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ON THE STABILITY OF AN n-DIMENSIONAL
QUADRATIC AND ADDITIVE FUNCTIONAL EQUATION

KIL-WOUNG JUN AND HARK-MAHN KiM

(communicated by T. M. Rassias)

Abstract. In this paper, we investigate the generalized Hyers-Ulam stability problem of a
quadratic and additive type functional equation

f(Z)ﬁ)Jr(n*Z)Zf(Xi): S fGitx), 1>2)
i=1

i=1 1<i<j<n

for the even or odd case in the n variables.

1. Introduction

In 1940, S. M. Ulam [16] raised a question concerning the stability of group
homomorphisms:

Let Gy be a group and let G, be a metric group with the metric d(-,-). Given
e > 0, does there exist a & > 0 such that if a function h : Gy — Gy satisfies the
inequality d(h(xy), h(x)h(y)) < 6 forall x,y € Gy, then there exists a homomorphism
H: G, — Gy with d(h(x),H(x)) < € forall x € G\?

In other words, we are looking for situations when the homomorphisms are stable,
i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism
near it.

It is easy to see that the quadratic function f (x) = cx
the following equation:

fx4y) +f(x—y) =2f (x) +2f (v). (1.1)

So, it is national that the equation (1.1) is called a quadratic functional equation.
In particular, every solution of the quadratic equation (1.1) is said to be a quadratic
function. Itis well known that a function f between real vector spaces is quadratic if and
only if there exists a unique symmetric biadditive function B such that f (x) = B(x, x)
for all x (see [1]). The biadditive function B is given by

B(x,y) = 3 (e +2) (=) (1.2
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During the last decades, the stability problems of several functional equations have
been extensively investigated by a number of authors and we may refer lots of papers
concerning the stability results for various functional equations [4, 6, 7, 8, 10, 14, 153].
A stability problem for the quadratic functional equation (1.1) was solved by a lot of
authors [3, 5, 11]. Further, Jun and Lee [9] proved the generalized Hyers-Ulam stability
of the pexiderized quadratic equation (1.1).

Now, we introduce the following generalized quadratic and additive type functional
equation,

n

F(Xm)+ =D )= Y flutx) (0>2) (1.3)
i=1

i=1 1<i<jgn

in the class of functions between real vector spaces.

For n = 3, Pl. Kannappan proved that a function f satisfies the functional
equation (1.3) if and only if there exist a symmetric biadditive function B and an
additive function A such that f(x) = B(x,x) + A(x) for all x (see [13]). The Hyers-
Ulam stability problem for the equation of n = 3 was proved by S.-M. Jung [12]. The
Hyers-Ulam-Rassias stability problem for the equation of n = 4 was also investigated
by Chang, Lee and Kim [2].

In this paper, we obtain the general solution of the equation (1.3) with n variables
in the class of functions between real vector spaces and we establish the generalized
Hyers-Ulam-Rassias stability problem for the equation (1.3) for the case even or odd
of n variables in the sense of Hyers, Ulam, Rassias and Gavruta since it has slightly
different upper bounds depending on the even or odd case of n.

2. General solution of (1.3)

We here present the general solution of (1.3).

THEOREM 2.1. Let X and Y be real vector spaces. A function f : X — Y satisfies
the functional equation (1.3) if and only if there exist functions B : X x X — Y,
A : X — Y such that f(x) = B(x,x) + A(x) for all x € X, where B is symmetric
biadditive, and A is additive.

Proof. First we assume that f is a solution of the equation (1.3). If we put x; =0
for all 7 in (1.3), we see that f (0) = 0. Putting x4 = x5 = --- = x, = 0 in (1.3), we
get

S (it txs ) +f (x1)+f () +f (x3) = f (x1+x2) +f (atoxs)+f (ni+xs)  (2.1)

for all xy,x;,x3 € X. Therefore according to [13], the assertion is true.

Conversely, if there exist a symmetric biadditive function B : X x X — Y and an
additive function A : X — Y such that f (x) = B(x,x) + A(x) for all x € X, then itis
obvious that f satisfies the equation (1.3). O
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3. Stability of (1.3)

Throughout this section X and Y will be a real linear space and a real Banach
space, respectively, unless we give any specific reference. Given f : X — Y, we set

n

Df (x1,%2,++ ,Xy) ::f(in) +(n—-2) Zf(x,-) - Z fxi+x), (n>2)
i=1 i=1 1<i<j<n
forall x, € X (i=1,2,--- ,n).
Let @: X x X X --- x X — [0,00) be amapping satisfying one of the conditions
~—_——

n—times

(A), (B) and one of the conditions (C), (D):

— 1
Dy (X1, ,xp) ::quo(2kx1,~-~ ,2%x,) < o0 (A)
k=0
= X1 X
CI)Z()Cl,"',)Cn) =Z4k¢(%,,ﬁ)<oo (B)
k=0
— 1
Wi(xr, - x) :zzﬁ(p(f‘xl,-~- ,25x,) < o0 ©)
k=0
> X1 Xn
le(X],"‘,Xn) :szq)(ﬁ7>%)<oo (D)
k=0
for all x;,--- ,x, € X. For convenience we use the following notation:
(p[%](‘x) = (p(X,"' y Xy Xy ’7x) + (p(ixf" y T Xy ,.X')
—— ~———
(5]+1 (5]+1
forall x; € X (i =1,2,---,n), where [k] denotes the greatest integer less than or

equalto k € R.

Now we examine the situations that the functional equation (1.3) is stable in the
sense of Hyers, Ulam, Rassias and Gdvruta, and construct a true function for a given
approximate function differing from a control function ¢ . One of the conditions (.A),
(B) will be needed to derive a quadratic function and one of the conditions (C), (D)
will be requested to derive an additive function in the following theorem. We start from
the odd case of n variables.

THEOREM 3.1. Let ¢ be as above. Assume that a function f : X — Y satisfies

||Df(x17"' axn)H < (p(xla"' 7xn) (31)

for all xy,--- ,x, € X and for some odd n := 2m + 1. Then there exist a unique
additive function A : X — Y and a unique quadratic function Q : X — Y satisfying
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(1.3) such that

5l +1 | 1
)= 00— ) = Frr (0} < 2% @ ot )
[ +F(=x) 5] +1 1
B Q('x) 23[%] f(O)H < 2[§]2<Di[%](x)>
and
fO) —f(=x) 1
CETC R e
forall x e X andfori=1o0r2, j=1 or 2.
The functions Q, A are given by
0(x) = lim L) if (A) holds
0) = lim 4[f () +£ (=5, £(0) =0 if (B) holds
A(x) = lim L@ (=2 if (C) holds
AG) = lim 277 ()~ F (-3l FO) =0 if (D) holds

forall x € X
Proof. Let f1 : X — Y be afunction defined by f;(x) := M forall x € X.
Then f1(0) =£(0), f1(x) :fl(*X) [5] =m, and
HDfl(x17"' )H [ (x17' ’ 7xn)+(p(_x1>"' 7_xn)] (3'2)
holds for all x;, € X. Putting x; = x for i = 1,--- ,m+ 1 and x;, = —x for
i=m+2,---,n in (3.2) yields
Hf +(2m+1)(2m—1)f (x)
m+1 m 1 (33)
("3 e (5 )en-nn0)| < 3050

which is written by

14m°f1(x) — m’f1(2x) — m(m + 1)f10)]] <

forall x € X.
Case 1. Assume that the control function @ satisfies the condition (A ).
Dividing both sides of (3.4) by 4m?, we have

Pz1(x) (3-4)

N —

L2 0 | -2 0] -3 fen-2E 0]
1
<8m2(p[g](x)
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forall x € X. Replacing x by 2¥~!x and dividing by 4*~! in (3.5) we obtain

H [fl 2k 1 m+1 1(0)} [fl(zk ) m+1 1

4 = vaﬁmﬁ“w (3.6)

forall x € X and forall k € N.
The triangle inequality and induction argument implies easily by (3.6) that

m+ 1 2% — O] 1§ 22
— — 3.7
H[mx) 10)] = el 67
forall x € X and forall k € N.
[12%-2811(0)
In order to prove convergence of the sequence {F k(x) = — }k N we
€
show that the sequence is a Cauchy sequence in Y. By (3.7) we obtain that
1 iy m+1 [f1(22%x) — 2ELf,(0)]
1Fe(x) = Fras@ll = 2 11124 = S =1(0)] - = H N
1 -1 (p[%](szrix) ( . )
= om? 4 4k+it+1

i=0

forall x € X and for all k,/ € N. Since the right hand side of (3.8) tends to zero
as k — oo, {Fi(x)} is a Cauchy sequence for all x € X and thus converges by the
completeness of Y. Therefore we can define a function Q : X — Y by

_ o f2%) L f(2R) 4 (—2%)
QW) = k1i>nolo 4k k1i>nolo 2. 4k ’
Note that Q(0) =0, Q(—x) = Q(x) forall x € X.
Replacing x; in (3.2) by 2%x; forall i = 1,--- ,n and dividing both sides by 4%,
and after then taking the limit in the resulting inequality, we have

lo(>ow) +n-2Y 0w~ 3 0w+ y)
1 i=1 1<i<j<n (3.9)
. (p(sz1> e 72kxn) + (p(_zkxl> R _2kx71)
<
= kli{go 2. 4k

xeX.

=0.

Since Q is even and Q(2'x) = 4'Q(x) for all I € N, the function Q satisfies the
equation (1.3) and is quadratic by Theorem 2.1.
Taking the limit in (3.7) as k — oo, we obtain

> (2
Hf m“ (0)*Q(x)H < ﬁz(p[ji(ﬂx) (3.10)
i=0
1
= e

forall x € X.
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To prove the uniqueness, let Q' be another quadratic function satisfying (3.10).
Then Q'(0) = 0, Q'(2)x) = 4/Q/(x), and Q'(—x) = Q'(x) for all x € X. Thus we
have

Ham—awng-prxfﬁwm+ Lo
MP‘ (@) = 500 - 2 )

Wq)l% (2'x)
2

<

for all / € N. Taking the limit as [ — oo, we conclude that Q(x) = Q’(x) for all
xeX.

Case 2. If ¢ satisfies the condition (B) (and hence implies (D)), the proof is
analogous to that of Case 1. and we sketch the proof as follows.

Indeed, putting x; = 0 for all i in (3.1) we have f (0) = 0 since ®,(0,---,0) <
oo and ¢(0,---,0) =0.

Replacing x by 3 in (3.4) we get

X
Hf —4f1(5 H o 2(0[ ](2) (3.11)
forall x € X.
An induction argument implies from (3.11) that
- x
k i
I —4n| < g X vouz (12)
i=0
1 & ; X
S 5.7 (p[%](ziﬂ )
i=0
= S, ()
I

forall x € X and forall £ € N.

Using the similar argument to that of Case 1., we can show that the sequence
{4f 1(3) fken is a Cauchy sequence in Y forall x € X and thus converges. Therefore
we can define a function Q : X — Y by

() = fim #A(5) = tim L&) 4r—X), xex
k—o00 2k k—oo 2 2k 2k '

Taking the limit in (3.12) as k — oo, we obtain

1) = QW < g2, (9 (3.13)

forall x € X.
Note that Q(0) = 0, Q(—x) = Q(x) for all x € X and thus Q is the unique
quadratic function satisfying the equation (1.3) and the inequality (3.13).
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Now let f, : X — Y be a function defined by f>(x) := 3[f (x) — f (—x)] for all
x € X. Then f,(0) = 0, f2(—x) = —f2(x), and the relation (3.1) can be written by

1

IDf2(x1, -+ x0) || < E[(p(xl’ c X))+ @(=x, e )] (3.14)
for all x; € X. Applying the process (3.3) to (3.14) yields
1
12f2(x) — f2(2x)|| < %(p[%](x) (3.15)

forall x € X.
Case 3. Assume that ¢ satisfies the condition (C) (and hence implies (.A)).
Dividing the last inequality by 2 we have

Hf B3 H S ﬁ%(@ (3.16)

forall x € X.
It follows by an induction argument that

oo~ 25 < 3 243 o

forall x € X and forall £ € N.
Using the similar argument to that of Case 1., we can show that the sequence

{f 2 }keN is a Cauchy sequence in Y for all x € X and thus converges. Therefore
we can define a function A : X — Y by

L% L f(2%) —f(-2%)
)= im P50 = im UL, e
Taking the limit in (3.17) as k — oo, we obtain
1
1129 = AW < 5771 (9 (3.18)
7 2

forall x € X.

Observe that A(0) = 0, A(—x) = —A(x) for all x € X and thus A is the
unique additive function satisfying the equation (1.3) and the inequality (3.18), which
is similarly proved like as Case 1.

Case 4. Assume that ¢ satisfies the condition (D), then the proof is analogous
to that of Case 2. Indeed, putting x; = 0 for all i in (3.1) we have f(0) = 0 since
¥,(0,---,0) < oo and ¢(0,---,0) =0.

Replacing x by 3 in (3.15) we get

202265 H\L‘P[a(g) (3.19)

2m

forall x € X.
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Using the induction argument, we get that

X

Hfz( -2 (%) H S 2mZ o1z (37) (3:20)

forall x € X and forall £ € N.

Using the similar argument to that of Case 2, we can show that the sequence
{2%2(3) }en is a Cauchy sequence in ¥ forall x € X and thus converges. Therefore
we can define a function A : X — Y by

AW) = lim 2*(5p) = Jim 27NF(5) —f(—5p)), xeX.

Taking the limit in (3.20) as k — oo, we obtain

1
1129 = AW < 5772, (0 (321)
7 2
forall x € X.
Similarly, noting that A(0) = 0, A(—x) = —A(x) for all x € X, we conclude that
A is the unique additive mapping subject to (1. )and (3.21). The proofis complete. [

We remark that if the control function ¢ satisfies conditions (A) and (C), the
proof of Case 1 and Case 3 is still true under the condition

||Df(x17 T 7xn)

for all xi,---,x, € X\{0} and thus conclusions in Theorem 3.1 work for all x €
X\{0}. We state the alternative theorem for the even case of n variables.

| < (p('xh"' ,)Cn)

THEOREM 3.2. Let ¢ be as in Theorem 3.1. Assume that a function f : X — Y
satisfies

||Df(x17"' axn)H < (p(xla"' 7xn) (322)

forall xi,--- ,x, € X and for some even n := 2m. Then there exist a unique additive
function A : X — Y and a unique quadratic function Q : X — Y satisfying (1.3) such
that

(2] + 1 Diy (x) iy (x)
/) =000 =40~ S O < g * a1y
PO S (n) o [Bl L.
. 0w 7o) < BRI
and
fx) —f(=x) 1
AW < I =D e

forall x e X andfori=1o0r2, j=1 or 2.
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The functions Q, A are given by

0(x) = lim (=20 if (A) holds

0(x) = lim L[/ () +£(=5)). £(0) =0 if (B) holds

A(x) = lim et if (C) holds

AQ) = Jim 2 () = f (=)L F(0) =0 if (D) holds
forall x € X

Proof. We use the same notations as Theorem 3.1. The relation (3.22) can be
written by the form of Df, Df, as follows:

HDfl(xb T 7xn)H < [(p(xh e 7xn) + (p(_x1> T _xn)] (3'23)

HDfZ(xb T 7xn)H < [(p(xh e 7xn) + (p(_x1> T _xn)] (3'24)

N = N =

forall x; € X.
Putting x;, =x fori=1,--- ,m+1and x;, = —x for i =m+2,--- ,n in (3.23)
yields

m

H4f1(X) —f1(2x) — ;1f1(0)H < 2t ! oz (x) (3.25)

m—1)

forall x € X, where [5] = m. Applying the same process to (3.24), one obtains that

1262(x) - f2(20)] < 1)%w> (3.26)

4(m—1
forall x € X.

From (3.25) and (3.26), we come to the conclusions, which the arguments used in
Theorem 3.1 carry over almost verbatim. [

From the main Theorem 3.1 and Theorem 3.2, we obtain the following corollary
concerning the stability of the equation (1.3). Let X and Y be a real normed linear
space and a real Banach space, respectively, in the following corollaries.

COROLLARY 3.3. Let p # 1, p # 2 and € > 0 be real numbers. Assume that a
function f : X — Y satisfies the inequality

17 (et sl < e Il), (0> 2) (3.27)
i=1

forall x; € X (x; € X\{0} if p < 0). Then for each three cases p < 1, 1 <p <2
and 2 < p, we can find a unique additive function A : X — Y and a unique quadratic
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Sunction Q : X — Y which satisfy (1.3) and the inequalities in case n := 2m + 1

VNV ES I+ sl | LI+ el
-0t a0 - S O < e R
f@fn) o [ CLEI+1) el
= e - S ol « oo

£ —F(=x) LI+ 1) el
e L e ol = 7}
orin case n .= 2m
1) -0 - B o < 2ol (8l
NS e E-2 ey e- 2T
fOH () 50y ! 2 ey
|75 e - S Ol < =7y
09—/ (—x) 8 el
== < @

forall x e X (x € X\{0} if p <0), where f(0) =0 if p > 1.

Proof. Let @(x1, -+ ,x,) = €(}_, [|x;]|P) forall x; € X (x € X\{0} if p <0)

(i=1,---,n).

If p < 1, the control function ¢ satisfies (A) and (C). If 1 < p < 2, the
function ¢ satisfies (A) and (D). If 2 < p, the function @ satisfies (B) and (D).
Thus applying Theorem 3.1 and Theorem 3.2 to the three cases p < 1, 1 <p <2 and
2 < p, we obtain easily the following Hyers-Ulam stability results. [J

COROLLARY 3.4. Assume that for some 0 > 0, afunction f : X — Y satisfies the

inequality

|1Df (xy, - -+

)| <6

(3.28)

for all x; € X. Then there exist a unique additive function A : X — Y and a
unique quadratic function Q : X — Y which satisfy (1.3) and the inequalities in case

n:=2m+1
) - 0t -4t - B0
2
£+ (=) (31 +1
[~ - ow - Zgrro
Hf (x) *2f (=x) A(x)

<oy 2
SR
< 0

0
< R

(NS
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orincase n = 2m

3] +1 0 0
)= 00) =40 = S O < sy * sy
£() +7(= 3]+ 0
5 00~ S O < gy
£) —f (= 0
AW < 2@ 1)
forall x € X.

Proof. Putting @(x,y) := 0, we get immediately the results. [

n—times

—_——f
Let H: Ry x--- xRy — Ry and ¢y : Ry — R, be mappings such that

@(A) >0, forall A >0,
(p0(2) < 27
@ (24) < @o(2)po(A), forall A >0,
HAty, -, At) < @(A)H(t, -+ ,t,), forall #,---,r, e Ry, A >0.

We consider in the next corollary

P(xr, -, x) = H(([xal], -, [[xal])-
Then
2x1, -, 2x) = H2xll, -, 27 xal)
< @) H(ul, )
< (@) H([Ixlls -, [1xall),

and according to @y(2) < 2 we have

> 2))H(||x s X
B ) < 30 H
i=0
_ H(bll - [l
4—o(2)
and
= ONH(||x1l], -, |1xn
W) < 30 EIHL )
i=0
_ H((xls - [l
2 —@o(2)

Hence, we see that the following corollary holds by Theorem 3.1 and Theorem
3.2.
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COROLLARY 3.5. Assume that a function f : X — Y satisfies

1Df (v =) | < H([lxalls -+ [lxall)

forall x1,--- ,x, € X. Then there exist a unique additive function A : X — Y and a
unique quadratic function Q : X — Y which satisfy (1.3) and the inequalities in case
n:=2m+1

141 Hal,- - l) . Hwll - )
0 - 00 -4 - Farr O < JmTenh t Ane—ee)
f@ D) o (84 H(xal, -+ [l
— 00 S O < ey
102 _ ) < ol
2 2032 - 90(2))

IV RS Gl )
0 - 069 - 400 - Frr O < FrE T A
+ (Hxl||7 >||xn||)
3B - DE= )
1) g[8 H(lall - )
“ 00) ﬂafmw\[ma Na- @)
Hf H H ||le s %))
20 - DE- w)
forall x € X.
REFERENCES

(1] J. ACZEL, J. DHOMBRES, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.

[2] 1. S. CHANG, E. H. LEE AND H. M. KiM, On Hyers-Ulam-Rassias stability of a quadratic functional
equation, Math. Ineq. Appl. 6, 1 (2003), 87-95.

[3] S. CZERWIK, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ.
Hamburg, 62, (1992), 59-64.

[4] P. GAVRUTA, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings,
J. Math. Anal. Appl. 184, (1994), 431-436.

(5] A. GRABIEC, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math.
Debrecen, 48, (1996), 217-235.

(6] D. H. HYERS, G. ISAC AND TH. M. RASSIAS, Stability of Functional Equations in Several Variables,
Birkhiuser, Basel, 1998.

[7] D. H. HYERS, G. ISAC AND TH. M. RASSIAS, On the asymptoticity aspect of Hyers-Ulam stability of
mappings, Proc. Amer. Math. Soc. 126, (1998), 425-430.

(8] D.H.HYERS, TH. M. RASSIAS, Approximate homomorphisms, Aequationes Math. 44, (1992), 125-153.

(9] K.W.JuN, Y. H. LEE, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math.
Ineq. Appl. 4, 1 (2001), 93-118.

[10] K. W.JuN, H. M. KM, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J.
Math. Anal. Appl. 274, 2 (2002), 867-878.
[11] S.-M. JUNG, On the Hyers-Ulam stability of the functional equations that have the quadratic property,

J. Math. Anal. Appl. 222, (1998), 126-137.



STABILITY OF A FUNCTIONAL EQUATION 165

[12] S.-M. JUNG, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal.
Appl. 232, (1999), 384-193.

[13] PL. KANNAPPAN, Quadratic functional equation and inner product spaces, Results Math. 27, (1995),
368-372.

[14] TH. M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72,
(1978), 297-300.

[15] TH. M. RASSIAS, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251,
(2000), 264-284.

[16] S.M. ULAM, Problems in Modern Mathematics, Chap. VI, Science ed. Wiley, New York, 1964.

(Received May 19, 2003) Kil-Woung Jun
Department of Mathematics

Chungnam National University

220 Gung-Dong

Daejeon 305-764

Republic of Korea

e-mail: kwjun@math.cnu.ac.kr

Hark-Mahn Kim

Department of Mathematics
Chungnam National University
220 Gung-Dong

Daejeon 305-764

Republic of Korea

e-mail: hmkim@math.cnu.ac.kr

Mathematical Inequalities & Applications



