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Abstract. In this paper, we have established upper bounds for the spectral norms of Cauchy-
Toeplitz matrix and Cauchy-Hankel matrix, with g = 1/2 and h = 1 . Moreover, we have
obtained an upper bound for the spectral norm of Hadamard product of Cauchy-Toeplitz and
Cauchy-Hankel matrices. In addition, we have established an upper bound for the norm of
Hadamard product of Cauchy-Toeplitz and Cauchy-Hankel matrices.

1. Introduction

It is well known that arbitrary Cauchy-Toeplitz and Cauchy-Hankel matrices of
order n are of the form

Tn =
(

1
g + (i − j)h

)n

i,j=1

(1.1)

and

Hn =
(

1
g − (i + j)h

)n

i,j=1

(1.2)

where g and h �= 0 are arbitrary numbers and g/h is not integer.
In [9] , E. E. Tyrtyshnikov has obtained lower bounds for the spectral norm of

Cauchy-Toeplitz matrix for h = 1 and g = 1/2.
C. Moler had experimentaly discovered that most of the singular values of Cauchy-

Toeplitz matrices are clustered near π. Recently S. Parter explained this phenomenon
[2]. In [9] , E. E. Tyrtyshnikov has shown that the numbers of the singular values of
Tn matrices satisfying σ1n � ... � σnn and σjn > π − ε for ε = 10−4 are 6, 7, 8
for n = 40, 60, 100 respectively. In [8] , D. Bozkurt has established upper and lower
bounds for Euclidean norm of the matrix Tn in (1.1) in general case. In [5] and [6] ,
he has obtained upper and lower bounds for the �p norms of Cauchy-Toeplitz matrix.

In the section 2, we have established an upper bound for the spectral norm of
Cauchy-Toeplitz matrix and Cauchy-Hankel matrix in (1.1) and (1.2) respectively. In
the section 3, we have found an upper bound for the spectral norm of Hadamard product
of the Cauchy-Toeplitz and Cauchy-Hankel matrices (1.1) and (1.2). Also, we have
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obtained an upper bound for the �p norm of Hadamard product of the Cauchy-Toeplitz
and Cauchy-Hankel matrices in (1.1) and (1.2).

Let A be an m×n matrix. Then, the Euclidean norm, the �p norm and the spectral
norm of the matrix A are defined by

‖A‖2 =

⎛
⎝ m∑

i=1

n∑
j=1

|aij|2
⎞
⎠

1/2

,

‖A‖p =

⎛
⎝ m∑

i=1

n∑
j=1

|aij|p
⎞
⎠

1/p

, 1 � p < ∞

and
|‖A‖|2 =

√
max

i
|λi(A∗A)|

respectively, where A∗ is the conjugate transpose of the matrix A.
A function Ψ is called polygamma function if

Ψ(x) =
d
dx

{log [Γ(x)]}

where

Γ(x) =
∫ ∞

0
e−ttx−1dt.

The function Ψ(m, x) has the property:

lim
n→∞Ψ(a, n + b) = 0 (1.3)

where a > 0 , b are any numbers and n is a positive integer.
Denote the space of m -by-n complex matrices by Mm,n and set Mn = Mn,n. Then

the Hadamard (entry-wise) product of A = (aij) and B = (bij) ∈ Mm,n is defined by

A ◦ B = (aijbij) ∈ Mm,n.

For any A ∈ Mm,n , we denote by c1(A) � c2(A) � . . . � cn(A) � 0 Euclidean lengths
of the n columns of A , listed in descending order, and by r1(A) � r2(A) � . . . �
rn(A) � 0 Euclidean lengths of the n rows of A , similarly ordered. The singular values
of A ∈ Mm,n , which we shall always exhibit in descending order,

σ1(A) � σ2(A) � . . . � σn(A) � 0

are the non-negative square roots of the eigenvalues of AA∗ as well as the non-negative
square roots of the n largest eigenvalues of AA∗ . Let Σ(A) = (σij) ∈ Mm,n where
σii = σi(A) for i = 1, 2, ..., n and all other σij ≡ 0 for i �= j . We know that A has
a singular value decomposition A = VΣ(A)W∗ , in which V ∈ Mm and W ∈ Mn are
unitary matrices [1] .

Throughout this paper we will take h = 1 and g = 1/2 , while [.] denotes the
greatest integer function and m = n .
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2. Spectral norm of Cauchy-Toeplitz and Cauchy-Hankel matrices

THEOREM 1. [4]. Let A , B , C ∈ Mm,n . If A = B ◦ C then

‖|A|‖2 � r1(B)c1(C) (2.1)

where r1(B) = maxi

√∑
j |bij|2 and c1(C) = maxj

√∑
i |cij|2 respectively.

If we substitute g = 1/2 and h = 1 into (1.1), then we have

Tn =
(

2
1 + 2(i − j)

)n

i,j=1

and Hn =
(

2
1 − 2(i + j)

)n

i,j=1

. (2.2)

THEOREM 2. Let the matrix Tn be as in (2.2). Then

1√
n
‖|Tn|‖2 � π

is valid where |‖.‖|2 is the spectral norm.

Proof. Let Tn = A ◦ B , then from (2.1)

|‖Tn‖|2 � r1(A)c1(B)

where A = (1/(1 + 2(i − j))) and B = (2) respectively.

r1(A) = max
i

√√√√ n∑
j=1

|aij|2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√√√√(n−1)/2∑
k=1

1
(2k − 1)2

+
[n/2]+1∑

k=1

1
(2k − 1)2

, if n odd

√√√√2
n/2∑
k=1

1
(2k − 1)2

, if n even

(2.3)

and

c1(B) = max
j

√√√√ n∑
i=1

|bij|2 = 2
√

n

If we evaluate sums in (2.3), then

r1(A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
−1

4
Ψ(1,

n
2
) +

π2

8
− 1

4
Ψ

(
1,

[n
2

]
+ 1

)
+

π2

8
, if n odd

√
−1

2
Ψ

(
1,

n
2

+
1
2

)
+

π2

4
, if n even

(2.4)

and
c1(B) = 2

√
n. (2.5)
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Thus, from (2.4) and (2.5)

1√
n
‖|Tn|‖2 �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
−Ψ(1,

n
2
) −Ψ

(
1,

[n
2

]
+ 1

)
+ π2, if n odd

√
−2Ψ

(
1,

n
2

+
1
2

)
+ π2, if n even.

(2.6)

Taking the limit of the right hand side of (2.7) as n → ∞ and from (1.3), we get

1√
n
‖|Tn|‖2 � π.

This completes the proof. �

THEOREM 3. Let the matrix Hn be as in (2.2). Then

1√
n
‖|Hn|‖2 �

√
π2

2
− 4

is valid, where |‖.‖|2 is the spectral norm.

Proof. Let Hn = A ◦ B , then from (2.1)

‖|Hn|‖2 � r1(A)c1(B)

where A = (2) and B = (1/(1 − 2(i + j))) respectively.

r1(A) = max
i

√√√√ n∑
j=1

|aij|2 = 2
√

n (2.7)

c1(B) = max
j

√√√√ n∑
i=1

|bij|2 =

√√√√ n∑
k=1

1
(2k + 1)2

. (2.8)

The values of the sum in (2.8) is to be

c1(B) =

√
Ψ

(
1, n +

1
2

)
+

π2

8
− 1.

If we replace values in (2.8), then

1√
n
‖|Hn|‖2 �

√
−Ψ

(
1, n +

3
2

)
− 4 +

π2

2
. (2.9)

Taking again the limit of the right hand side of inequality (2.9) as n → ∞ , we have

1√
n
‖|Hn|‖2 �

√
π2

2
− 4.

Thus, the proof is completed. �
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3. Spectral norms of the Hadamard product of Cauchy-Toeplitz and
Cauchy-Hankel matrices

THEOREM 4. [3]. Let A, B∈ Mn. Then

k∑
i=1

σi(A ◦ B) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k∑
i=1

ri(A)ci(B), k = 1, 2, ..., n

k∑
i=1

ci(A)ri(B), k = 1, 2, ..., n.

(3.1)

Proof. Because Hadamard product is commutative, two inequalities in (3.1) are
equivalent; we verify the upper one. We first note the case k = 1. Let ‖.‖2 denotes
Euclidean norm on Cn , let A = [aij] , B = [bij] and let x = [xi] ∈ Cn be a given unit
vector. Then

‖(A ◦ B)x‖2
2 =

n∑
i=1

∣∣∣∣∣∣
n∑

j=1

aijbijxj

∣∣∣∣∣∣
2

�
n∑

i=1

[ n∑
l=1

|ail|2
][ n∑

j=1

|bijxj|2
]

� r1(A)2
n∑

i=1

n∑
j=1

|bij|2 |xj|2 = r1(A)2
n∑

j=1

|xj|2
n∑

j=1

|bij|2

� r1(A)2c1(B)2
n∑

j=1

|xj|2 = r1(A)2c1(B)2.

Since σ1(A◦B) = max {‖(A ◦ B)x‖2 : ‖x‖2 = 1} , the desired bound has obtained. �

THEOREM 5. Let T n and H n be as in (2.2). Then

‖|Tn ◦ Hn|‖2 �
√

π4

2
− 4π2.

Proof. From [3],
k∑

i=1

σi(Tn ◦ Hn) �
k∑

i=1

ri(Tn)ci(Hn), i = 1, 2, ..., n

where ri(Tn) = maxi

√∑n
j=1 |tij|2 and ci(Hn) = maxj

√∑n
i=1 |hij|2, k = min{m, n} .

This inequality will be proved for special value of k=1 and thus

σ1(Tn ◦ Hn) � r1(Tn)c1(Hn). (3.2)

Hence, we have

r1(Tn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√√√√(n−1)/2∑
k=1

4
(2k − 1)2

+
[n/2]+1∑

k=1

4
(2k − 1)2

, if n odd

√√√√ n/2∑
k=1

8
(2k − 1)2

, if n even

(3.3)
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and

c1(Hn) =

√√√√ n∑
k=1

4
(2k + 1)2

. (3.4)

If we evaluate sums in (3.3) and (3.4), then

(n−1)/2∑
k=1

4
(2k − 1)2

= −Ψ
(
1,

n
2

)
+

π2

2
,

[n/2]+1∑
k=1

4
(2k − 1)2

= −Ψ
(
1,

[n
2

]
+ 1

)
+

π2

2
,

n/2∑
k=1

8
(2k − 1)2

= −2Ψ
(

1,
n
2

+
1
2

)
+ π2,

and
n∑

k=1

4
(2k + 1)2

= −Ψ
(

1, n +
3
2

)
− 4 +

π2

2
.

Thus

r1(Tn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
−Ψ

(
1,

n
2

)
+

π2

2
−Ψ

(
1,

[n
2

]
+ 1

)
+

π2

2
, if n odd

√
−2Ψ

(
1,

n
2

+
1
2

)
+ π2, if n even

(3.5)

and

c1(Hn) =

√
−Ψ

(
1, n +

3
2

)
− 4 +

π2

2
. (3.6)

Taking the limits of the right hand sides of equalities in (3.5) and (3.6) as n → ∞,
we have

r1(Tn) = π, c1(Hn) =

√
π2

2
− 4. (3.7)

If we replace values in (3.7) at (3.2), then

σ1(Tn ◦ Hn) �
√

π4

2
− 4.

From [4],

‖|Tn ◦ Hn|‖2 �
√

π4

2
− 4π2.

This completes the proof. �
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COROLLARY 6. Let T n and H n be respectively as in (2.2), then

n−1/p ‖Tn ◦ Hn‖p � 21/p {[(2p − 1) ζ(p)] [1 + (2p − 1) ζ(p − 1)

− (
2p−1 − 1/2

)
ζ(p) − ln 2

]}1/p

where 2 < p < ∞ and ζ is Riemann-zeta function.

Proof. From [5] and [6] we have

n−1/p ‖Tn‖p � 21/p [(2p − 1) ζ(p)]1/p (3.8)

and

‖Hn‖p �
[
1 + (2p − 1) ζ(p − 1) − (

2p−1 − 1/2
)
ζ(p) + ln 2

]1/p
. (3.9)

Since
‖Tn ◦ Hn‖p � ‖Tn‖p ‖Hn‖p , (3.10)

by multipling both sides of inequality in (3.10) by n−1/p we get:

n−1/p ‖Tn ◦ Hn‖p � n−1/p ‖Tn‖p ‖Hn‖p .

Now, it is easy to derive from (3.8) and (3.9) that

n−1/p ‖Tn ◦ Hn‖p � 21/p {[(2p − 1) ζ(p)] [1 + (2p − 1) ζ(p − 1)

− (
2p−1 − 1/2

)
ζ(p) − ln 2

]}1/p
. �
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