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ON DELAY DIFFERENTIAL EQUATIONS WITH ALMOST PERIODIC
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Abstract. In this paper, we discuss the problems of existence of extremal solutions of delay
differential equations which satisfy almost periodic boundary conditions. Some comparison
results are given. Corresponding existence results are also formulated for differential equations
having more delayed arguments.

1. Introduction

The investigation of the initial value problems of differential equations relative to
the changes in the initial time was first discussed in papers [6, 7], see also [1]. Such
problems are important when we need to compare solutions of two problems started
from different initial points. Corresponding results are also formulated for integro–
differential problems, see [2, 4]. This paper extends this topic on delay differential
problems with almost periodic boundary conditions started from different points.

Let us introduce the operator F by

Fx(t; t0) = f (t, x(t), x(α(t − t0) + t0)).

Consider two problems

x′(t) = Fx(t; t0), t ∈ J1 = [t0, t0 + T], x(t0) = x(t0 + T) + k̄, (1)

x′(t) = Fx(t; τ0), t ∈ J2 = [τ0, τ0 + T], x(τ0) = x(τ0 + T) + k̄ (2)
for some fixed positive T > 0.

To obtain sufficient conditions under which differential problems have solutions
someone can apply the monotone iterative method, for details, see [5]. Note that the
application of this method to delay differential problems can be found, for example in
[3, 8, 9]. In this paper, we discuss the problem of existence of extremal solutions to (1)
and (2) using the monotone iterative technique. We assume that f satisfies a one sided
Lipschitz condition with respect to the last two variables with corresponding Lipschitz
functions. It is important to indicate that in such situation assumptions are less restricted
in comparing with corresponding ones when in the place of functions we have Lipschitz
constants. The problem when we have more delayed arguments is also discussed.
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2. Comparison results

Theorem 1 gives a comparison result between any two functions satisfying delay
differential inequalities starting at different initial points.

THEOREM 1. Assume that
1◦ f ∈ C(J0 × R

2, R), α ∈ C(J, J), 0 � α(t) � t for J0 = J1 ∪ J2, J = [0, T],
2◦ v ∈ C1(J1, R), w ∈ C1(J2, R), v(t0 + T) � w(τ0 + T) and{

v′(t) � Fv(t; t0), t ∈ J1, v(t0) � v(t0 + T) + k̄,

w′(t) � Fw(t; τ0), t ∈ J2, w(τ0) � w(τ0 + T) + k̄,

3◦ η = τ0 − t0 > 0,
4◦ f (t, u1, u2) is nondecreasing in t for each (u1, u2),
5◦ f (t, u1, u2) is nondecreasing in u2 for each (t, u1),
6◦ there exists a nonnegative constant L such that

f (t, u1, v1) − f (t, u2, v2) � L[u1 − u2 + v1 − v2]

for t ∈ J0, u1, u2, v1, v2 ∈ R, u2 � u1, v2 � v1.
Then (a) v(t) � w(t + η), t ∈ J1, (b) v(t − η) � w(t), t ∈ J2.

Proof. According to the assumptions on α, we see that t0 � α(t − t0) + t0 � t
for t ∈ J1. Let w0(t) = w(t + η) + ε exp(3Lt), t ∈ J1 with ε > 0. It yields
w0(t) > w(t + η), t ∈ J1 and

w0(t0) > w(τ0) � w(τ0 + T) + k̄ � v(t0 + T) + k̄ � v(t0).

Consequently, according to Assumptions 2◦ – 4◦, 6◦, we get

w′
0(t) = w′(t + η) + 3Lεe3Lt

� f (t + η, w(t + η), w(α(t + η− τ0) + τ0)) + 3Lε exp(3Lt)
= f (t + η, w(t + η), w(α(t − t0) + τ0)) − f (t + η, w0(t), w0(α(t − t0) + t0))

+ f (t + η, w0(t), w0(α(t − t0) + t0)) + 3Lε exp(3Lt)
� f (t, w0(t), w0(α(t − t0) + t0)) + 3Lε exp(3Lt)
− L[w0(t) − w(t + η) + w0(α(t − t0) + t0) − w(α(t − t0) + τ0)]

= f (t, w0(t), w0(α(t − t0) + t0)) + 3Lε exp(3Lt)
− Lε [exp(3Lt) + exp(3L(α(t − t0) + t0))]

� f (t, w0(t), w0(α(t − t0) + t0)) + Lε exp(3Lt)
> f (t, w0(t), w0(α(t − t0) + t0)).

Now, we shall show that v(t) < w0(t), t ∈ J1. Assume that v(t) < w0(t), t ∈ J1 is
false. Then there exists t1 ∈ (t0, t0 + T] such that v(t1) = w0(t1) and v(t) < w0(t),
t ∈ [t0, t1). Hence, v′(t1) � w′

0(t1). In view of assumption 5◦, we have

w′
0(t1) � v′(t1) � Fv(t1; t0) � Fw0(t1; t0) < w′

0(t1)
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which is a contradiction. Hence, it follows that v(t) < w0(t), t ∈ J1. Letting ε → 0,
we have v(t) � w(t + η), t ∈ J1, so conclusion (a) is true. Relation (b) results from
(a) . The proof is therefore complete. �

Similarly, we can prove the following

THEOREM 2. Let conditions 1◦, 2◦, 5◦ and 6◦ of Theorem 1 hold and η =
τ0 − t0 < 0. Moreover assume that f (t, u1, u2) is nonincreasing in t for each (u1, u2).

Then conclusions (a) and (b) of Theorem 1 hold.

Indeed, instead of differential inequalities we can also consider integral inequalities
to obtain similar results to that given in Theorems 1 or 2. In such case we extra need to
assume that f is nondecreasing with respect to the second variable, for details see the
next two theorems.

THEOREM 3. Let Assumptions 1◦, 3◦ − 6◦ of Theorem 1 be satisfied. Assume
that f (t, u1, u2) is nondecreasing in u1 for each (t, u2). In addition assume that
Φ ∈ C(J1, R), Ψ ∈ C(J2, R) and⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Φ(t) � v(t0) +

∫ t

t0

FΦ(s; t0)ds, t ∈ J1, v(t0) � v(t0 + T) + k̄

Ψ(t) � w(τ0) +
∫ t

τ0

FΨ(s; τ0)ds, t ∈ J2, w(τ0) � w(τ0 + T) + k̄,

(3)

and
v(t0 + T) � w(τ0 + T). (4)

Then

(c) Φ(t) � Ψ(t + η), t ∈ J1, (d) Φ(t − η) � Ψ(t), t ∈ J2.

Proof. Define the functions v and w by

v(t) = v(t0) +
∫ t

t0

FΦ(s; t0)ds, t ∈ J1, w(t) = w(τ0) +
∫ t

τ0

FΨ(s; τ0)ds, t ∈ J2.

Obviously, Φ(t) � v(t), t ∈ J1, Ψ(t) � w(t), t ∈ J2. It is easy to see that{
v′(t) = FΦ(t; t0) � Fv(t; t0), t ∈ J1,

w′(t) = FΨ(t; τ0) � Fw(t; τ0), t ∈ J2

since f (t, u1, u2) is nondecreasing in (u1, u2). Hence, the conclusions (a) and (b)
of Theorem 1 are satisfied. It shows that (c) and (d) hold too. This completes the
proof. �

THEOREM 4. Let all assumptions of Theorem 2 hold with conditions (3)− (4) in
the place of Assumption 2◦. Moreover assume that f (t, u1, u2) is nondecreasing in u1

for each (t, u2).
Then conclusions (c) and (d) of Theorem 3 hold.
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3. Delay differential inequalities

This section deals with some useful delay differential inequalities. As we see later,
such inequalities play an important role in the investigations of existence of solutions
of problems (1) and (2).

LEMMA 1. Let α ∈ C(J, J), 0 � α(t) � t, on J = [0, T]. Assume that
L1 ∈ C(J1, R), p ∈ C1(J1, R) and{

p′(t) � −L1(t)p(t) − L2(t)p(α(t − t0) + t0), t ∈ J1 = [t0, t0 + T],

p(t0) � 0,
(5)

where nonnegative function L2 is integrable on J1. In addition assume that

W(t0) � 1, (6)

where

W(c) =
∫ c+T

c
L2(s)e

∫ s

α(s−c)+c
L1(r)dr

ds. (7)

Then p(t) � 0 on J1.

Proof. Note that the assertion holds if L2(t) = 0 on J1. Let
∫ t0+T

t0
L2(s)ds > 0.

Setting,

q(t) = e

∫ t

t0
L1(s)ds

p(t), t ∈ J1,

we obtain

q′(t) = e

∫ t

t0
L1(s)ds [

L1(t)p(t) + p′(t)
]

� −e

∫ t

t0
L1(s)ds

L2(t)p(α(t − t0) + t0)

= −L2(t)e
∫ t

α(t−t0)+t0
L1(s)ds

q(α(t − t0) + t0).

Hence (5) takes the form{
q′(t) � −L2(t)e

∫ t

α(t−t0)+t0
L1(s)ds

q(α(t − t0) + t0), t ∈ J1,

q(t0) � 0.
(8)

We need to show that q(t) � 0 on J1. Suppose that it is not true, then we can find
t1 ∈ (t0, t0 + T) such that q(t1) > 0. Put

q(t2) = min
[t0,t1 ]

q(t) � 0.

Integrating the differential inequality in (8) from t2 to t1 we have

q(t1) − q(t2) � −
∫ t1

t2

L2(s)e
∫ s

α(s−t0)+t0
L1(r)dr

q(α(s − t0) + t0)ds

� −
∫ t0+T

t0

L2(s)e
∫ s

α(s−t0)+t0
L1(r)dr

ds q(t2) � −q(t2),
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by condition (6). It contradicts assumption that q(t1) > 0. This proves that q(t) � 0
on J1 and hence p(t) � 0 on J1 too. The proof is complete. �

REMARK 1. If t0 = 0, L1(t) = L1 > 0, L2(t) = L2 > 0 on J1, then (6) takes the
form

L2

∫ T

0
eL1[t−α(t)]dt � 1.

Such condition appeared in paper [9].

REMARK 2. Let L1(t) � 0 on J1 and∫ t0+T

t0

L2(s)e
∫ s

t0
L1(r)dr

ds � 1.

Then condition (6) holds. Note that in this case α is absent. If L1(t) = 0, t ∈ J1 , then
(6) holds if

∫ t0+T
t0

L2(s)ds � 1.

REMARK 3. Assume that L1(t) = L1 > 0, L2(t) = L2 > 0, t ∈ J0 and

L2
[
eL1T − 1

]
� L1.

Then
max(W(t0), W(τ0)) � 1,

where W is defined as in (7), see also [3].

4. Application of the monotone iterative technique

In this section, we discuss the monotone iterative method to delay differential
equations subject to almost periodic boundary conditions started from different points.

THEOREM 5. Assume that
1◦ f ∈ C(J0 × R

2, R) for J0 = J1 ∪ J2, and α ∈ C(J, J), 0 � α(t) � t for t ∈ J,
2◦ η = τ0 − t0 > 0,
3◦ y0 ∈ C1(J1, R), z0 ∈ C1(J2, R) and

y′0(t) � Fy0(t; t0), t ∈ J1, y0(t0) � y0(t0 + T) + k̄,

z′0(t) � Fz0(t; τ0), t ∈ J2, z0(τ0) � z0(τ0 + T) + k̄,

and y0(t) � z0(t + η), t ∈ J1,
4◦ there exist functions L1, L2 such that L1 ∈ C(J0, R), L2 ∈ C(J0, R+), R+ =

[0,∞) and

f (t, u1, v1) − f (t, ū1, v̄1) � −L1(t)[u1 − ū1] − L2(t)[v1 − v̄1] (9)

for y0(t) � ū1 � u1 � z0(t + η), y0(α(t − t0) + t0) � v̄1 � v1 � z0(α(t − t0) +
τ0), t ∈ J1; note that if t ∈ J2, then relation (9) holds for y0(t − η) � ū1 � u1 �
z0(t), y0(α(t − τ0) + t0) � v̄1 � v1 � z0(α(t − τ0) + τ0),

5◦ max(W(t0), W(τ0)) � 1, where W is defined by (7),
6◦ f is nondecreasing with respect to the first variable.
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Then there exist monotone sequences {yn, zn} such that yn(t) → y(t), t ∈ J1,
zn(t) → z(t), t ∈ J2 uniformly and

y0(t) � y(t) � z(t + η) � z0(t + η), t ∈ J1,

y0(t − η) � y(t − η) � z(t) � z0(t), t ∈ J2.

The function y is the minimal solution of problem (1) in the sector [y0, z0]0 , while
z is the maximal solution of (2) in the sector [y0, z0]1, where

[y0, z0]i = {u ∈ C1(Ji+1, R) : y0(t) � u(t + iη) � z0(t + η), t ∈ J1}, i = 0, 1.

Proof. Let⎧⎪⎨
⎪⎩

y′n+1(t) = Fyn(t; t0) − L1(t)[yn+1(t) − yn(t)]

− L2(t)[yn+1(α(t − t0) + t0) − yn(α(t − t0) + t0)], t ∈ J1,

yn+1(t0) = yn(t0 + T) + k̄,⎧⎪⎨
⎪⎩

z′n+1(t) = Fzn(t; τ0) − L1(t)[zn+1(t) − zn(t)]

− L2(t)[zn+1(α(t − τ0) + τ0) − zn(α(t − τ0) + τ0)], t ∈ J2,

zn+1(τ0) = zn(τ0 + T) + k̄

for n = 0, 1, . . . , . Note that the sequences {yn, zn} are well defined.
We first show that

y0(t) � y1(t) � z0(t + η), t ∈ J1. (10)

Put p(t) = y0(t) − y1(t), t ∈ J1. Then p(t0) � 0, and

p′(t) � Fy0(t; t0) − Fy0(t; t0) + L1(t)[y1(t) − y0(t)]
+ L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]

= −L1(t)p(t) − L2(t)p(α(t − t0) + t0)

for t ∈ J1. By Lemma 1, p(t) � 0, t ∈ J1, so y0(t) � y1(t), t ∈ J1. Let p(t) =
y1(t) − z0(t + η), t ∈ J1, so p(t0) � 0. In view of Assumptions 3◦, 4◦ and 6◦ , we
have

p′(t) � Fy0(t; t0) − Fz0(t + η; τ0) − L1(t)[y1(t) − y0(t)]
− L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]

� L1(t)[z0(t + η) − y0(t)] + L2(t)[z0(α(t + η − τ0) + τ0) − y0(α(t − t0) + t0)]
− L1(t)[y1(t) − y0(t)] − L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]

= −L1(t)p(t) − L2(t)p(α(t − t0) + t0).

It yields, y1(t) � z0(t + η), t ∈ J1, by Lemma 1, so (10) holds.
In the next step we show that

y0(t − η) � z1(t) � z0(t), t ∈ J2. (11)
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Put p(t) = z1(t) − z0(t), t ∈ J2, so p(τ0) � 0. In view of 3◦, we have

p′(t) � z′1(t) − Fz0(t; τ0)
= −L1(t)p(t) − L2(t)p(α(t − τ0) + τ0).

Because W(τ0) � 1, it yields z1(t) � z0(t), t ∈ J2, by Lemma 1. Now let p(t) =
y0(t − η) − z1(t), t ∈ J2, so p(τ0) � 0, and

p′(t) � Fy0(t − η; t0) − Fz0(t; τ0) + L1(t)[z1(t) − z0(t)]
+ L2(t)[z1(α(t − τ0) + τ0) − z0(α(t − τ0) + τ0)]

� L1(t)[z0(t) − y0(t − η)] + L2(t)[z0(α(t − τ0) + τ0) − y0(α(t − η − t0) + t0)]
+ L1(t)[z1(t) − z0(t)] + L2(t)[z1(α(t − τ0) + τ0) − z0(α(t − τ0) + τ0)]

= −L1(t)p(t) − L2(t)p(α(t − τ0) + τ0),

by Assumptions 3◦, 4◦ and 6◦. In view of Lemma 1, y0(t − η) � z1(t), t ∈ J2, so
relation (11) holds.

Note that {
y0(t) � y1(t) � z0(t + η), t ∈ J1,

y0(t) � z1(t + η) � z0(t + η), t ∈ J1,
(12)

and {
y0(t − η) � y1(t − η) � z0(t), t ∈ J2,

y0(t − η) � z1(t) � z0(t), t ∈ J2

(13)

result from (10) and (11), by changing of variables.
In the next step we need to prove that

y′1(t) � Fy1(t; t0), t ∈ J1, y1(t0) � y1(t0 + T) + k̄. (14)

In view of (12) and Assumption 4◦ , we have

y′1(t) = Fy0(t; t0) − Fy1(t; t0) + Fy1(t; t0) − L1(t)[y1(t) − y0(t)]
− L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]

� L1(t)[y1(t) − y0(t)] + L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]
− L1(t)[y1(t) − y0(t)] − L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]
+ Fy1(t; t0) = Fy1(t; t0),

and y1(t0) = y0(t0 + T) + k̄ � y1(t0 + T) + k̄. It proves that (14) holds. Similarly, we
can show that

z′1(t) � Fz1(t; τ0), t ∈ J2, z1(τ0) � z1(τ0 + T) + k̄. (15)

Let q(t) = y1(t) − z1(t + η), t ∈ J1, so q(t0) � 0. Hence

q′(t) � Fy0(t; t0) − Fz1(t + η; τ0) − L1(t)[y1(t) − y0(t)]
− L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]

� L1(t)[z1(t + η) − y0(t)] + L2(t)[z1(α(t + η − τ0) + τ0) − y0(α(t − t0) + t0)]
− L1(t)[y1(t) − y0(t)] − L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]

= −L1(t)q(t) − L2(t)q(α(t − t0) + t0),
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by (15) and Assumptions 4◦, 6◦. Obviously, y1(t) � z1(t + η), t ∈ J1, by Lemma 1.
Combining this with (12) and (13), we have

y0(t) � y1(t) � z1(t + η) � z0(t + η), t ∈ J1,

y0(t − η) � y1(t − η) � z1(t) � z0(t), t ∈ J2.

Now, it is easy to show, by mathematical induction, that

y0(t) � y1(t) � · · · � yn(t) � zn(t + η) � · · · � z1(t + η) � z0(t + η), t ∈ J1,

y0(t − η) � y1(t − η) � · · · � yn(t − η) � zn(t) � · · · � z1(t) � z0(t), t ∈ J2.

By standard arguments, yn(t) → y(t), t ∈ J1, zn(t) → z(t), t ∈ J2 uniformly. In-
deed, y ∈ C1(J1, R), z ∈ C1(J2, R) are solutions of problems (1) and (2), respectively.

It remains to show that y is the minimal solution of problem (1) in the sector
[y0, z0]0. Assume that there exists another solution u of (1) such that y0(t) � u(t) �
z0(t+η), t ∈ J1. Put p(t) = y1(t)−u(t), t ∈ J1, so p(t0) � 0. In view of Assumption
4◦ , we see that

p′(t) = Fy0(t; t0) − Fu(t; t0) − L1(t)[y1(t) − y0(t)]
− L2(t)[y1(α(t − t0) + t0) − y0(α(t − t0) + t0)]

�−L1p(t) − L2p(α(t − t0) + t0).

This and Lemma 1 prove that y1(t) � u(t) � z0(t + η), t ∈ J1. By induction, we can
show that yn(t) � u(t) � z0(t + η) for t ∈ J1 and all natural n. Now, if n → ∞, then

y0(t) � y(t) � u(t) � z0(t + η), t ∈ J1.

It proves that y is the minimal solution of (1) in the sector [y0, z0]0. By a similar way,
we can show that z is the maximal solution of (2) in the sector [y0, z0]1.

This completes the proof. �

THEOREM 6. Let Assumptions 1◦, 3◦ − 5◦ of Theorem 5 be satisfied. Moreover,
assume that η = τ0 − t0 < 0, and f is nonincreasing with respect to the first variable.
Then the assertion of Theorem 5 holds.

5. Generalizations

In this section we consider two boundary–value problems of the form

x′(t) = Fx(t; t0), t ∈ J1 = [t0, t0 + T], x(t0) = x(t0 + T) + k̄, (16)

x′(t) = Fx(t; τ0), t ∈ J2 = [τ0, τ0 + T], x(τ0) = x(τ0 + T) + k̄, (17)

where

Fx(t; t0) = f (t, x(t), x(α1(t − t0) + t0), · · · , x(αr(t − t0) + t0)).
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In this general case we can formulate similar results to the corresponding ones of this
paper but we only formulate corresponding results to Theorems 5 and 6 without any
proof.

THEOREM 7. Assume that
1◦ f ∈ C(J0 ×R

r+1, R) for J0 = J1 ∪ J2, and αi ∈ C(J, J), 0 � αi(t) � t for t ∈ J
and i = 1, 2, . . . , r,

2◦ η = τ0 − t0 > 0,
3◦ y0 ∈ C1(J1, R), z0 ∈ C1(J2, R) and

y′0(t) � Fy0(t; t0), t ∈ J1, y0(t0) � y0(t0 + T) + k̄,

z′0(t) � F z0(t; τ0), t ∈ J2, z0(τ0) � z0(τ0 + T) + k̄,

and y0(t) � z0(t + η), t ∈ J1,
4◦ there exist functions L0 ∈ C(J0, R) and Li ∈ C(J0, R+), i = 1, 2, · · · , r such

that
f (t, v0, v1, · · · , vr) − f (t, v̄0, v̄1, · · · , v̄r) � −

r∑
i=0

Li(t)[vi − v̄i] (18)

for y0(t) � v̄0 � v0 � z0(t + η), y0(αi(t − t0) + t0) � v̄i � vi � z0(α(t − t0) +
τ0), t ∈ J1, i = 1, 2, · · · , r; if t ∈ J2 , then relation (18) holds for y0(t − η) � v̄0 �
v0 � z0(t), y0(αi(t − τ0) + t0 � v̄i � vi � z0(αi(t − τ0) + τ0), i = 1, 2, · · · , r,

5◦ max(W̃(t0), W̃(τ0)) � 1, where

W̃(c) =
∫ c+T

c

r∑
i=1

Li(t)e
∫ t

αi(t−c)+c
L0(s)ds

dt � 1

6◦ f is nondecreasing with respect to the first variable.
Then there exist monotone sequences {yn, zn} such that yn(t) → y(t), t ∈

J1, zn(t) → z(t), t ∈ J2 uniformly and

y0(t) � y(t) � z(t + η) � z0(t + η), t ∈ J1,

y0(t − η) � y(t − η) � z(t) � z0(t), t ∈ J2.

The function y is the minimal solution of problem (16) in the sector [y0, z0]0 , while z
is the maximal solution of (17) in the sector [y0, z0]1.

THEOREM 8. Let Assumptions 1◦, 3◦ − 5◦ of Theorem 7 be satisfied. Moreover,
assume that η = τ0 − t0 < 0, and f is nonincreasing with respect to the first variable.
Then the assertion of Theorem 7 holds.

EXAMPLE 1. Consider two problems{
x′(t) = Fx(t; 1), t ∈ J1 = [1, 2],

x(1) = x(2)
(19)

{
x′(t) = Fx(t; 0), t ∈ J2 = [0, 1],

x(0) = x(1),
(20)
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with
Fx(t; c) = −ax(t) − bt x(0.5(t − c) + c) − a, a, b > 0.

Here t0 = 1, τ0 = 0, so η < 0. Assume that

b max[
2
a
e

a
2 (1 − 2

a
) +

4
a2

,
4
a
e

a
2 (1 − 1

a
) +

2
a
(
2
a
− 1)] � 1 (21)

Put y0(t) = −1, t ∈ J1, z0(t) = 0, t ∈ J2. Then assumption 3◦ of Theorem 5 holds.
Assumption 4◦ of Theorem 5 is also satisfied with L1(t) = a, L2(t) = bt, t ∈ [0, 2].
Note that, in view of (21), all assumptions of Theorem 6 holds, so problem (19) has the
minimal solution in the sector [y0, z0]0 and problem (20) has the maximal solution in
the sector [y0, z0]1 .

For example if a = 1
2 , then condition (21) holds if

b � min[
1

16 − 12e
1
4

,
1

12 − 8e
1
4

] ≈ 0.58.
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