap12" ' + -+ a1z + ao,

of degree n = 1. If A1, Ay, ..., Ay, Apy1 is any set of (n+ 1) real or complex numbers

such that
n+1

Z ‘A‘k| g 17

k=1
then all the zeros of P(z) lie in the annulus

R:{ZGCZF1<|Z‘<I‘2}

where
1/k
. ap
rp=_min (AG——| , (@1 =0)
1<kt | (ag — ag—1)
and "
1 (ankarl - anfk)
7= max |————— % , (a_1=0)
1<k<n+1 | Ak ay
Let
n+1 a a
n—k+1 — 8n—k
L= E 5 (a—l = 0)7
k:1 aﬂ
then
Ha a | ||
n—k+1 — Un—k n
L> E ——— | = —|apy—ay_1+ay—1—an—2+- - -+ar—aptao| = =
—l an |an| |an|
(4)
Choosing
L [ an—r1 — an—ik
Q= — = R k=1,2,....n
L a ) ) ) ) )
n
so that
n+1 n+1
1 An—k+1 — An—k
D Ml=g) || =1
k=1 k=1 n

and noting by (4) that

1/k
rp, = max {L} k=,
1<k<n+1

the following result is an immediate consequence of Corollary 3.
COROLLARY 4. Let
P(z) = ayd" + ap12' + -+ a1z + ao,

be a polynomial of degree n > 1. Then all the zeros of P(z) lie in the closed disk
|z] < L, where

Ap—k+1 — An—k
an

5 (a_l :O)




112 ABDUL AZIZ AND ALIYA QAYOOM

Again if we take
n+1

k=3
k=1

where we may assume ao # 0, then clearly as before R > 1. Choosing now

1 (g —ar
i = —{w} k=1,2,..n+1,
R aop

5 (an+1 = 0)7

A — Ap—1
ao

which gives

n+1 1 n+1 a a
k — Ak—1
E |A| = = E - | =1.
R aop
k=1 k=1
Since
1/k 1/k
. ap / . 1 / 1
r1= min |M4——m—— = min — = —,
1<k<n+l | (ag — ag—1) 1<k<n+1 | R R

from Corollary 3, we immediately get the following interesting result.

COROLLARY 5. Let
P(z) = ayd' + a2+ + a1z + ay,
be a polynomial of degree n > 1. Then P(z) does not vanish in the disk

‘Z| < l — L
R 3o lax — ax|
If
P(z) = ayd' + a2+ + a1z + ay,

be a polynomial of degree n such that
p 2 au—1 = ... 2 a1 = ag 20,

then clearly

n+1
_ Z (an—k+l - an—k) _ an -1

aﬂ an

n+1

1=$

k=1

Ap—k+1 — An—k
an

, (a-1=0)

k=1

and from Corollary 4, it follows that all the zeros of P(z) lie in the closed unit disk
|z] < 1. This is a famous result known as Enestrome-Kakeya Theorem [5, p.136].

If we assume that the coefficients of the polynomial P(z) are monotonic but not
necessarily non-negative, that is, if

0< ap 2 dp_1 2 ... 2 a1 = aop,
then it can be easily seen that

a, — ap + |(1()| 1 |110‘

L= d - = )
an 2a, — ay

=

||
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In the first case, an application of Corollary 4 shows that all the zeros of P(z) lie in the
closed disk

|zl < — {an — a0 + aol},

||

which is an extension of Enestrome-Kakeya Theorem due to Joyal. Labelle and Rahman
[4] whereas, in the second case Corollary 5 allows us to conclude that the polynomial
P(z) does not vanish in the disk

|ao|

< —.
ll 2a, — ag

This result was earlier proved by A. Aziz and Q. G. Mohammad [1] for polynomials
with non-negative coefficients. A number of other interesting results which include
several known extensions and generalizations of Enestrome-Kakeya Theorem can be
established form above theorems and corollaries by a fairly uniform procedure. Here,
in this paper, we shall finally deduce from Theorem 1 a well known result due to Walsh
[11] and thereby present an independent proof of this result according to which all the
zeros of a polynomial

P(z) = apyd" + an_12" ' 4 - + a1z + ao,

be a polynomial of degree n lie in the disk

n

dd <R=)

j=1

1/j
n—j

n

To deduce Walsh’s result from Theorem 1, we take

— An—k 1 —
Ak—( a, )Rk, k—1,2,...,n.

Then i i
. "1 |ans 1= an i R
M| VE = — | = == z =—=1. 6
Z| k‘ Z R | a, R ay R ( )
k=1 k=1 k=1
Since Uk ”
an—k / < . An—k / _ R,
aﬂ k=1 aﬂ
forall k=1,2,...,n, we have
DA <R, k=120
aﬂ
This gives

which implies
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Hence by (6),

Dol <Y I =1

k=1 k=1
Using Theorem 1, it follows that all the zeros of P(z) lie in the disk
1/k

1ank —R

lz| <

)

max
1<k<n | Ay ay,

which establishes (35).

2. Proof of the theorems

Proof of Theorem 1. We first show that all the zeros of P(z) lie in

1 a4y 1/k

Afk an

|z] < r, = max
1<k<n

From (7) it follows that

an—k

< ‘Ak|7]2(7 k= 172,...7}’17

n

and hence
Apn—k

1,5 Z Al (8)

1 | n

Now for |z] > r,, we have

|P(2)| = |anz" + ap12" ' + - + a1z + ao

n - 1
>‘an”Z| {I—Z Z—|k}

k=1
1
}"12( .

> las| 2" {1 -2

k=1

ap—f

ap—f

n

Using (8) and noting that by hypothesis,

n

>l <1

k=1

we obtain for |z| > ra,

P@)| > Jall2P {1 - Zw} >0
k=1

Thus |P(z)| > 0 for |z] > r,. Consequently all the zeros of P(z) lie in |z| < r, and
this proves the second part of Theorem 1.
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To prove the first part of this theorem, we shall use the second part. If ay = 0, then

clearly

el )

r1 = min
1<k<sn

and there is nothing to prove. So we assume that ap # 0. Consider the polynomial
1
0(z) ='P (E) =ap' + @+ aum1z+ an

By the second part of the theorem, all the zeros of the polynomial Q(z) lie in

1/k
1/k
1 a|" 1
lzZ] < max |—— = max |——
1<k<n | Ak ap 1<k<n )Lki
1 1 1
1/k kT

[}
kuk

o

Ak

max
1<k<gn .
miny <i<n

Replacing z by % and observing that P(z) = 7'Q (%) , we conclude that all the zeros
of P(z) lie in

ao | V¥
>r = mi =
lz| = n min /lkak )
The desired result follows by combining (7) and (9).
Proof of Theorem 2. Since
M = max | &=k ,
1<k<n | ay
we have
ap—f
— | <M, k=1,2,....n. (10)
an
We take
(1+ M) i
A = k=1,2,...,n. 11
k {(1+M)n1 an(1+M)k ) y ey eeny I ( )

Then with the help of (10), we get

n n

(1M
Dkl = (1+M)" — 1 kz:;

k=1

an—k
ay

1 (14+M)" "M
(M) S {(1+M)" 1}k_1 e 12)

Now

=

M__ M, 1 1
s (1+M)k_(1+M){ +(1+M)+"'+(1+M)n—1}

oM | 04m) -
o (14+Mm)
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Using this in (12), we see that

> Al <1

k=1
Applying Theorem 1 with A; defined by (11), it follows that all the zeros of P(z) lie
in the disk

1/k n 1/k
1 ap_i (1+M"—1
= s [ = s (S aem
1 1/k 1 1/n
=(1+M l— — =(+M) {1 - —
(1t )1‘3,?2"{ (1+M)"} (1+ ){ (l—i—M)"}

= {(+my =1y,

and this completes the proof of Theorem 2.
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