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ZEROS OF CERTAIN TRINOMIAL EQUATIONS

YOUNG JOON AHN AND SEON-HONG KiM

(communicated by A. M. Fink)

Abstract. We begin by studying the zero distribution of the trinomial equation bz —az™+a—b =
0, where b > a > 0 arereal and n > m > 0 are integers. And we study the location of zeros
of more general class of trinomial equations (r —2)z" + (r — 1)z —s = 0, where 7 > 2 and
s>0.

1. Introduction

Throughout this paper, n is an integer > 2 and we denote the unit circle by U'.
There have been a number of literatures about zero distributions of trinomial equations.
For examples, Fell [3] studied the transition of the zeros of

P+ (l-a) —1=0 0<a<l)

that is a weighted sum of the two binomial equations, 77 —1 =0 and 77 — 1 = 0.
Cella and Lettl [1] showed how power series could be used to obtain solutions of

a1?" + a7 + az7® =0,

where aj,n; € C and the n;’s are pairwise different. Glasser [4] expressed the zeros of
trinomial equations

X'—x+t=0
as a finite sum of generalized hypergeometric functions. Studying this equation is
essentially same as doing
z”—az"_l—l—a:O
by letting z = 1/x, a=1/r.
Many of classical inequalities of analysis have been obtained from trinomial equa-
tions. For x real and n positive even integer, an inequality,

X'—nx+n—-1>0
Mathematics subject classification (2000): 26C10, 30C15.
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with equality if and only if x = 1, has been used in a number of cases as a starting point
in the process of finding other inequalities [6, pp. 126-129]. In this direction, Dilcher,
Nulton, Stolarsky [2] studied zero distribution of

b7' —a7" +a—b, (L.1)

where a > b > 0 are real and n > m are positive integers. For a = n and b = m in
(1.1), we have an inequality

mx" —nx"+n—m>0

for 0 < x < 1. Now we obtain, upon replacing x by (x/y)'/" and m/n by A, the
weighted arithmetic-geometric mean inequality

Ax+(1=A)y =x"y' = (1.2)

In Section 2, we will begin by studying the zero distribution of the polynomial
(I.1)in case b > a > 0. In fact, we will prove in Theorem 2.2 that this polynomial has
exactly d = ged (m,n) zeros (dth roots of unity) on U, and all others strictly inside
U. A specific case for this when t > 2, b =2t—3, a=t—1, m =n—1 has
areal zero 1 and all others strictly inside U. Thus the reciprocal polynomial of this
multiplied by —1,

hy—3(z):=(t—-2)"+(@t—1z—(2t=3) (t>2),

has a real zero 1 and all others strictly outside U . Our goal in this paper is to study the
zero distribution of

hi(z) =(t—2)"+(t—1)z—s (s>0)

which is a generalization of hy,—3(z). We will show in Theorem 2.4 that if z = re'® is

a nonreal zero of h(z) and x = cos 0, then, for > 3 and s > 0, we have
S

T

and .
s i s+1
) <<t . 13

(F==n) <M< ey ()
The regions (1.3) where the nonreal zeros of hs(z) occur are sharp. For example, for
(s,2,n) = (5,6,7), the lower bound in (1.3) is greater than 0.7992 while the minimum
modulus s in fact 0.8126. There is a bit more to be said in general about the polynomial
hy(z) . Kim [5] showed that the locus of

(e=2)" = (e = Dz = (n+1)"""]

has exactly two connected components in the complex plane; one oval and one oco—
component. Each component has zeros of (z —2)"+ (z — 1)(z — (n+ 1))""' = 0.
Kim [5] also investigated the locus of zeros of the more general polynomial

g(zt) = (—-2)"+(z—Dz—1)"", t>4,
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1
. . . 2 “n=1 -
with starting the observation: The zeros of g(z,¢) are 1:2: , where each a, /"' is

a zero of the trinomial equation (r — 2)z" + (r — 1)z— 1 = 0. The hy(z) = 0 is a
generalization of this trinomial equation.

Finally we will find a lower bound for the positive real zero of hy(z) for s <
(t—1)(t —2)~"" 41 in Proposition 2.6.

2. Proofs of the results

Our first aim is to get a result on the zeros of the polynomial
p(z) =b7" —a?"+a—b, (2.1)

where b > a > 0 are real and n > m > 0 are integers. For this, we use the same
method as in [2] where the zero distribution of bz" —az”"+a—b =0 incase a > b >0
was examined. We first need following lemma (see [2] for the proof).

LEMMA 2.1. If b > a > 0 and p, q are all real, then
bz —a’ =b—a, z=¢",
implies p0 = q0 = 0 (mod 27 ).

By using above lemma, we have

THEOREM 2.2. Let b > a > 0 be real and n > m > 0 be integers, and d =
gcd (m,n). Then the polynomial

p(z)=b"—a"+a—b (2.2)
has exactly d zeros (dth roots of unity) on U, and n — d zeros strictly inside U.
Proof. For small € > 0, consider

p(z) =b" —ai" +a—b+e.

By Rouché’s theorem, p(z) has exactly n zeros, say ¢, -+ , ¢, inside U. As € — 0,
some of these may tend to U. If
Ocjﬂeief':eie, 06 €R.

By above lemma, n6 = m0 = 0 (mod 27 ). Hence € is a dth root of unity, where
d = ged (m,n). Conversely, if w! = 1, then p(w) = 0. Now suppose that o — w,
where w? = 1. Since p’(z) = nbz"~' — amz"~! and nb # am, the root w is simple.
Now set
B=rw, 0<r< oo,
and
u(r) :==p(B)=br'" —ar"+a—b+e.

It is easy to see that, for sufficiently small € > 0, both u(r) and u’(r) have only one
positive zero, say rp and r', between O and 1, respectively. For 0 < r < ry the
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function u(r) is negative and 0 < ' < ry, where of course # is independent of the
value of €. Thus ry is an inside zero that goes to U as € — 0. This completes the
proof. [

REMARK 2.3. For a =m and b = n in (2.2), we have an inequality
' —mx" +m—-—n<0

for 0 < x < 1. Using same method to get the weighted arithmetic-geometric mean

inequality (1.2), we get the lower bound for x*y!'=* as following:

Pyl s %x (- Ay,

where 0 <x <yand 0 <A < 1.If y isreplaced by 1 in above inequality, we obtain
an inequality

A1 —=2) —x+Ax* >0,
where 0 <x<land 0 <A < 1.
The polynomial (2.2) of thecase b =2r—3,a=t—1,m=n—1is
Wy s(z) = (2t —3)2" — (t— )" ' — (1 - 2).

By Theorem 2.2, the reciprocal polynomial of this multiplied by —1, i.e.,

hy—3(z) = (t—2)"+ (- 1)z— (2t — 3)
has areal zero 1 and n — 1 zeros strictly outside U. We generalize this as

hy(z) = —-2)"+(t—1z—s (s>0) (2.3)

and want to study locations of its zeros. First, we note that hy(z) has a multiple zero
only when
=)= 1) [ 1 \7T
= ()

by the calculation of the discriminant of 4,(z), and hence all zeros of h(z) are simple.
For the formula for the discriminant of trinomials, see p. 184 of [9]. Now we establish
our main result of this paper.

THEOREM 2.4. If z = re®® is a nonreal zero of hy(z) and x = cos 0, then, for

t>3and s >0,

Up—a(x) = ﬁ,

and X

s n s+1
((r—zxn—l)) Shst

Proof. For the right inequality of (2.4), we use Rouché’s theorem. Let z =
(1+ 8)e" with § > 0 and ¢ € R. Then since

(t—=2)1+98)">(t—2)(né+1)

(2.4)
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and
(t—1D)(1+8)+s>|t—1)(1+8)e" —s,
we have
[(r—2)7"| > |(t — 1)z — s (2.5)
when

t—=2)n6+1) 2@ —1)(1+08)+s
or equivalently
s+ 1
n(t—2)—(t—1)
Hence by Rouché with (2.5), h(z) has the same number of zeros inside the circle
|z] = 1+ 8 as (z—2)z", namely all n zeros. This proves the right inequality of (2.4).
For the left inequality of (2.4), we let, for + > 3 and s > 0,

625()1:

1
hi(z) = —2"hs <E) =5 —(t— D" = (t—-2).
Let 0 < b= (t—2)""/" <1 and z= (t —2)"/"y. Then h*(z) = 0 becomes
(=2 = (1= =27y = (1-2) =0,
and
sy" — (t— )by =1 =0,
SO
Y sy — (t— 1)b) = 1. (2.6)
Let y = r(cos 6 + isin 0) be a nonreal zero of (2.6). Then simple calculations yield
that
7" (rscosn® — b(t — 1) cos (n — 1)0) = 1
and
7" (rssinn® — b(t — 1) sin (n — 1)0) = 0.

Hence, with x = cos 0,
r"_l(rsTn(x) —b(t—1T—1(x)) =1 (2.7)

and

rsU,—1(x) — b(t — 1)Uy—2(x) = 0, (2.8)
where 7, and U, are the Chebyshev polynomials of the first kind of degree n and of
the second kind of degree n, respectively. If U,_,(x) = 0, then it follows from (2.8)
that U,_;(x) =0 and so T,(x) = 1,i.e., n = 0 which is a contradiction. From (2.8),
for x with U,_»(x) # 0, we have

rsU,—1(x)

b(t—1) = 7U,,_2(x)
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and so, from (2.7),

rsU,—1(x)
U,,,z(x)

Multiplying U,_»(x) of each side in (2.9) gives

(s Ty (x) — Th-1(x)) = 1. (2.9)

T(x)Up—2(x) — Uy (x)Ty—1 (x) = iUn_z()c).

r's

But, by using well known equalities on Chebyshev polynomials (see p. 71 of [7] and p.
9 of [8]), we have

Tu(x)Up—2(x) — Up—1 (x)Ty—1 (%)
=1 (x) = (1 = XY Up2(x)) Up—2(x) = (xUn-2(x) + Tp1 (x)) T (x)
== (1= AU ) — T ()
=-1

Hence, for x with U,_,(x) # 0, we get
Un—Z(x) =—rs= _‘y‘ns = _(t - 2)‘Z|ns>
where z is a nonreal zero of hf(z). It follows from the fact |U,_»(x)| < n — 1 that

‘Z|n < (t_ 2)(71— 1)

N

and

N

|zl < (w) : (2.10)

Since the zeros of hy(z) are the inverse of the zeros of h(z), it follows from (2.10)
that all nonreal zeros of A(z) lies in

s
2 ===
4> (=)
This completes the proof of the left inequality of (2.4). O

n

From above theorem, the following is immediately obtained.

COROLLARY 2.5. If s > (t —2)(n— 1), then all nonreal zeros of hs(z) lie outside
U.

Finally, we investigate the location of the positive real zero of hy(z).

PROPOSITION 2.6. For t > 3,if 0 < s < (t — 1)(t — 2)~Y/" 4 1, then the positive
real zero of hy(z) is at least

1
(t=2)!"(d + 1)’
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where ¢ = (t —2)~'/" — 1 and

—ns+(c+1)(n—1)(t—1)++/(ns—(c+1)(n—1)(t—1))2—4(n—1)s(c+s—(c+1)t)
2(n—1)s

dy =

Proof. For t > 3 and s > 0, let

(@) = —2'h, (1) — (- )2 (- 2),

Z
0<b=(r—2)"""<1, z=(-2)"y.
Now h}(z) = 0 becomes
s(e=2)y" = (1= 1)t =2) Ty~ = (1-2) =0,

and

sy" — (t— )by ' —1=0. (2.11)
Lets assume that z is real and positive, b = c+ 1 where —1 <c < 0,and y=x+1.
Then x > —1 and (2.11) becomes

sx+1)"—(t—Dc+DHx+1)"1=1=0
and
x4+ 1D)" M sx4+s—(—1)(c+1) =1
Suppose that s < (# — 1)(c+ 1) + 1 and
x4+ )" sx+s—(—1)(c+1) > 1. (2.12)
Then x > 0. On the other hand, for —1 < x <0
sx+s—(—1D(c+1)>1,
which leads to a contradiction. The inequality (2.12) is fulfilled when
(n=Dx+1)(sx+s—(t—1)(c+1)) >1,
and it holds when
x>d; =20,
where
—ns+(c+1)(n—1)(t—1)++/(ns—(c+1)(n—1)(t—1))2—4(n—1)s(c+s—(c+1)t)
2(n—1)s ’
Here the fact that d; is nonnegative follows from s < (r — 1)(c + 1) + 1 and
(ns—(c+1)(n—1)(t—1))*~4(n—1)s(c+s—(c+1)t)—(—ns+(c+1)(n—1) (t—1))?
=—4n—Ds(c+s—tc+1)) =0

d, =

Thus the positive zero z of hy(z) (the reciprocal of i (z)) satisfies
1
(t—=2)"n(dy + 1)

2=
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