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INEQUALITIES FOR MARKS IN DIGRAPHS

S. PIRZADA AND T. A. NAIKOO

(communicated by R. A. Brualdi)

Abstract. A 2 -digraph D is an orientation of a multi-graph that is without loops and contains
at most two edges between any pair of distinct vertices. So, 1-digraph is an oriented graph,
and complete 1-digraph is a tournament. Define pvi (or simply pi) = 2n − 2 + d+

vi − d−vi , the

mark (2-score) of a vertex vi in a 2 -digraph D , where d+
vi and d−vi denote the outdegree and

indegree, respectively, of vi and n is the number of vertices in D . In this paper, we obtain some
stronger inequalities for marks in 2 -digraphs.

1. Introduction

A tournament is an orientation of a complete simple graph. The score svi (or
simply Si) of a vertex vi in a tournament is the outdegree of vi . The score sequence
of a tournament is formed by listing the vertex scores in non-decreasing order. The
following result of Landau [3] gives a necessary and sufficient conditions for a sequence
of non-negative integers to be the score sequence of some tournament.

THEOREM 1.1. A sequence [si]n1 of non-negative integers in non-decreasing order
is the score sequence of some tournament if and only if

k∑
i=1

si �
(

k
2

)
for 1 � k � n

with equality when k = n .

With the marking system, the mark pvi of a vertex vi in a tournament is given by
p vi = 2svi + n − 1 and Landau’s conditions become

k∑
i=1

pi � k(n + k − 2), for 1 � k � n,

with equality when k = n .
An oriented graph is a digraphwith no symmetric pairs of directed arcs and without

loops. Avery [1] defined avi (or simply ai) = n−1+d+
vi
−d−

vi
, the score of a vertex vi in

an oriented graph, where d+
vi

and d−
vi

denote the outdegree and indegree, respectively,
of vi and n is the number of vertices. The score sequence of an oriented graph is

Mathematics subject classification (2000): 05C.
Key words and phrases: Oriented graph, tournament, semicomplete diagraph, 2-diagraph, score

sequence, mark sequence, triple, transitive and intransitive.

c© � � , Zagreb
Paper MIA-09-19

189



190 S. PIRZADA AND T. A. NAIKOO

formed by listing the vertex scores in non-decreasing order. The following result is due
to Avery [1].

THEOREM 1.2. A sequence [ai]n1 of non-negative integers in non-decreasing order
is the score sequence of some oriented graph if and only if

k∑
i=1

ai � k(k − 1) for 1 � k � n

with equality when k = n .
Once again, with the marking system, the mark pvi of a vertex vi in an oriented

graph is given by pvi = avi + n − 1 and Avery’s conditions become
k∑

i=1

pi � k(n + k − 2), for 1 � k � n,

with equality when k = n.
A digraph D is semicomplete if for any pair of vertices u �= v in D , there is

an arc from u to v or an arc from v to u (or both). The following necessary and
sufficient conditions for a non-decreasing sequence of integers to be the score sequence
for a semicomplete digraph is given by Reid and Zhang [6].

THEOREM 1.3. A sequence [si]n1 of integers in non-decreasing order is the score
sequence of some semicomplete digraph if and only if

k∑
i=1

si �
(

k
2

)
and sk � n − 1, for all k, 1 � k � n.

A 2 -digraph D is an orientation of a multi-graph that is without loops and contains
at most two edges between any pair of distinct vertices. Let D be a 2 -digraph with
vertex set V = {v1, v2, . . ., vn} and let d+

vi
and d−

vi
denote the outdegree and indegree,

respectively, of a vertex vi . Define pvi = 2n− 2 + d+
vi
− d−

vI
, the mark (2-score) of vi ,

so that 0 � pvi � 4n − 4 . The sequence P = [pi]n1 , where pi = pvi , in non-decreasing
order is the mark sequence of D . A 2 -digraph can be interpreted as the result of a
competition in which the participants play each other at most twice, with an arc from u
to v if and only if u defeats v . A player receives two points for each win, and one point
for each tie (draw). With this marking system, player v obtains a total of pv points.
A sequence P of non-negative integers in non- decreasing order is said to be realizable
if there exists a 2 -digraph with mark sequence P . The following existence criteria for
realizability is due to Pirzada and Samee [5].

THEOREM 1.4. A sequence [pi]n1 of non-negative integers in non-decreasing order
is the mark sequence of some 2 -digraph if and only if

k∑
i=1

pi � 2k(k − 1), for 1 � k � n

with equality when k = n .
Some stronger inequalities for scores in tournaments are given by Brualdi and

Shen [2]. Moreover, inequalities for scores in oriented graphs are given by Pirzada and
Samee [4].
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2. Stronger inequalities

A regular 2 -digraph on n vertices is one whose all vertices have marks 2(n− 1) .
The converse D′ of a 2 -digraph D is obtained by reversing each arc of D .

If u and v are vertices in a 2 -digraph, then u(x − y)v denotes that x arcs are
directed from u to v and y arcs are directed from v to u . Clearly, 0 � x , y � 2 and
0 � x + y � 2 . A triple in a 2 -digraph is an induced 2 -digraph with three vertices and
is of the form u(x1 − x2)v(y1 − y2)w(z1 − z2)u , where for 1 � i � 2 , 0 � xi, yi, zi � 2

and o �
2∑

i=1
xi,

2∑
i=1

yi,
2∑

i=1
zi � 2.

In a 2 -digraph, a 1- triple is an induced 1-subdigraph with three vertices. A 1-
triple is said to be transitive if it is of the following form: u(1−0)v(1−0)w(0−1)u or
u(1−0)v(0−1)w(0−0)u or u(1−0)v(0−0)w(0−1)u or u(1−0)v(0−0)w(0−0)u
or u(0 − 0)v(0 − 0)w(0 − 0)u , otherwise it is intransitive. A 2 -digraph is said to be
transitive if every of its 1- triple is transitive.

The inequalities given below in Theorems 2.1, 2.2, 2.3, 2.4 are the generalizations
of the inequalities on scores in tournaments due to Brualdi and Shen [2]. We use some
of the techniques of Brualdi and Shen [2] in obtaining these inequalities.

The following result gives a lower bound for
∑
i∈I

pi.

THEOREM 2.1. A sequence P = [pi]n1 of non-negative integers in non-decreasing
order is a mark sequence of a 2 -digraph if and only if for every subset I ⊆ [n] =
{1, 2, . . . , n} , ∑

i∈I

pi � 2
∑
i∈I

(i − 1) + |I| (|I| − 1) , (2.1)

with equality when |I| = n .

Proof. Sufficiency. Let the sequence P = [pi]n1 of non-negative integers in non-
decreasing order satisfies the equation (2.1).

Now, for any I ⊆ [n], we have∑
i∈I

(i − 1) �
|I|∑
i=1

(i − 1) =
(|I|

2

)
.

Therefore, from equation (2.1), we have∑
i∈I

pi � 2
∑
i∈I

(i − 1) + |I| (|I| − 1)

� 2

(|I|
2

)
+ |I| (|I| − 1)

= 2 |I| (|I| − 1) .

Hence, by Theorem 1.4, P is a mark sequence.
Necessity. Assume that P = [pi]n1 is a mark sequence of some 2 -digraph. For any

subset I ⊆ [n] , define

f (I) =
∑
i∈I

pi − 2
∑
i∈I

(i − 1) − |I| (|I| − 1) .
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Claim I = {i : 1 � i � |I|} . If not, then there exists i /∈ I and j ∈ I such that
j = i + 1 . So, pi � pj .

For j ∈ I , we have

f (I) =
∑
t∈I

pt − 2
∑
t∈I

(t − 1) − |I| (|I| − 1)

=
∑

t∈I, j /∈I

pt + pj − 2

⎛
⎝ ∑

t∈I, j /∈I

(t − 1) + (j − 1)

⎞
⎠− |I| (|I| − 1) .

Therefore,

f (I) − f (I − {j}) = pj − 2(j − 1) − |I|(|I| − 1) + (|I| − 1)(|I| − 2)
= pj − 2(j − 1) − 2|I| + 2

= pj − 2(j + |I| − 2).

Since f (I) − f (I − {j}) < 0 , therefore pj − 2(j + |I| − 2) < 0 .
Again,

f (I ∪ {i}) =
∑
t∈I

pt + pi − 2

(∑
t∈I

(t − 1) + (i − 1)

)
− (|I| + 1) (|I|) .

So, f (I ∪ {i}) − f (I) = pi − 2(i − 1) − 2|I| . As f (I ∪ {i}) − f (I) � 0 , therefore
pi − 2(i − 1) − 2|I| � 0 .
Thus, pj < 2(j + |I| − 2) , and pi � 2(i − 1) + 2|I| = 2(i + |I| − 1) .
Therefore,

2(i + |I| − 1) � pi � pj < 2(j + |I| − 2).
Since j = i+1 , then 2(i+|I|−1) < 2(i+1+|I|−2) . That is, 2(i+|I|−1) < 2(i+|I|−1)
which is a contradiction.

Hence,

f (I) =
|I|∑
i=1

pi − 2
|I|∑
i=1

(i − 1) − |I| (|I| − 1)

=
|I|∑
i=1

pi − 2

(|I|
2

)
− |I| (|I| − 1)

� 2 |I| (|I| − 1) − |I| (|I| − 1) − |I| (|I| − 1) = 0.

( By Theorem 1.4 )
Thus,

∑
i∈I

pi−2,
∑
i∈I

(i−1)− |I| (|I| −1)�0 , that is,
∑
i∈I

pi�2
∑
i∈I

(i−1)+ |I| (|I| −1) .

This proves the necessity. �
We note that equality can occur often in equation (2.1). For example, in the

transitive 2 -digraph of order n with mark sequence [0, 4, 8, . . ., 4n − 4] and in the
regular 2 -digraph of order n with mark sequence [2(n − 1), 2(n − 1), . . ., 2(n − 1)] .
Further we observe that Theorem 2.1 is best possible, since for any real ε > 0, the
inequality ∑

i∈I

pi � (1 + ε)2
∑
i∈I

(i − 1) + (1 − ε) |I| (|I| − 1)
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fails for some I , and some 2 -digraphs. This can been seen, for example, in the
transitive 2 -digraph of order n with mark sequence [0, 4, 8, . . ., 4n − 4] and in the
regular 2 -digraph of order n with mark sequence [2(n − 1), 2(n − 1), . . ., 2(n − 1)] .

The next result gives a set of upper bounds for
∑
i∈I

pi and is equivalent to the set of
lower bounds for

∑
i∈I

pi in Theorem 2.1.

THEOREM 2.2. A sequence P = [pi]n1 of non-negative integers in non-decreasing
order is a mark sequence of a 2 -digraph if and only if for every subset I ⊆ [n] =
{1, 2, . . ., n} , ∑

i∈I

pi � 2
∑
i∈I

(i − 1) + |I| (2n − |I| − 1) ,

with equality when |I| = n .

Proof. We have [n] = {1, 2, . . ., n} . Let J = [n] − I so that I + J = [n] and
|J| + |I| = n . Therefore, by Theorem 2.1, P is a mark sequence if and only if∑

i∈[n]

pi = 2n(n − 1) and
∑
i∈J

pi � 2
∑
i∈J

(i − 1) + |J| (|J| − 1)

if and only if∑
i∈I

pi +
∑
i∈J

pi = 2n(n − 1) and
∑
i∈J

pi � 2
∑
i∈J

(i − 1) + |J| (|J| − 1)

if and only if∑
i∈I

pi = 2n(n − 1) −
∑
i∈J

pi

� 2n(n − 1) −
(

2
∑
i∈J

(i − 1) + |J| (|J| − 1)

)

= 2n(n − 1) −
(

n(n − 1) − 2
∑
i∈I

(i − 1) + (n − |I|) (n − |I| − 1)

)

(Because 2
∑
i∈I

(i − 1) + 2
∑
i∈J

(i − 1) = n(n − 1) and |I| + |J| = n)

= 2
∑
i∈I

(i − 1) + 2n(n − 1) − n(n − 1) − (n − |I|) (n − |I| − 1)

= 2
∑
i∈I

(i − 1) + n2 − n − n2 + n |I| + n + n |I| − |I|2 − |I|

= 2
∑
i∈I

(i − 1) + |I| (2n − |I| − 1) ,

which proves the result. �
Now, we have the following results.

THEOREM 2.3. If P = [pi]n1 is a mark sequence of a 2 -digraph, then for each i

2(i − 1) � pi � 2(n + i − 2).
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Proof. Let I = {i} in Theorem 2.1 and Theorem 2.2. Then,∑
i∈I

pi � 2
∑
i∈I

(i − 1) + |I| (|I| − 1)

implies that pi � 2(i − 1) , and
∑
i∈I

pi � 2
∑
i∈I

(i − 1) + |I| (2n − |I| − 1) implies that

pi � 2(i − 1) + 1(2n − 1 − 1) = 2(n + i − 2) .
Therefore, 2(i − 1) � pi � 2(n + i − 2) . �

Second proof. We first show that 2(i − 1) � pi . Suppose on contrary that
pi < 2(i − 1) . Then, for every k < i , we have

pk � pi < 2(i − 1).

That is, p1 < 2(i − 1), p2 < 2(i − 1), . . ., pi < 2(i − 1) .
Adding these inequalities, we have

i∑
k=1

pk < 2i(i − 1),

which is a contradiction to Theorem 1.4. Therefore, 2(i − 1) � pi .
The second inequality is dual to the first. In the converse 2 -digraph with mark

sequence P′ = [p′i]n1 , we have

p′n−i+1 � 2((n − i + 1) − 1) = 2(n − i).

( By the first inequality )
But pi = 4(n − 1) − p′n−i+1 . So, pi � 4(n − 1) − 2(n − i) = 2(n + i − 2).
Therefore, pi � 2(n + i − 2) . Hence, the result. �
For any integers r and s with r � s , let [r, s] denotes the set of all integers

between r and s .

THEOREM 2.4. Let P = [pi]n1 be a mark sequence of a 2 -digraph. If∑
i∈I

pi = 2
∑
i∈I

(i − 1) + |I| (|I| − 1) (2.2)

for some I ⊆ [n] , then one of the following holds.

(a) I = [1, |I|] and
|I|∑
i=1

pi = 2 |I| (|I| − 1) .

(b) I = [t, t + |I| − 1] for some t, 2 � t � n − |I| + 1 ,

t+|I|−1∑
i=1

pi = 2 (t + |I| − 1) (t + |I| − 2) and pi = 2(t + |I| − 2) for all i � t + |I| − 1.

(c) I = [1, r] ∪ [r + t, t + |I| − 1] for some r and t such that 1 � r � |I| − 1 and

2 � t � n − |I| + 1 ,
r∑

i=1
pi = 2r(r − 1),

t+|I|−1∑
i=1

pi = 2 (t + |I| − 1) (t + |I| − 2) and

pi = 2(r + t + |I| − 2) for all i, r + 1 � i � t + |I| − 1 .
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Proof. For any subset J ⊆ [n] , define

f (J) =
∑
i∈J

pi − 2
∑
i∈J

(i − 1) − |J| (|J| − 1) ,

so that f (I) =
∑
i∈I

pi − 2
∑
i∈I

(i − 1) − |I| (|I| − 1) for I ⊆ [n] .

Therefore, by equation (2.2), we have f (I) = 0 and f (J) � 0 for all J ⊆ [n] .
We prove that I is one of the three types as given in the Theorem.
Assume to the contrary that this is not true. Then, there exist indices i, j, k and l

with j = i + 1 and l = k + 1 such that {i, k} ∩ I = ϕ and {j, l} ⊆ I . Thus, pi � pj

and pk � pl .
Since f (I) = 0 and f (J) � 0 for all J ⊆ [n] , therefore f (I) − f (I − {j, l}) � 0

and f (I ∪ {i, k}) − f (I) � 0 .
Consider

f (I−{j, l})=
∑
i∈I

pi−pj−pl−2

(∑
i∈I

(i−1)−(j−1)−(l−1)

)
− (|I| −2) (|I|−3)

=
∑
i∈I

pi − 2
∑
i∈I

(i − 1) − pj − pl + 2j + 2l − 4 − (|I| − 2) (|I| − 3)

and

f (I ∪ {i, k}) =
∑
i∈I

pi+pi+pk−2

(∑
i∈I

(i−1)+(i−1)+(k−1)

)
− (|I|+2) (|I|+1)

=
∑
i∈I

pi − 2
∑
i∈I

(i − 1) + pi + pk − 2i − 2k + 4 − (|I| + 2) (|I| + 1) .

Therefore,

f (I) − f (I − {j, l}) = pj + pl − 2j − 2l + 4 − 4|I| + 6

= pj + pl − 2(j + l + 2|I| − 5)

and

f (I ∪ {i, k}) − f (I) = pi + pk − 2i − 2k + 4 − 4|I| − 2

= pi + pk − 2(i + k + 2|I| − 1).

So, pj + pl − 2(j + l + 2|I| − 5) � 0 and pi + pk − 2(i + k + 2|I| − 1) � 0 .
This gives, pj + pl � 2(j + l + 2|I| − 5) and pi + pk � 2(i + k + 2|I| − 1) .
Therefore, 2(i + k + 2|I| − 1) � pi + pk � pj + pl � 2(j + l + 2|I| − 5) .
That is, i + k + 2|I| − 1 � i + 1 + k + 1 + 2|I| − 5 , or −1 � −3 , a contradiction.
This shows that I satisfies one of the conditions (a) , (b) or (c) .

Case (a) I = [1, |I|] .
Then, f (I) =

|I|∑
i=1

pi − 2 |I| (|I| − 1) and so
|I|∑
i=1

pi = 2 |I| (|I| − 1) .

Claim. If there exist indices i and j with j = i + 1 such that i /∈ I and j ∈ I ,
then f (I ∪ {i}) = f (I − {j}) = 0 .

Since f (I−{j}) =
∑
i∈I

pi − pj−2

(∑
i∈I

(i − 1) − (j − 1)
)
−(|I| − 1) (|I| − 2) and

f (I ∪ {i}) =
∑
i∈I

pi + pi − 2

(∑
i∈I

(i − 1) + (i − 1)
)
− (|I| + 1) |I| .
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Therefore, f (I) − f (I − {j}) = pj − 2(j − 1) − 2|I| + 2 = pj − 2(j − 2 + |I|) and
f (I ∪ {i})− f (I) = pi − 2(i − 1) − 2|I| = pi − 2(i − 1 + |I|) .
But f (I) − f (I − {j}) � 0 and f (I ∪ {i}) − f (I) � 0 .
So, pj − 2(j − 2 + |I|) � 0 and pi − 2(i − 1 + |I|) � 0 .
This gives, pj � 2(j − 2 + |I|) and pi � 2(i − 1 + |I|) . Therefore,

2(i − 1 + |I|) � pi � pj � 2(j − 2 + |I|) = 2(i + 1 − 2 + |I|) = 2(i − 1 + |I|).
This implies that equalities hold throughout all the above inequalities. Thus,

f (I ∪ {i}) = f (I) = f (I − {j}) = 0.

Case (b) I = [t, t + |I| − 1] for some t, 2 � t � n − |I| + 1 .
By applying above claim recursively, we have f ({t + |I| − 1}) = 0 , that is,

pt+|I|−1 = 2(t + |I| − 2) .

Since
t+|I|−1∑

i=1
pi � 2 (t + |I| − 1) (t + |I| − 2) ( By Theorem 1.4 ) and p1 � p2 �

. . . � pt+|I|−1 , equalities hold throughout all the above inequalities.
Case (c) I = [1, r]∪ [r+ t, t+ |I|−1] for some r and t such that 1 � r � |I|−1

and 2 � t � n − |I| + 1 .
Again, by applying above claim recursively, we have

f ([1, r]) = f ([1, t + |I| − 1]) = f ([1, r] ∪ {t + |I| − 1}) = 0.

Therefore,
r∑

i=1
pi − 2r(r − 1) = f ([1, r]) = 0,

t+|I|−1∑
i=1

pi − 2 (t + |I| − 1) (t + |I| − 2) = f ([1, t + |I| − 1]) = 0,

and f ([1, r] ∪ {t + |I| − 1})− f ([1, r]) = pt+|I|−1 − 2(|I| + r + t − 2) .
But f ([1, r] ∪ {t + |I| − 1}) − f ([1, r]) = 0 . So, pt+|I|−1 = 2(|I| + r + t − 2) .

Since
t+|I|−1∑
i=r+1

pi =
t+|I|−1∑

i=1

pi −
r∑

i=1

pi = 2 (t + |I| − 1) (t + |I| − 2) − 2r(r − 1)

= 2 (|I| + r + t − 2) (|I| − r + t − 1)

and pr+1 � pr+2 � . . . � pt+|I|−1 , we have

pi = 2(r + t + |I| − 2) for all i, r + 1 � i � t + |I| − 1. �

THEOREM 2.5. If P = [pi]n1 is a mark sequence of a 2 -digraph, then

(a)
k∑

i=1
p2

i �
k∑

i=1
(4k − 4 − pi)2 , for 1 � k � n with equality when k = n .

(b) for 1 < g < ∞ , k∑
i=1

pg
i � k(2k − 2)g,

where 1 � k � n with equality when k = n and p1 = p2 = . . . = pk .
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Proof. (a) By Theorem 1.4, we have

2k(k − 1) �
k∑

i=1

pi, for 1 � k � n

with equality when k = n, or

k∑
i=1

p2
i + 2(4k − 4)2k(k − 1) �

k∑
i=1

p2
i + 2(4k − 4)

k∑
i=1

pi, for 1 � k � n

with equality when k = n , or

k∑
i=1

p2
i + k(4k − 4)2 − 2(4k − 4)

k∑
i=1

pi �
k∑

i=1

p2
i , for 1 � k � n

with equality when k = n , or

p2
1 + ...+ p2

k + (4k − 4)2 + ... + (4k − 4)2︸ ︷︷ ︸
k−times

−2(4k− 4)p1 − ...− 2(4k− 4)pk �
k∑

i=1

p2
i ,

for 1 � k � n with equality when k = n , or

(4k − 4 − p1)2 + ... + (4k − 4 − pk)2 �
k∑

i=1

p2
i ,

for 1 � k � n with equality when k = n , or
k∑

i=1
(4k − 4 − pi)2 �

k∑
i=1

p2
i , for 1 � k � n

with equality when k = n .
(b) Again, by Theorem 1.4, we have

2k(k − 1) �
k∑

i=1

pi, for 1 � k � n with equality when k = n

=
k∑

i=1

pi · 1, for 1 � k � n with equality when k = n

�
(

k∑
i=1

pg
i

) 1
g
(

k∑
i=1

1h

) 1
h

, for 1 � k � n with equality when k = n

and p1 = p2 = . . . = pk , where 1
g + 1

h = 1 (By Holder’s Inequality)

=

(
k∑

i=1

pg
i

) 1
g

k
1
h , for 1 � k � n with equality when k = n

and p1 = p2 = . . . = pk .
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That is, 2k1− 1
h (k − 1) �

(
k∑

i=1
pg

i

) 1
g

, for 1 � k � n with equality when k = n

and p1 = p2 = . . . = pk .

Hence,
k∑

i=1
pg

i � k(2k − 2)g, for 1 � k � n with equality when k = n and

p1 = p2 = . . . = pk

(
Since 1

g + 1
h = 1

)
. �

THEOREM 2.6. Let D be a 2 -digraph on r vertices with mark sequence [pi]r1 .
Then for each k � 1 , there exists a 2 -digraph on kr vertices with mark sequence
[pi + 2(k − 1)r]kr1 .

Proof. For each i, 1 � i � k , let Di be a copy of D with r vertices. Define a
2 -digraph D1 as

D1 = D1 ∪ D2 ∪ . . . ∪ Dk,

such that vertices and arcs of D1 are that of D1, D2, . . . , Dk . Then, D1 is a 2 -digraph
on kr vertices with mark sequence [pi + 2(k − 1)r]kr1 . �
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