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AN ALTERNATIVE NOTE ON THE SCHUR–CONVEXITY

OF THE EXTENDED MEAN VALUES
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(communicated by P. S. Bullen)

Abstract. The Schur-convex and Schur-concave properties with (x, y) in (0,∞) × (0,∞) for
fixed (r, s) of the extended mean values E(r, s; x, y) are researched again, some errors in [F. Qi,
J. Sándor, S. S. Dragomir, and A. Sofo, Notes on the Schur-convexity of the extended mean values,
Taiwanese J. Math. 9, (3) (2005), 411–420. RGMIA Res. Rep. Coll. 5 (2002), no. 1, Art. 3,
19–27. Available online at URL: http://rgmia.vu.edu.au/v5n1.html.] are corrected.

1. Introduction

Let xxx = (x0, . . . , xn) and yyy = (y0, . . . , yn) denote two real (n + 1) -tuples. xxx is
said to be not greater than yyy (in symbols, xxx � yyy ) if xi � yi for 0 � i � n + 1 . xxx is
said to majorize yyy (in symbols, xxx � yyy ) if

k∑
i=0

x[i] �
k∑

i=0

y[i] (1)

for k = 0, 1, . . . , n − 1 and
n∑

i=0

xi =
n∑

i=0

yi, (2)

where
x[0] � x[1] � · · · � x[n] (3)

and
y[0] � y[1] � · · · � y[n] (4)

are the decreasingly ordered components of xxx and yyy . See [10, p. 75].
A function ψ : R

n+1 → R is said to be increasing if xxx � yyy implies ψ(xxx) � ψ(yyy) .
It has been proved in [21, p. 38, Proposition 4.3] that the function ψ(xxx) is increasing
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if and only if ∇ψ(xxx) � 0 for xxx ∈ A , where A ⊂ R
n+1 is an open set, ψ : A → R is

differentiable, and

∇ψ(xxx) =
(

∂ψ(xxx)
∂x0

, . . . ,
∂ψ(xxx)
∂xn

)
∈ R

n+1. (5)

A function g : R
n+1 → R is said to be Schur-convex if xxx � yyy implies g(xxx) �

g(yyy) . A function f is Schur-concave if and only if −f is Schur-convex. See [10,
p. 332].

The extended mean values E(r, s; x, y) were defined in [20] by

E(r, s; x, y) =
[
r
s
· ys − xs

yr − xr

]1/(s−r)

, rs(r − s)(x − y) �= 0; (6)

E(r, 0; x, y) =
[
1
r
· yr − xr

ln y − ln x

]1/r

, r(x − y) �= 0; (7)

E(r, r; x, y) =
1

e1/r

[
xxr

yyr

]1/(xr−yr)

, r(x − y) �= 0; (8)

E(0, 0; x, y) =
√

xy , x �= y; (9)

E(r, s; x, x) = x, x = y;

where x, y > 0 and (r, s) ∈ R
2 .

Leach and Sholander [6] showed that E(r, s; x, y) are increasing with both r and
s , or with both x and y . Later, the monotonicity of the extended mean values E was
also researched in [2, 3, 5, 16, 18, 19] by using different ideas and simpler approaches.

Leach and Sholander [7] and Páles [9] respectively solved the problem of compar-
ison of E . They found necessary and sufficient conditions for the parameters r, s and
u, v in order that E(r, s; x, y) � E(u, v; x, y) be satisfied for all positive x and y .

The logarithmic convexity of the extended mean values E(r, s; x, y) with two
parameters r and s was obtained in [12, 13].

The Schur-convexities of the extended mean values E(r, s; x, y) with (r, s) and
(x, y) were presented in [11, 14, 17] as follows.

THEOREM A ([11]) For fixed (x, y) with x > 0 , y > 0 and x �= y , the extended
mean values E(r, s; x, y) are Schur-concave on [0, +∞)× [0, +∞) and Schur-convex
on (−∞, 0] × (−∞, 0] with (r, s) .

THEOREM B. ([17]) For given (r, s) with r, s �∈ (0, 3
2 ) (or r, s ∈ (0, 1] , resp. ) , the

extended mean values E(r, s; x, y) are Schur-concave (or Schur-convex, resp. ) with
(x, y) on the domain (0,∞) × (0,∞) .

For more information on the extended mean values E , please refer to [1, 15] and
the references therein.

The following two counterexamples of Theorem B tell us that there must exist
some errors about the proof of the above Theorem B.
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EXAMPLE 1. Let (r, s) = (4, 2) . It is clear that (4, 2) �∈ (
0, 3

2

) × (
0, 3

2

)
. For

(2, 2) � (1, 3) , directly calculating yields

E(4, 2; 1, 3) =
(

4
2
· 32 − 12

34 − 14

)1/(2−4)

=
√

5 > E(4, 2; 2, 2) = 2.

This leads to a contradiction with Theorem B.

EXAMPLE 2. Take (r, s) = (1, 1) . It is clear that (r, s) ∈ (0, 1] × (0, 1] . For
(2, 2) � (1, 3) , straightforward computation gives

E(1, 1; 1, 3) = e−1/1

(
111

331

)1/(11−31)

=
3
√

3
e

< E(1, 1; 2, 2) = 2.

This also leads to a contradiction with Theorem B.

These two contradictions motivate us to reconsider to find a new approach to prove
the Schur-convexity of the extended mean values E(r, s; x, y) and obtain the following

THEOREM 1. For fixed (r, s) ∈ R
2 ,

(1) if 2 < 2r < s or 2 � 2s � r , then the extended mean values E(r, s; x, y) is
Schur-convex with (x, y) ∈ (0,∞) × (0,∞) ,

(2) if (r, s) ∈ {r < s � 2r, 0 < r � 1} ∪ {s < r � 2s, 0 < s � 1} ∪ {0 < s <
r � 1} ∪ {0 < r < s � 1} ∪ {s � 2r < 0} ∪ {r � 2s < 0} , then the extended mean
values E(r, s; x, y) is Schur-concave with (x, y) ∈ (0,∞) × (0,∞) .

2. Lemmas

In order to verify Theorem 1, the following lemmas are necessary.

LEMMA1. ([21, p. 64])Let g:I → R , φ:Rn → R and ψ(x) = φ
(
g(x1), . . . , g(xn)

)
.

(1) If g is convex ( concave ) and φ is increasing and Schur-convex (Schur-
concave ) , then ψ is Schur-convex (Schur-concave ) ;

(2) If g is concave ( convex ) and φ is decreasing and Schur-convex (Schur-
concave ) , then ψ is Schur-convex (Schur-concave ) .

LEMMA 2. ([21, p. 63]) Let A ⊂ R
n , φi : A → R for 1 � i � k , h : R

k → R and
ψ(x) = h

(
φ1(x), . . . , φk(x)

)
.

(1) If each of φi for 1 � i � k is Schur-convex and h is increasing (decreasing ) ,
then ψ is Schur-convex (Schur-concave ) ;

(2) If each of φi for 1 � i � k is Schur-concave and h is increasing (decreasing ) ,
then ψ is Schur-concave (Schur-convex ) .

REMARK 1. These two lemmas can also be found in [8, p. 61] and [10, p. 334].
LEMMA 3. ([17]) Let f be a continuous function and p a positive continuous

weight on I . Then the weighted arithmetic mean of function f with weight p defined
by

F(x, y) =

⎧⎪⎨
⎪⎩

∫ y
x p(t)f (t)dt∫ y

x p(t)dt
, x �= y,

f (x), x = y

(10)
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is Schur-convex (Schur-concave ) on I2 if and only if inequality∫ y
x p(t)f (t)dt∫ y

x p(t)dt
� p(x)f (x) + p(y)f (y)

p(x) + p(y)
(11)

holds ( reverses ) for (x, y) ∈ I2 .

REMARK 2. A corresponding result for the special case p ≡ 1 of Lemma 3 has
been showed in [1, Theorem 21, p. 384] and [4].

LEMMA 4. Let f be a continuous function and p a positive continuous weight
on I . Then the function F(x, y) defined by (10) is increasing (decreasing ) on I2 if
f is increasing (decreasing ) on I .

Proof. Direct calculation yields

∂F(x, y)
∂y

= − p(y)[∫ y
x p(t)dt

]2

∫ y

x
p(t)f (t)dt +

p(y)f (y)∫ y
x p(t)dt

=
p(y)[∫ y

x p(t)dt
]2

∫ y

x
p(t)

[
f (y) − f (t)

]
dt.

(12)

Hence, if f is increasing (decreasing), then ∂F(x,y)
∂y is positive (negative), this means

that the function F(x, y) is increasing (decreasing) with y ∈ I .
Since F(x, y) = F(y, x) is symmetric, if f is increasing (decreasing), then F(x, y)

is also increasing (decreasing) with x ∈ I . The proof is complete.

REMARK 3. A special case of Lemma 4 for p ≡ 1 has been proved in [1, Theorem 5,
p. 374] and [19].

3. Proof of Theorem 1

The extended mean values E(r, s; x, y) can be expressed for r(s − r) �= 0 as

E(r, s; x, y) =
(

1
yr − xr

∫ yr

xr
ts/r−1dt

)1/(s−r)

�
[
φ(xr, yr)

]1/(s−r)
. (13)

In (0,∞) , the function f (t) = ts/r−1 is increasing and convex if s
r − 1 � 1 ,

decreasing and convex if s
r − 1 � 0 , and increasing and concave if 0 < s

r − 1 � 1 .
Utilizing Lemma 3 for a special case p ≡ 1 and Lemma 4, it follows that the function
φ(x, y) defined in (13) is increasing and Schur-convex in (0,∞)×(0,∞) if 0 < 2r � s
or s � 2r < 0 , decreasing and Schur-convex in (0,∞)× (0,∞) if 0 < s < r or both
r � s and r < 0 , and increasing and Schur-concave in (0,∞)× (0,∞) if r < s � 2r
or 0 > r > s � 2r .

In (0,∞) , the function g(t) = tr is increasing and convex if r � 1 , decreasing
and convex if r < 0 , and increasing and concave if r ∈ (0, 1] . From Lemma 1, it is
deduced that the function

ψ(x, y) = φ
(
g(x), g(y)

)
= φ

(
xr, yr

)
(14)
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is increasing and Schur-convex in (0,∞) × (0,∞) if 1 � r � s
2 , decreasing and

Schur-convex in (0,∞)× (0,∞) if 0 < s < r � 1 or s � 2r < 0 , and increasing and
Schur-concave in (0,∞) × (0,∞) if r < s � 2r and 0 < r � 1 .

Further, since the function h(t) = t1/(s−r) is increasingwhen s > r and decreasing
when s < r on (0,∞) , then from Lemma 2 and formula (13) , it is deduced that
the function h

(
ψ(x, y)

)
= E(r, s; x, y) is increasing and Schur-convex with (x, y) ∈

(0,∞) × (0,∞) if 1 � r � s
2 and increasing and Schur-concave with (x, y) ∈

(0,∞) × (0,∞) if {r < s � 2r, 0 < r � 1} ∪ {0 < s < r � 1} ∪ {s � 2r < 0} .
Since the extended mean values E(r, s; x, y) = E(s, r; x, y) , then E(r, s; x, y) is

also increasing and Schur-convex with (x, y) ∈ (0,∞) × (0,∞) if 1 � s � r
2 and

increasing and Schur-concave with (x, y) ∈ (0,∞) × (0,∞) if {s < r � 2s, 0 < s �
1} ∪ {0 < r < s � 1} ∪ {r � 2s < 0} .

If r = 0 and s �= 0 , the extended mean values E(r, s; x, y) can be rewritten as

E(0, s; x, y) =
[

1
ln y − ln x

∫ ln y

ln x
tstdt

]1/s

�
[
θ(ln x, ln y)

]1/s
.

Since the function f (t) = est is decreasing and convex in (0,∞) for s < 0 , from
Lemma 3 and Lemma 4, it follows that the function θ(x, y) is decreasing and Schur-
convex in (0,∞)× (0,∞) for s < 0 . Furthermore, since g(t) = ln t is increasing and
convex in (0,∞) , by Lemma 1, it is found that θ(ln x, ln y) for s < 0 is increasing
and Schur-convex in (0,∞) . Since the function h(t) = 1

t is decreasing for t > 0 , by
Lemma 2, it is deduced that h[ψ(x, y)] = E(0, s; x, y) is increasing and Schur-concave
in (x, y) ∈ (0,∞) × (0,∞) . The proof is complete.
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