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Abstract. In this paper, we investigate the symmetric function

r∏
n

(f ) =
r∏
n

(f (x)) =

⎛
⎝ ∏

1�i1<i2<...<ir�n

f (
1
r

r∑
j=1

xij )

⎞
⎠

1

(n
r )

,

where f (x) is a positive function on an interval I . Some analytic inequalities, including "Ky
Fan" type inequalities, are established by use of the theory of majorization. An open problem is
also solved partly.

1. Introduction

Throughout the paper we assume that Rn
+ = {x = (x1, x2, ..., xn) | xi > 0, i =

1, 2, ..., n}. The unweighted arithmetic and geometric means of x , denoted by An(x),
Gn(x) , respectively, are defined as follows

An(x) =
1
n

n∑
i=1

xi, Gn(x) =

(
n∏

i=1

xi

) 1
n

.

Assume that 0 � xi < 1, 1 � i � n and define 1 − x = (1 − x1, 1 − x2, ..., 1 − xn).
The symbols An(1− x) , Gn(1− x) also stand for the unweighted arithmetic, geometric
means of 1 − x , respectively.

All kinds of means about numbers and their inequalities have stimulated the inter-
ests of many researchers all the time ( See, for example, [2, 6, 9, 10] and the references
cited therein.). For instances, the r -th order symmetric function (mean)( [2, p. 65], [6,
p. 78], [10]) is defined as

En(x, r) = En(x1, x2, ..., xn; r) =
∑

1�i1<i2<...<ir�n

r∏
j=1

xij (1.1)

which is investigated by many authors and some good results are obtained. The Schur-
convexity is proved which is very useful in establishing analytic inequalities.

Mathematics subject classification (2000): 05E05, 26D20.
Key words and phrases: weakly logarithmic convex (concave) function, symmetric function, theory of

majorization, Ky Fan inequality.
Supported by the Key Project of Chinese Ministry of Education and Hunan Province Department of Education.

c© � � , Zagreb
Paper MIA-09-20

199



200 KAIZHONG GUAN AND JIANHUA SHEN

The complete symmetric function, which is a generalization of (1.1), is

cr = cr(x) =
∑

i1+i2+...+in=r

xi1
1 xi2

2 ...xin
n , (1.2)

where i1, i2, ..., in are non-negative integers, r ∈ N = {1, 2, ...}, c0(x) = 1. When
1 � r � n , the fact that cr(x) is Schur-convex in Rn

+ has generalized by Baston (see
[6, p. 82]). Kaizhong Guan [3] proved that the function cr(x) and cr(x)/cr−1(x) is
Schur-convex in Rn

+ for all r ∈ N . Some analytic inequalities, including "Ky Fan"
type inequality, are established by use of the theory of majorization. In [4], the author
defined the following symmetric function (mean)

r∏
n

(x) =

⎛
⎝ ∏

1�i1<i2<...<ir�n

1
r

r∑
j=1

xij

⎞
⎠

1
(nr )

, (1.3)

and established the following basic inequality chain:

Gn(x) =
1∏
n

(x) �
2∏
n

(x) � ... �
n−1∏

n

(x) �
n∏
n

(x) = An(x). (1.4)

On the other hand, various definitions of convex function have been given and
investigated extensively (see [1, 2, 6, 9, 10]). In particular, the weakly logarithmic
convex function was pointed out by G. Klambauer [1] and was investigated in [5].

DEFINITION 1. Let f (x) be a positive function defined on an interval I . The
function f (x) is a weakly logarithmic convex function if ∀x1, x2 ∈ I implies

f

(
x1 + x2

2

)
�
√

f (x1)f (x2). (1.5)

The function f (x) is said to be a weakly logarithmic concave function if (1.5) is
reversed.

For fixed n � 2, let

x = (x1, x2, ..., xn), y = (y1, y2, ..., yn)

be two n-tuples of real numbers. And let

x[1] � x[2] � ... � x[n], y[1] � y[2] � ... � y[n],

be their ordered components.

DEFINITION 2. ([6, p. 55; 14, p. 1]) The n− tuple x is said to be majorized by y
(in symbols x ≺ y ), if

m∑
i=1

x[i] �
m∑

i=1

y[i], m = 1, 2, ..., n − 1; (1.6)

and
n∑

i=1

x[i] =
n∑

i=1

y[i]. (1.7)
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The Schur-convex function was introduced by I. Schur in 1923 [6]. It has many
important applications in analytic inequalities. Hardy, Littlewood, and Pólya were
also interested in some inequalities that are related to Schur-convex functions [8]. Its
definition is following

DEFINITION 3. ([6, p. 54]) A real-valued function φ defined on a set Ω ⊂ Rn is
said to be Schur-convex function on Ω if

x ≺ y on Ω =⇒ φ(x) � φ(y).

If, in addition, φ(x) < φ(y) whenever x ≺ y but x is not a permutation of y , then
φ is said to be strictly Schur-convex on Ω . φ is Schur-concave function on Ω if and
only if −φ is Schur-convex function; φ is a strictly Schur-concave function on Ω if
and only if −φ is strictly Schur-convex function on Ω.

Recently, K. Z. Guan [7] defined the following symmetric function which general-
ized (1.3)

r∏
n

(f (x)) =

⎛
⎝ ∏

1�i1<i2<...<ir�n

f (
1
r

r∑
j=1

xij)

⎞
⎠

1
(nr )

, r = 1, 2, ..., n, (1.8)

where f (x) is a non-negative function on an interval I , x1, x2, ..., xn ∈ I, and (n
r ) =

n!
r!(n−r)! . We also established the basic inequality which is very interesting, that is,

THEOREM A. If f (x) is a weakly logarithmic convex function, then

r+1∏
n

(f ) �
r∏
n

(f ), r = 1, 2, ..., n − 1. (1.9)

The inequality (1.9) is reversed if f (x) is a weakly logarithmic concave function.

The main purpose of this paper is to consider the symmetric function
∏r

n(f (x)) ,
simply denote it as

∏r
n(f ) . In section 3, the Schur-convexity is discussed when

f (x) is a weakly logarithmic convex (concave) function, some analytic inequalities are
established by use of theory of majorization which is a useful method of establishing
inequalities, and an open problem is solved partly. Some well-known inequalities are
refined and generalized by use of Theorem A in the section 4.

2. Lemmas

In order to verify our main results, the following lemmas are necessary.

LEMMA 2.1. ([9, p. 259; 6, p. 57]) Assume that f (x) = f (x1, x2, ..., xn) is sym-
metric, and has continuous partial derivatives on In , where I is an open interval. Then
f : In → R is Schur-convex if and only if

(xi − xj)(
∂f
∂xi

− ∂f
∂xj

) � 0 (2.1)

on In . It is strictly Schur-convex if (2.1) is a strict inequality for xi �= xj , 1 � i, j � n .



202 KAIZHONG GUAN AND JIANHUA SHEN

Since f (x) is symmetric, Schur’s condition, i.e. (2.1), can be reduced as [6, p. 57]

(x1 − x2)(
∂f
∂x1

− ∂f
∂x2

) � 0, (2.2)

and f is strictly Schur-convex if (2.2) is a strict inequality for x1 �= x2. The Schur’s
condition that guarantees a symmetric function being Schur-concave is the same as (2.1)
or (2.2) except for the direction of the inequality. In Schur’s condition, the domain of
f (x) does not have to be a Cartesian product In. Lemma 2.1 remains true if we replace
In by a set A ⊆ Rn with the following properties ([6, p. 57]):

(i) A is convex and has a nonempty interior;
(ii) A is symmetric in the sense that x ∈ A implies Px ∈ A for any n × n

permutation matrix P .
For convenience, we quote the following lemma which can be found in the convex

literatures (See, for example [2], [9]and [10].).

LEMMA 2.2. If f (x) is a positive and twice continuously differentiable function
on interval I , then

(i) f (x) is a weakly logarithmic convex function on I if and only if (f ′(x))2 �
f (x)f ′′(x) or f ′(x)

f (x) is increasing on I ;

(ii) f (x) is a weakly logarithmic concave function on I if and only if (f ′(x))2 �
f (x)f ′′(x) or f ′(x)

f (x) is decreasing on I .

LEMMA 2.3. ([14, p. 5]) Assume that x = (x1, x2, ..., xn) ∈ Rn . Then

(x, x, ..., x) ≺ (x1, x2, ..., xn), (2.3)

where x = 1
n

∑n
i=1 xi.

3. Schur-convexty of
∏r

n(f (x))

In the section, we investigate the Schur-convexity of
∏r

n(f (x)) . Some analytic
inequalities are established by use of the theory of majorization. An open problem is
also solved partly.

THEOREM 3.1. If f (x) is a weakly logarithmic convex, and has twice continuous
derivatives function on an interval I , then

∏r
n(f ) is Schur-convex function on In ;

the fact that f (x) is a weakly logarithmic concave function with two order continuous
derivatives on I implies that

∏r
n(f ) is a Schur-concave function on In .

Proof. Weonly consider the case that f (x) is aweakly logarithmic convex function
on I . The case where f (x) is a weakly logarithmic concave function on I is similar
and is omitted.

Obviously,
∏r

n(f ) is symmetric and continuously differential on In . By Lemma
2.1, we only need to prove

(x1 − x2)
(

∂
∏r

n(f )
∂x1

− ∂
∏r

n(f )
∂x2

)
� 0. (3.1)

To this end, we consider the following three possible cases for r .
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Case 1. When r = 1 . By taking logarithm on
∏1

n(f ) , we have

ln
1∏
n

(f ) =
1
n

n∑
i=1

ln f (xi). (3.2)

Differentiating the both sides of Eq. (3.2) with respect to xi , we obtain

∂
∏1

n(f )
∂xi

=
1
n

1∏
n

(f )
f ′(xi)
f (xi)

, i = 1, 2, ..., n.

And so

(x1 − x2)

(
∂
∏1

n(f )
∂x1

− ∂
∏1

n(f )
∂x2

)
=

1
n

1∏
n

(f )(x1 − x2)
(

f ′(x1)
f (x1)

− f ′(x2)
f (x2)

)
.

Since f (x) is a weakly logarithmic convex function, from Lemma 2.2, it follows that
inequality (3.1).

Case 2.
When r = 2 . If n = 2 , we have

2∏
2

(f ) = f (
x1 + x2

2
).

And so (3.1) is obvious. If n � 3 , we can easily derive

ln
2∏
n

(f ) =
1

(n
2)

∑
1�i<j�n

ln f (
xi + xj

2
)

=
1

(n
2)

⎡
⎣ n∑

j=2

ln f (
x1 + xj

2
) +

∑
2�i<j�n

ln f (
xi + xj

2
)

⎤
⎦ .

Differentiating the above equation with respect to x1 , we have

∂
∏2

n(f )
∂x1

=
1

2 (n
2)

2∏
n

(f )
n∑

j=2

f ′( x1+xj
2 )

f ( x1+xj
2 )

=
1

2 (n
2)

2∏
n

(f )

⎡
⎣ f ′( x1+x2

2 )
f ( x1+x2

2 )
+

n∑
j=3

f ′( x1+xj
2 )

f ( x1+xj
2 )

⎤
⎦ .

Similarly, we can also obtain

∂
∏2

n(f )
∂x2

=
1

2 (n
2)

2∏
n

(f )

⎡
⎣ f ′( x1+x2

2 )
f ( x1+x2

2 )
+

n∑
j=3

f ′( x2+xj
2 )

f ( x2+xj
2 )

⎤
⎦ .

Set

u =
x1 + xj

2
, v =

x2 + xj

2
, and ϕ(x) =

f ′(x)
f (x)

.
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And so

(x1 − x2)

(
∂
∏2

n(f )
∂x1

− ∂
∏2

n(f )
∂x2

)
=

(x1 − x2)
2 (n

2)

2∏
n

(f )(ϕ(u) − ϕ(v))

=
1

(n
2)

2∏
n

(f )
n∑

j=3

(ϕ(u) − ϕ(v))(u − v).

Since f (x) is a weakly logarithmic convex function, from Lemma 2.2 and u, v ∈ I , we
get inequality (3.1).

Case 3.
When 3 � r � n . Taking logarithm on

∏r
n(f ) and calculating simply yields

ln
r∏
n

(f ) =
1

(n
r )

∑
1�i1<i2<...<ir�n

ln f (
xi1 + xi2 + ... + xir

r
)

=
1

(n
r )

⎡
⎣ ∑

2�i1<...<ir�n

ln f (
xi1 + xi2 + ... + xir

r
)

+
∑

2�i1<...<ir−1�n

ln f (
x1 + xi1 + xi2 + ... + xir−1

r
)

⎤
⎦ .

Differentiating the above equation with respect to x1 , we obtain

∂
∏r

n(f )
∂x1

=
1

r (n
r )

r∏
n

(f ) ·
⎡
⎣ ∑

2�i1<...<ir−1�n

f ′
(

x1+xi1 +xi2 +...+xir−1

r

)
f
(

x1+xi1 +xi2+...+xir−1

r

)
⎤
⎦

=
1

r (n
r )

r∏
n

(f ) ·
⎡
⎣ ∑

3�i1<...<ir−1�n

f ′
(

x1+xi1 +xi2 +...+xir−1

r

)
f
(

x1+xi1 +xi2+...+xir−1

r

)

+
∑

3�i1<...<ir−2�n

f ′
(

x1+x2+xi1 +xi2 +...+xir−2

r

)
f
(

x1+x2+xi1 +xi2 +...+xir−2

r

)
⎤
⎦ .

Similarly, we can also get

∂
∏r

n(f )
∂x2

=
1

r (n
r )

r∏
n

(f ) ·
⎡
⎣ ∑

3�i1<...<ir−1�n

f ′
(

x2+xi1 +xi2 +...+xir−1

r

)
f
(

x2+xi1 +xi2 +...+xir−1

r

)

+
∑

3�i1<...<ir−2�n

f ′
(

x1+x2+xi1 +xi2 +...+xir−2

r

)
f
(

x1+x2+xi1 +xi2 +...+xir−2

r

)
⎤
⎦ .

Let

u∗ =
x1 + xi1 + ... + xir−1

r
, v∗ =

x2 + xi1 + ... + xir−1

r
, and ϕ(x) =

f ′(x)
f (x)

.
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Thus, we obtain

(x1−x2)
(

∂
∏r

n(f )
∂x1

−∂
∏r

n(f )
∂x2

)
=

(x1−x2)
r(n

r )

r∏
n

(f ) ·
∑

3�i1<i2<...<ir−1�n

(ϕ(u∗) − ϕ(v∗))

=
1

(n
r )

r∏
n

(f ) ·
∑

3�i1<i2<...<ir−1�n

(ϕ(u∗)−ϕ(v∗))(u∗−v∗).

From Lemma 2.2 and u∗, v∗ ∈ I , it follows that

(ϕ(u∗) − ϕ(v∗))(u∗ − v∗) � 0.

And so

(x1 − x2)
(

∂
∏r

n(f )
∂x1

− ∂
∏r

n(f )
∂x2

)
� 0.

Combing the cases 1-3, we have completed the proof of Theorem 3.1.

REMARK 1. Let f (x) be a weakly logarithmic convex, and has twice continuous
derivatives function on an interval I . A. W. Marshall and I. Olkin [6, p. 73] proved that
the function

φ(x) =
n∏

i=1

f (xi), x ∈ In,

is Schur-convex on In. By Theorem 3.1 (let r = 1 ), we prove that the following
so-called geometric mean of f (xi) :

1∏
n

(f ) =

(
n∏

i=1

f (xi)

) 1
n

is also Schur-convex on In.
By Theorem 3.1, we can get the following

COROLLARY 3.2. Assume that f (x) is a weakly logarithmic convex function with
twice continuous derivatives in R , x = (x1, x2, ..., xn) , y = (y1, y2, ..., yn) , and x ≺ y .
Then

r∏
n

(f (x)) �
r∏
n

(f (y)), r = 1, 2, ..., n. (3.3)

The inequality (3.3) is reversed if f (x) is a weakly logarithmic concave function with
twice continuous derivatives in R .

The fact that the function ψ(x) =
∏

i1<i2<...<ik

∑k
j=1 xij is Schur-concave in Rn

+

was given by Marshall and Olkin in [6, p. 86]. Now we establish the following conclu-
sions.

THEOREM 3.3. Assume that xi ∈ (0, 1), i = 1, 2, ..., n , and that

E∗
k (x) = E∗

k (x1, x2, ..., xn) =
∏

1�i1<i2<...<ik�n

k∑
j=1

xij , k = 1, 2, ..., n.
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Then
(i) xi ∈ (0, 1

2 ] implies that
E∗

k (1−x)
E∗

k (x) is Schur-convex function in (0, 1
2 ]

n ;

(ii) xi ∈ [ 1
2 , 1) implies that

E∗
k (1−x)
E∗

k (x) is Schur-concave function in [ 1
2 , 1)n .

Proof. Let f (t) = 1−t
t , t ∈ (0, 1) , a simple calculation reveals that

(f ′(t))2 − f (t)f ′′(t) =
2t − 1

t4
.

(i) When t ∈ (0, 1
2 ] . By Lemma 2.2, we see that f (t) is a weak logarithmical

convex function in t ∈ (0, 1
2 ] . For a fixed number k , calculating directly and using

Theorem 3.1, we see that
∏k

n(f ) =
(

E∗
k (1−x)
E∗

k (x)

) 1

(n
k) is Schur-convex function in (0, 1

2 ]
n .

Thus, for xi, yi ∈ (0, 1
2 ] and x ≺ y , we have(

E∗
k (1 − x)
E∗

k (x)

) 1

(n
k) �

(
E∗

k (1 − y)
E∗

k (y)

) 1

(n
k) ,

or (
E∗

k (1 − x)
E∗

k (x)

)
�
(

E∗
k (1 − y)
E∗

k (y)

)
.

By Definition 3, the function
E∗

k (1−x)
E∗

k (x) is Schur-convex function in (0, 1
2 ]

n.

(ii) When t ∈ [ 1
2 , 1) . By Lemma 2.2, f (t) is a weak logarithmical concave

function in t ∈ [ 1
2 , 1) . Similar to the proof of (i) , we may prove that the function

E∗
k (1−x)
E∗

k (x) is Schur-concave function in [ 1
2 , 1)n. Thus, the proof is complete.

REMARK 2. Theorem 3.3 partly answer the problem pointed out by Prof. Shi and
published in the following website: "http://zgbdsyjxz.nease.net".

COROLLARY 3.4. Suppose that 0 < xi � 1
2 , i = 1, 2, ..., n, and

∑n
i=1 xi � 1. Then

E∗
k (1 − x)
E∗

k (x)
�
(

n − 1
n

)k

. (3.4)

Proof. Using Theorem 3.3 and Lemma 2.3, we have

E∗
k (1 − x)
E∗

k (x)
� E∗

k (1 − x)
E∗

k (x)
. (3.5)

Or,
E∗

k (1 − x)
E∗

k (x)
�
(

1 − x
x

)k

. (3.6)

Since f (x) = ( 1−x
x )k is decreasing in (0, 1

n ] , it follows from (3.6) that

E∗
k (1 − x)
E∗

k (x)
�
(

n − 1
n

)k

.

REMARK 3. Inequality (3.4) give the blower bound of
E∗

k (1−x)
E∗

k (x) .
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4. Some applications

In this section, we establish several analytic inequalities by use of Theorem A. Our
proofs are briefer than those of the literatures. Which illustrates the advantage of our
results.

THEOREM 4.1. ([4]) Assume that xi > 0, i = 1, 2, ..., n . Then

Gn(x) =
1∏
n

(x) �
2∏
n

(x) � ... �
n∏
n

(x) = An(x). (4.1)

Proof. Let f (x) = x, x ∈ (0, +∞) , we can easily verify that f (x) = x is a weak
logarithmical concave function in (0, +∞). By Theorem A, we have (4.1).

REMARK 4. The inequality (4.1) refines A-G inequality, and my proof is simpler
than that of [4].

For 0 < xi � 1
2 , i = 1, 2, ..., n, the following inequality

Gn(x)
Gn(1 − x)

� An(x)
An(1 − x)

, (4.2)

commonly referred to as the Ky Fan inequality ([12, p.5]) has stimulated an interest
of many researchers. New proofs, improvements and generalizations of the inequality
(4.2). See, for example, [2, 3, 11, 15] and the references cited therein. Now we shall
investigate it further.

THEOREM 4.2. Assume that 0 < xi � 1
2 , i = 1, 2, ..., n , and let

Sr(x) = Sr(x1, x2, ..., xn) =

⎛
⎝ ∏

1�i1<i2<...<ir�n

∑n
j=1 xij∑n

j=1(1 − xij)

⎞
⎠

1
(nr )

, r = 1, 2, ..., n.

Then
Gn(x)

Gn(1 − x)
= S1(x) � S2(x) � ... � Sn(x) =

An(x)
An(1 − x)

. (4.3)

Proof. Let f (x) = x
1−x , x ∈ (0, 1

2 ] . A simple calculation reveals that

(f ′(x))2 − f (x)f ′′(x) =
1 − 2x

(1 − x)4
� 0, x ∈ (0,

1
2
].

It is clear that
∏r

n(f ) = Sr(x) . Using Lemma 2.2 and Theorem A, we immediately
obtain (4.3).

REMARK 5. The inequality (4.3) refines Ky Fan inequality.

THEOREM 4.3. ([11]) Assume that 0 < xi < 1, i = 1, 2, ..., n, then∑n
i=1 xi∑n

i=1(1 − xi)
�

n∏
i=1

(
xi

1 − xi
)βi , (4.4)

where Sn =
∑n

i=1 xi and βi = xi
Sn

.
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Proof. Let f (x) = ( x
1−x)

x, x ∈ (0, 1) , by taking logarithm on the function f (x)
and differentiating it with respect to x , we have

f ′(x) = f (x)
(

1
1 − x

+ ln
x

1 − x

)
, (4.5)

and

f ′′(x) = f (x)

[(
1

1 − x
+ ln

x
1 − x

)2

+
1
x

+
1

1 − x
+
(

1
1 − x

)2
]

. (4.6)

By Lemma 2.2, and from (4.5) and (4.6), we can see that f (x) is a weakly logarithmic
convex function. From Theorem A, we obtain

(
An(x)

1 − An(x)

)An(x)

=
n∏
n

(f ) �
n−1∏

n

(f ) � ... �
2∏
n

(f ) �
1∏
n

(f ) =

(
n∏

i=1

(
xi

1 − xi
)xi

) 1
n

.

In particular, we have

(
An(x)

1 − An(x)

)An(x)

�
(

n∏
i=1

(
xi

1 − xi

)xi
) 1

n

. (4.7)

Simplifying (4.7), we can get the inequality (4.4).

REMARK 6. Our proof is briefer than that of [11] and our result also refines
inequality (4.4).

THEOREM 4.4. Assume that f (x) is an increasing and weakly logarithmic convex
function with two order derivatives in (0, +∞), and that g(x) = f ( x

1−x ), x ∈ (0, 1) .
Then

r+1∏
n

(g) �
r∏
n

(g), r = 1, 2, ..., n − 1. (4.8)

(4.8) reverses if f (x) is a decreasing and weakly logarithmic concave function with
twice derivatives.

Proof. We consider the case where f (x) is an increasing and weakly logarithmic
convex function. Calculating and using the assumption of the theorem yields

(g′(x))2 − g(x)g′′(x) =
1

(1 − x)4
(f ′(u))2 − f (u)f ′′(u)) − 1

(1 − x)3
f (u)f ′(u) � 0,

where u = x
1−x . By Lemma 2.2, g(x) is a weakly logarithmic convex function. From

Theorem A, we obtain (4.8).
The case that f (x) is a decreasing and weakly logarithmic concave function with

two order derivatives is similar to the above, and so be omitted.
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REMARK 7. Inequality (4.8) can be rewritten as the following inequality chain:

f

( ∑n
i=1 xi∑n

i=1(1 − xi)

)
=

1∏
n

(g) �
2∏
n

(g) � ... �
n∏
n

(g) =

(
n∏

i=1

f (
xi

1 − xi
)

) 1
n

. (4.9)

Thus we establish a class of more general "Ky Fan" type inequalities.
The well-known Jensen’s inequality for positive convex function is

f (
1
n

n∑
k=1

xk) � 1
n

n∑
k=1

f (xk).

In [13], J. Pečarić and D. Svrtan give new refinement of it, that is,

THEOREM 4.5. Assume that f : I → R is convex function, xk ∈ I, k = 1, 2, ..., n.

Let f k,n = 1
(nk )

∑
1�i1<...<ik�n f ( 1

k

∑k
j=1 xij). Then

f (
1
n

n∑
k=1

xk) = f n,n � ... � f k+1,n � f k,n � ... � f 1,n =
1
n

n∑
k=1

f (xk). (4.10)

Proof. Let φ(x) = exp(f (x)) . By Definition 1, it is easy to verify that φ(x) is a
weak logarithmical convex function in I . Using Theorem A, we have

n∏
n

(φ) �
n−1∏

n

(φ) � ... �
2∏
n

(φ) �
1∏
n

(φ). (4.11)

By taking logarithm on (4.11), we establish (4.10).

REMARK 8. The proof of the theorem is briefer than that of the paper [13].

THEOREM 4.6. Assume that 0 < xi < 1, i = 1, 2, ..., n, and let

ψr(x) = ψr(x1, x2, ..., xn) =

⎡
⎣ ∏

1�i1<i2<...<ir�n

∑r
j=1(1 + xij)∑r
j=1(1 − xij)

⎤
⎦

1
(nr )

.

Then
ψr+1(x) � ψr(x), r = 1, 2, ..., n − 1. (4.12)

Proof. Let f (x) = 1+x
1−x , x ∈ (0, 1). Calculating simply and using Lemma 2.2, we

see that f (x) is a weakly logarithmic convex function in (0, 1) . By Theorem A, we
prove the inequality (4.12).

REMARK 9. The inequality (4.12) can be written as the following inequality chain:

(
n∏

i=1

1 + xi

1 − xi

) 1
n

= ψ1(x) � ψ2(x) � ... � ψn(x) =
n +

∑n
i=1 xi

n −∑n
i=1 xi

. (4.13)
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Thus, when
∑n

i=1 xi = 1 , (4.13) refined Klamkin inequality [6, p. 78]:

n∏
i=1

1 + xi

1 − xi
�
(

n + 1
n − 1

)n

.
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