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Abstract. Let A1 be a subalgebra of a Banach algebra A and let f : A1 → A satisfies

‖f (x + y) − f (x) − f (y)‖ � δ and ‖f (x · y) − x · f (y) − f (x) · y‖ � ε,

for all x, y ∈ A1 and for some constants δ, ε � 0 . Then we prove that there exists a unique
derivation d : A1 → A such that

‖f (x) − d(x)‖ � δ, x ∈ A1

and
x · (f (y) − d(y)) = 0, x, y ∈ A1.

Moreover, we also prove the Rassias type stability result for derivations.

Let A be an algebra and let A1 be a subalgebra of A . A function d : A1 → A
is called a derivation if and only if it satisfies the following functional equations

d(x + y) = d(x) + d(y), x, y ∈ A1; (1)

d(x · y) = x · d(y) + d(x) · y, x, y ∈ A1. (2)

The aim of the present paper is to examine the stability problem of derivations.
For the theory of the stability of functional equations see Hyers, Isac and Rassias [4].
On approximately derivations Šemrl in [8] proved the following.

THEOREM 1. (P. Šemrl) Let X be an infinite dimensional Banach space and let
B(X) be the algebra of all bounded linear operators on X . Assume that B is a standard
subalgebra of B(X) and ϕ : R+ → R+ is a function satisfying

lim
t→∞

ϕ(t)
t

= 0. (3)

Suppose that d : B → B(X) is a mapping such that

‖d(x · y) − x · d(y) − d(x) · y‖ � ϕ(‖x‖ · ‖y‖),
for all x, y ∈ B . Then there exists z ∈ B(X) such that

d(x · y) = x · z − z · x x ∈ B.

So, d is a derivation.
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Generally this superstability result is not true. The counter-example reads as
follows: take a function f defined on the subalgebra

A1 =
{[

x 0
0 0

]
: x ∈ R

}

of the algebra A = M2×2 of all 2 × 2 -matrices given by the formula:

f

([
x 0
0 0

])
=

[
0 0
0 1

]
,

[
x 0
0 0

]
∈ A1.

Then

f

([
x 0
0 0

]
+

[
y 0
0 0

])
− f

([
x 0
0 0

])
− f

([
y 0
0 0

])
=

[
0 0
0 −1

]

and

f

([
x 0
0 0

]
·
[

y 0
0 0

])
−

[
x 0
0 0

]
· f

([
y 0
0 0

])

− f

([
x 0
0 0

])
·
[

y 0
0 0

]
=

[
0 0
0 1

]
,

for all x, y ∈ R . Therefore, the function f satisfies assumptions of Šemrl’s theorem
(with a constant function ϕ ) but f is not a derivation.

For arbitrary Banach algebras we have the following stability result.

THEOREM 2. Let A1 be a subalgebra of a Banach algebra A . Assume that
f : A1 → A satisfies

‖f (x + y) − f (x) − f (y)‖ � δ, x, y ∈ A1 (4)

and
‖f (x · y) − x · f (y) − f (x) · y‖ � ε, x, y ∈ A1, (5)

for some constants δ, ε � 0 . Then there exists a unique derivation d : A1 → A such
that

‖f (x) − d(x)‖ � δ, x ∈ A1. (6)

Moreover,
x · (f (y) − d(y)) = 0, x, y ∈ A1. (7)

Proof. By condition (4), the Hyers theorem (see [3] or Hyers, Isac and Rassias
[4]) shows that there exists an additive function d : A1 → A such that

‖f (x) − d(x)‖ � δ, x ∈ A1. (8)

Now we only need to show that d satisfies (2). Our inequality (8) implies that

‖f (nx) − d(nx)‖ � ε, x ∈ A1, n ∈ N.

By the additivity of d it is easy to see that then

‖1
n
f (nx) − d(x)‖ � 1

n
ε, x ∈ A1, n ∈ N,
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which means that
d(x) = lim

n→∞
1
n
f (nx), x ∈ A1. (9)

Condition (5) implies that the function r : A1 × A1 → A defined by

r(x, y) = f (x · y) − x · f (y) − f (x) · y, x, y ∈ A1 (10)

is bounded. Hence,
lim

n→∞
r(nx, y)

n
= 0, x, y ∈ A1. (11)

Now, applying (9) we get

d(x · y) = x · f (y) + d(x)y, x, y ∈ A1. (12)

Indeed,

d(x · y) = lim
n→∞

f (n(x · y))
n

= lim
n→∞

f ((nx) · y)
n

= lim
n→∞

nx · f (y) + f (nx) · y + r(nx, y)
n

= lim
n→∞

(
x · f (y) +

f (nx)
n

· y +
r(nx, y)

n

)

= x · f (y) + d(x) · y, x, y ∈ A1.

Let x, y ∈ A1 and n ∈ N be fixed. Then, using (12) and the additivity of d , we
have

x · f (ny) + nd(x) · y = x · f (ny) + d(x) · ny = d(x · ny)
= d(nx · y) = nx · f (y) + d(nx) · y
= nx · f (y) + nd(x) · y.

Therefore,
x · f (y) = x · f (ny)

n
, x, y ∈ A1, n ∈ N.

Sending n to infinity, by (9), we see that

x · f (y) = x · d(y), x, y ∈ A1. (13)

Combining this formula with equation (12) we have that d satisfies (2) which is the
desired conclusion.

To prove the uniqueness property of d , assume that d∗ is another derivation
fulfilling ‖f (x) − d∗(x)‖ � δ , x ∈ A1 . Since both d and d∗ are additive we deduce
that

n‖d(x)− d∗(x)‖ = ‖d(nx) − d∗(nx)‖ � 2δ
so that

‖d(x) − d∗(x)‖ � 2δ
n

,

for all x ∈ A1 and n ∈ N . Letting n to infinity we find that

d(x) = d∗(x), x ∈ A1.
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Moreover, identity (13) leads to (7), which completes the proof.

A generalization of Hyers’s theorem given by Isac and Rassias (see [5] or [4])
shows that if ψ : R+ → R+ satisfies

lim
t→∞

ψ(t)
t

= 0, (14)

ψ(ts) � ψ(t)ψ(s), t, s > 0, (15)

ψ(t) < t, t > 1, (16)

δ is a positive number and f : A1 → A fulfills the inequality

‖f (x + y) − f (x) − f (y)‖ � δ(ψ(‖x‖) + ψ(‖y‖)), x, y ∈ A1,

then there exists a unique additive mapping d : A1 → A and a constant k ∈ R such
that

‖f (x) − d(x)‖ � kδψ(‖x‖), x ∈ A1.

The classical example of the function ψ fulfilling (14), (15) and (16) is a map
ψ(t) = tq , t ∈ R+ , where q < 1 . The example of the function ϕ satisfying (3) is
ϕ(t) = tp , t ∈ R+ , where p < 1 .

For derivation we have the following generalization of Theorem 2.

THEOREM 3. Let A1 be a subalgebra of a Banach algebra A , δ be a positive
number, ψ : R+ → R+ is a function with properties (14), (15), (16) and ϕ : R+ →
R+ fulfills (3). Assume that f : A1 → A satisfies

‖f (x + y) − f (x) − f (y)‖ � δ(ψ(‖x‖) + ψ(‖y‖)), x, y ∈ A1 (17)

and
‖f (x · y) − x · f (y) − f (x) · y‖ � ϕ(‖x‖ · ‖y‖), x, y ∈ A1. (18)

Then there exists a unique derivation d : A1 → A and a constant k ∈ R such that

‖f (x) − d(x)‖ � kδψ(‖x‖), x ∈ A1. (19)

Moreover, condition (7) holds true.

Proof. The proof is similar to that of Theorem 2. We start with the Isac - Rassias
theorem. Then we have the existence of an additive function d : A1 → A such that

‖f (x) − d(x)‖ � kδψ(‖x‖), x ∈ A1, (20)

for some real constant k . Hence,

‖f (nx) − d(nx)‖ � kδψ(‖nx‖), x ∈ A1 , n ∈ N

and by the additivity of d it is easy to observe that then

‖1
n
f (nx) − d(x)‖ � kδ

ψ(n‖x‖)
n

, x ∈ A1 , n ∈ N,
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which jointly with (14) leads to

d(x) = lim
n→∞

1
n
f (nx), x ∈ A1. (21)

Let r be a function defined by (10). Then, using inequality (18) and assumption
(3), we obtain that the function r satisfies condition (11) and the further part of the
proof is the same as in the proof of Theorem 2.

If we want to extend our result to the case of p, q > 1 , then we can adopt the
method presented by Gajda in [2] to obtain the Isac - Rassias result for the function ψ
fulfilling

lim
t→0

ψ(t)
t

= 0, (22)

ψ(ts) � ψ(t)ψ(s), t, s > 0, (23)

ψ(t) < t, t ∈ (0, 1), (24)

After this modification we get the following version of Theorem 3.

THEOREM 4. Let A1 be a subalgebra of a Banach algebra A , δ be a positive
number, ψ : R+ → R+ is a function with properties (22), (23), (24) and ϕ : R+ →
R+ fulfills the following condition

lim
t→0

ϕ(t)
t

= 0. (25)

Assume that f : A1 → A satisfies (17) and (18). Then there exists a unique derivation
d : A1 → A and a constant k ∈ R satisfying (19) and (7).

The proof of this fact is analogous to the presented. We must only observe that if
d is an additive function fulfilling (20), which existence guarantees the modification of
the Isac - Rassias theorem, then condition (22) implies

d(x) = lim
n→∞ nf (

1
n
x), x ∈ A1

(instead of (21)) and a function r defined by (10) satisfies

lim
n→∞ nr(

1
n
x, y) = 0, x, y ∈ A1

(instead of (11)).
In the next part of this paper we assume that the algebra A contains the identity.

As a simply consequence of Theorem 2 we have the following superstability result.

COROLLARY 1. Let A be a Banach algebra with the identity e and let A1 be a
subalgebra of A such that e ∈ A1 . If δ, ε � 0 and a function f : A1 → A satisfies
(4) and (5), then f is a derivation.

Proof. Condition (7) and the fact that e ∈ A1 implies f = d , which ends the
proof.

In the case of algebras with the identity we can also proved the superstability of
equation (2).
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THEOREM 5. Let A be a normed algebra with the identity e and the norm
satisfying the inequality

‖x · y‖ � ‖x‖‖y‖, x, y ∈ A (26)

and let A1 be a subalgebra of A such that e ∈ A1 . If ε � 0 and a function
f : A1 → A satisfies (5), then f fulfills (2).

Proof. By (5), we have

‖f (nx · y) − nx · f (y) − f (nx) · y‖ � ε, x, y ∈ A1, n ∈ N.

Hence,

‖ f (nx · y)
n

− x · f (y) − f (nx) · y
n

‖ � ε
n
, x, y ∈ A1, n ∈ N,

which leads to

lim
n→∞

(
f (nx · y)

n
− f (nx) · y

n

)
= x · f (y), x, y ∈ A1. (27)

Similarly, putting y = ny in (5) and dividing the result by n we get

‖ f (x · ny)
n

− x · f (ny)
n

− f (x) · y‖ � ε
n
, x, y ∈ A1, n ∈ N,

which means that

lim
n→∞

(
f (x · ny)

n
− x · f (ny)

n

)
= f (x) · y, x, y ∈ A1. (28)

Let x, y ∈ A1 and n ∈ N be fixed. Then

0 � ‖f (x · y) − x · f (y) − f (x) · y‖
� ‖f (x · y) − f (ne · x · y)

n
+

f (ne)
n

· x · y − x · f (y) +
f (nx · y)

n

− f (nx)
n

· y − f (x) · y +
f (nx · y)

n
− x · f (ny)

n
‖

+ ‖ f (ne · x · y)
n

− f (ne)
n

· x · y − f (nx · y)
n

+
f (nx)

n
· y − f (nx · y)

n
+ x · f (ny)

n
‖

= ‖f (x · y) − f (ne · x · y)
n

+
f (ne)

n
· x · y − x · f (y) +

f (nx · y)
n

− f (nx)
n

· y − f (x) · y +
f (nx · y)

n
− x · f (ny)

n
‖

+
1
n
‖f (nx) · y − f (ne) · x · y + x · f (ny) − f (nx · y)‖

= ‖f (x · y) − f (ne · x · y)
n

+
f (ne)

n
· x · y − x · f (y) +

f (nx · y)
n

− f (nx)
n

· y − f (x) · y +
f (nx · y)

n
− x · f (ny)

n
‖

+
1
n
‖(f (ne · x) − ne · f (x) − f (ne) · x) · y + nf (x) · y + x · f (ny) − f (nx · y)‖
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� ‖f (x · y) − f (ne · x · y)
n

+
f (ne)

n
· x · y − x · f (y) +

f (nx · y)
n

− f (nx)
n

· y − f (x) · y +
f (nx · y)

n
− x · f (ny)

n
‖

+
1
n
‖f (ne · x) − ne · f (x) − f (ne) · x‖ · ‖y‖

+
1
n
‖f (x) · ny + x · f (ny) − f (x · ny)‖

� ‖f (x · y) −
(

f (ne · x · y)
n

− f (ne) · x · y
n

)
− x · f (y) +

(
f (nx · y)

n
− f (nx) · y

n

)

− f (x) · y +
(

f (nx · y)
n

− x · f (ny)
n

)
‖ +

1
n
ε‖y‖ +

1
n
ε.

Applying (27) and (28) we observe that the right side of the last inequality tends
to 0 when n tends to infinity. So, the function f satisfies equation (2), which ends the
proof.

REMARK 1. If A is a Banach algebra, then condition (26) can be assumed.

REMARK 2. As in the previous part of our paper we can generalize our results
replacing constants δ and ε by functions fulfilling corresponding conditions.
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[8] P. ŠEMRL, The functional equation of multiplicative derivation is superstable on standard operator

algebras, Inegr. Equat. Oper. Th., 18, (1994), 118–122.
[9] S. M. ULAM, A Collection of Mathematical Problems, Interscience, New York, 1960.

(Received June 7, 2004) Institute of Mathematics
Silesian University

Bankowa 14
PL 40–007 Katowice

Poland
e-mail: robadora@ux2.math.us.edu.pl

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


