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ON THE BEHAVIOR OF THE FIRST EIGENVALUE OF THE
SPHERICAL LAPLACIAN OPERATOR ON A SPHERICAL ANNULUS

CHUNG-TSUN SHIEH

(communicated by C. Bandle)

Abstract. In this paper, we show that the first Dirichlet eigenvalue of spherical Laplacian operator
on a spherical annulus with fixed area and outer disk is decreasing while the inner disk moving
towards the boundary, which is an analogy of [5]. Moreover, with [7], we conclude that: among
all annuli on S with fixed area, the sphereical band which is symmetric to the equator has the
largest first Dirichlet eigenvalue.

1. Introduction

The study of eigenvalues for Laplacian operator problems is quite interesting.
Many researchers have studied this subject by using variational principle and integral
inequalities, for examples, Polya ([4]), Hersch ([2], [3]), Chie-Ping Chu ([1]), and
many other mathematicians. But, in this paper, we are going to study some eigenvalue
problems of spherical Laplacian operator by alternative approach. Instead of variational
principle, we will use shape derivative to study our problems. To describe our problems
explicitly, we need some notations. Let S? denote the unit sphere in R?, and

X(0,¢) = (cosOsing, sinOsinp,cos¢), 0 < ¢ < m,0< 0 < 2m,

the Euler coordinate for S2. We use

cosé 0 siné
= 0 1 0 (1.1)
—siné 0 cosé&

to denote the rotation from the 2 axis to the 2" axis with angle & and C(¢p) =
{X(60,0)[0 < ¢ < ¢, 0 < 6O < 2m} be aspherical cap. For 0 < ¢y < ¢, we denote
the spherical band

B(gy, ¢1) = the closure of {C(¢1) \ C(gv)},
and
C*(90) = T¢(C(9n)).
B(¢ho, 15&) = the closure of {C(¢1) \ C=(¢o)},
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for 0 < & < ¢ — ¢o.

We will concentrate on the study of the following eigenvalue value problem

{ NAeu+Au =0inQ, (12)

u‘g)g =0.

where Q = B(¢, ¢1;&) for 0 < & < ¢ — ¢p. Also note that the Laplacian operator
Ag on S? can be written as

3 55 (13

ASZM(¢7 9) =

(sin us) +

sin ¢

2. The behavior of the first Dirichlet eigenvalue on a spherical annulus

In [5], the authors studied the behavior of the first eigenvalue A, (k) of

{ Au+Au =0inA(r;h) 2.1)

u|3A(r;h) =0

where 0 < r < 1, A(r;h) = D1(0)\ D,(h) and D,(h) = {(x,y) € R*|(x— h)*+y* <
r?}. They proved that A;(h) is decreasing in (0,1 — r), i.e., A;(h) is decreasing as
the inner disk D(r, h) of A(r;h) moving towards to the boundary.

In the next, we are going to show an analogy of this fact on S. Let A;(£) denote
the first eigenvalue of

{ Agu+Au= 0in B(dy, ¢1;&), (22)
pBgpon:e) = 0
where B(¢o, ¢1; &) is as that defined in section 1.

LEMMA 2.1.  4,(& fdcg (242 cos Ods, where A(E) = di;‘éé), ui (&)

is the normalized posmve elgenfunctlon corresponding A1(&), n is the outer normal
vector along 8B(¢0 01; &) and X(0, Q) is a choice of Euler coordinate such that the
north pole of X(0, ) locates at the center of C*(¢o) and B(¢o, ¢1; E) is symmetric to
{X(0,9)0 < ¢ < 7}

Proof. For the differentiability, the readers can refer to [6]. Let X(6,¢) be the

Ou, (0
original Euler coordinate. Denote it (6, ¢;&) = 3 ; :6) and differentiate the
equation
Agup +Au = 0inB(¢o, ¢15 &),
{ U+ A (o0, 15 8) (2.3)
ulos@oe) =0,
with respect to £, then we have
{ .Aszlll + Aty = —Auin B(¢o, 91 &), (2.4)
ui ‘é)C(d)l) = 0.
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// ulAszul —uAgity)dA
B(0,¢1:¢

(2.3) and (2.4) lead to

8u1 8u1
= U— —uy—)ds
/ano,qn ¢>( on on’
= / i 24 g, (2.5)
acé(p)  On

It remains to compute it; on C(¢;). For simplicity, we may just compute 4,(0). Note
that for & = 0, X(0,¢) = X(0, ¢) and the first normalized positive eigenfunction u;
for 2.3 is parameterized by (6, ¢, &). For & > 0, We denote (0,9) = X~ 'T_:X and
w(B,0; &) = ui (6, 9; &), then it is easy to see that % = ’()‘Z)W on AC%(¢y). Also note
that the ¢(0, ;&) = ¢y if X(6,9) locates on dC%(¢y). Since w(h,$;E) = 0 for
qS = ¢)p, we obtain

00 ¢

on C%(¢y). Moreover, with

cos Osin ¢ cosé 0 —siné cos Osin ¢
T_g | sinfBsing | = 0 1 0 sin 6 sin ¢
cos ¢ siné 0 cosé& cos ¢
cos€ cos Bsin ¢ — sin & cos ¢
= sin O sin ¢

sin & cos 6 sin ¢ + cos & cos ¢

cos O sin (13

= | sinBOsin¢@ (2.7)
cos ¢

differentiate the third component of (2.7) with respect to &, we can derive

- g—g sin @ = cos & cos Osin ¢ — sin & cos ¢, (2.8)
take & = 0, then ¢ = ¢, we have g—g\ézo = —cos 0. Note that wé(é,%;é) =0 and

plug it into 2.6, we obtain w¢(-;0) = i(-;0) = —% cos 6 on OC(¢p). Hence, by
(2.5)
81,{1

A1 (0 :f/ cos0d
(0= [ (Gaeosods

and by the same argument, we can show

@)= [ (Ghreosdas
acs () O

n
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With the proceeding lemma, we have

THEOREM 2.2. A (&) is decreasing for 0 < & < ¢ — ¢o.

Proof. 1t’s sufficient to show that A;(£) < 0 for 0 < & < ¢ — ¢p. Our strategy
is as that in [5]. Let X(0, ¢) is a choice of Euler coordinate for $? such that the north
pole is located at the center of C%(¢y) and B(¢y, ¢1; &) is symmetric to the geodesic
circle ~ ~

{X(0,9) UX(m,9)| 0< ¢ < 7}

Let
Q" (&) = {X(6,9)| —m/2<6<7n/2, andX(6,9) € B(¢o, ¢1;§)},
Q~ (&) = the reflection of Q" (&) with respect to the geodesic circle
{X(n/2,6) UX(37/2,6)|0 < ¢ < m},
and

Q&) =Q (§HuQ ().
We define a function
_— u (0,0;8), if —m/2<6<m/2,
€0.9) = { ui (6 —m, ;8), it m/2 < 3m/2,

where u;(0, ;) is the normalized and positive first eigenfunction on B(¢y, ¢y; E).
Then by the maximum principle, we know the function

V(é7 q;) = ul(é7 q;; é) - Z(é7 q;)
is positive in Q7 (&), and next, by the Hopf’s Lemma, 3¢ < 0 on 9C(¢o) N 0Q~ (&),

hence . B
aul(ea (PO 8Z(97 ¢0)
on < on <0

on OC(¢y) NOQ™ (&), i.e.,
ou (0, 9z(0,
QALY UL

on OC(do) NIQ™ (). Since faci(%)(%)z cos Ods = 0, we obtain

/'11(5)27/ (%)zcoséds<07
ocE(s) On

for 0 < & < ¢y — ¢p. This completes the proof. [
Then, applying the following theorem

THEOREM 2.3. (Theorem 1, [7]) 0 < A <2, 0 < & < cos™!(A/2), and f (§) =
cos~!(cos& — A). Let B(E,f(E)) be a spherical band with area 2mtA and i (€),
defined on (0,1t — cos™'(1 — A)), the corresponding first Dirichlet eigenvalue on
B(E,f(&)). Then (&) is increasing in (0,cos~'(A/2)) and attains its maximum
when B(E,f (£)) is symmetric to the equator; i.e., & = cos™'(A/2).
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we conclude that

THEOREM 2.4. Among all annuli with fixed area 21A, the spherical band which
is symmetric to the equator has the largest first Dirichlet eigenvalue.
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