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ZEROS OF CERTAIN TRINOMIAL EQUATIONS

YOUNG JOON AHN AND SEON-HONG KIM

(communicated by A. M. Fink)

Abstract. Webegin by studying the zero distribution of the trinomial equation bzn−azm+a−b =
0 , where b > a > 0 are real and n > m > 0 are integers. And we study the location of zeros
of more general class of trinomial equations (t − 2)zn + (t − 1)z − s = 0 , where t > 2 and
s > 0 .

1. Introduction

Throughout this paper, n is an integer � 2 and we denote the unit circle by U .
There have been a number of literatures about zero distributions of trinomial equations.
For examples, Fell [3] studied the transition of the zeros of

αzr+s + (1 − α)zr − 1 = 0 (0 < α < 1)

that is a weighted sum of the two binomial equations, zr+s − 1 = 0 and zr − 1 = 0 .
Cella and Lettl [1] showed how power series could be used to obtain solutions of

a1z
n1 + a2z

n2 + a3z
n3 = 0,

where aj, nj ∈ C and the nj ’s are pairwise different. Glasser [4] expressed the zeros of
trinomial equations

xn − x + t = 0

as a finite sum of generalized hypergeometric functions. Studying this equation is
essentially same as doing

zn − azn−1 + a = 0

by letting z = 1/x , a = 1/t .
Many of classical inequalities of analysis have been obtained from trinomial equa-

tions. For x real and n positive even integer, an inequality,

xn − nx + n − 1 � 0
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with equality if and only if x = 1 , has been used in a number of cases as a starting point
in the process of finding other inequalities [6, pp. 126-129]. In this direction, Dilcher,
Nulton, Stolarsky [2] studied zero distribution of

bzn − azm + a − b, (1.1)

where a > b > 0 are real and n > m are positive integers. For a = n and b = m in
(1.1), we have an inequality

mxn − nxm + n − m > 0

for 0 < x < 1 . Now we obtain, upon replacing x by (x/y)1/n and m/n by λ , the
weighted arithmetic-geometric mean inequality

λx + (1 − λ )y � xλ y1−λ . (1.2)

In Section 2, we will begin by studying the zero distribution of the polynomial
(1.1) in case b > a > 0 . In fact, we will prove in Theorem 2.2 that this polynomial has
exactly d = gcd (m, n) zeros (d th roots of unity) on U , and all others strictly inside
U . A specific case for this when t > 2 , b = 2t − 3 , a = t − 1 , m = n − 1 has
a real zero 1 and all others strictly inside U . Thus the reciprocal polynomial of this
multiplied by −1 ,

h2t−3(z) := (t − 2)zn + (t − 1)z − (2t − 3) (t > 2),

has a real zero 1 and all others strictly outside U . Our goal in this paper is to study the
zero distribution of

hs(z) = (t − 2)zn + (t − 1)z − s (s > 0)

which is a generalization of h2t−3(z) . We will show in Theorem 2.4 that if z = reiθ is
a nonreal zero of hs(z) and x = cos θ , then, for t � 3 and s > 0 , we have

Un−2(x) =
s

(t − 2)rn

and (
s

(t − 2)(n − 1)

) 1
n

� |z| � 1 +
s + 1

n(t − 2) − (t − 1)
. (1.3)

The regions (1.3) where the nonreal zeros of hs(z) occur are sharp. For example, for
(s, t, n) = (5, 6, 7) , the lower bound in (1.3) is greater than 0.7992 while the minimum
modulus is in fact 0.8126 . There is a bit more to be said in general about the polynomial
hs(z) . Kim [5] showed that the locus of

|(z − 2)n| =
∣∣(z − 1)(z − (n + 1))n−1

∣∣
has exactly two connected components in the complex plane; one oval and one ∞−
component. Each component has zeros of (z − 2)n + (z − 1)(z − (n + 1))n−1 = 0 .
Kim [5] also investigated the locus of zeros of the more general polynomial

g(z, t) := (z − 2)n + (z − 1)(z − t)n−1, t � 4,
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with starting the observation: The zeros of g(z, t) are 2+an,t
1+an,t

, where each a
− 1

n−1
n,t is

a zero of the trinomial equation (t − 2)zn + (t − 1)z − 1 = 0 . The hs(z) = 0 is a
generalization of this trinomial equation.

Finally we will find a lower bound for the positive real zero of hs(z) for s �
(t − 1)(t − 2)−1/n + 1 in Proposition 2.6.

2. Proofs of the results

Our first aim is to get a result on the zeros of the polynomial

p(z) = bzn − azm + a − b, (2.1)

where b > a > 0 are real and n > m > 0 are integers. For this, we use the same
method as in [2] where the zero distribution of bzn−azm +a−b = 0 in case a > b > 0
was examined. We first need following lemma (see [2] for the proof).

LEMMA 2.1. If b > a > 0 and p , q are all real, then

bzq − azp = b − a, z = eiθ ,

implies pθ ≡ qθ ≡ 0 (mod 2π ).

By using above lemma, we have

THEOREM 2.2. Let b > a > 0 be real and n > m > 0 be integers, and d =
gcd (m, n) . Then the polynomial

p(z) = bzn − azm + a − b (2.2)

has exactly d zeros ( d th roots of unity) on U , and n − d zeros strictly inside U .

Proof. For small ε > 0 , consider

pε(z) = bzn − azm + a − b + ε.

By Rouché’s theorem, pε(z) has exactly n zeros, say α1, · · · ,αn inside U . As ε → 0 ,
some of these may tend to U . If

αj → eiθj = eiθ , θ ∈ R.

By above lemma, nθ ≡ mθ ≡ 0 (mod 2π ). Hence eiθ is a d th root of unity, where
d = gcd (m, n) . Conversely, if wd = 1 , then p(w) = 0 . Now suppose that αj → w ,
where wd = 1 . Since p′(z) = nbzn−1 − amzm−1 and nb �= am , the root w is simple.
Now set

β = rw, 0 < r < ∞,

and
u(r) := pε(β) = brn − arm + a − b + ε.

It is easy to see that, for sufficiently small ε > 0 , both u(r) and u′(r) have only one
positive zero, say r0 and r′ , between 0 and 1 , respectively. For 0 < r < r0 the



228 YOUNG JOON AHN AND SEON-HONG KIM

function u(r) is negative and 0 < r′ < r0 , where of course r′ is independent of the
value of ε . Thus r0 is an inside zero that goes to U as ε → 0 . This completes the
proof. �

REMARK 2.3. For a = m and b = n in (2.2), we have an inequality

nxn − mxm + m − n < 0

for 0 < x < 1 . Using same method to get the weighted arithmetic-geometric mean
inequality (1.2), we get the lower bound for xλ y1−λ as following:

xλ y1−λ >
1
λ

x − (1 − λ )y,

where 0 < x < y and 0 < λ < 1 . If y is replaced by 1 in above inequality, we obtain
an inequality

λ (1 − λ ) − x + λxλ > 0,

where 0 < x < 1 and 0 < λ < 1 .

The polynomial (2.2) of the case b = 2t − 3 , a = t − 1 , m = n − 1 is

h∗2t−3(z) = (2t − 3)zn − (t − 1)zn−1 − (t − 2).

By Theorem 2.2, the reciprocal polynomial of this multiplied by −1 , i.e.,

h2t−3(z) = (t − 2)zn + (t − 1)z − (2t − 3)

has a real zero 1 and n − 1 zeros strictly outside U . We generalize this as

hs(z) = (t − 2)zn + (t − 1)z − s (s > 0) (2.3)

and want to study locations of its zeros. First, we note that hs(z) has a multiple zero
only when

s =
(n − 1)(t − 1)

n

(
1 − t

n(t − 2)

) 1
n−1

by the calculation of the discriminant of hs(z) , and hence all zeros of hs(z) are simple.
For the formula for the discriminant of trinomials, see p. 184 of [9]. Now we establish
our main result of this paper.

THEOREM 2.4. If z = reiθ is a nonreal zero of hs(z) and x = cos θ , then, for
t � 3 and s > 0 ,

Un−2(x) =
s

(t − 2)rn
,

and (
s

(t − 2)(n − 1)

) 1
n

� |z| � 1 +
s + 1

n(t − 2) − (t − 1)
. (2.4)

Proof. For the right inequality of (2.4), we use Rouché’s theorem. Let z =
(1 + δ)eit with δ > 0 and t ∈ R . Then since

(t − 2)(1 + δ)n > (t − 2)(nδ + 1)
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and
(t − 1)(1 + δ) + s > |(t − 1)(1 + δ)eit − s|,

we have
|(t − 2)zn| > |(t − 1)z − s| (2.5)

when
(t − 2)(nδ + 1) � (t − 1)(1 + δ) + s

or equivalently

δ � δ0 :=
s + 1

n(t − 2) − (t − 1)
.

Hence by Rouché with (2.5), hs(z) has the same number of zeros inside the circle
|z| = 1 + δ0 as (t− 2)zn , namely all n zeros. This proves the right inequality of (2.4).

For the left inequality of (2.4), we let, for t � 3 and s > 0 ,

h∗s (z) = −znhs

(
1
z

)
= szn − (t − 1)zn−1 − (t − 2).

Let 0 < b = (t − 2)−1/n � 1 and z = (t − 2)1/ny . Then h∗s (z) = 0 becomes

s(t − 2)yn − (t − 1)(t − 2)
n−1

n yn−1 − (t − 2) = 0,

and
syn − (t − 1)byn−1 − 1 = 0,

so
yn−1(sy − (t − 1)b) = 1. (2.6)

Let y = r(cos θ + i sin θ) be a nonreal zero of (2.6). Then simple calculations yield
that

rn−1(rs cos nθ − b(t − 1) cos (n − 1)θ) = 1

and
rn−1(rs sin nθ − b(t − 1) sin (n − 1)θ) = 0.

Hence, with x = cosθ ,

rn−1(rsTn(x) − b(t − 1)Tn−1(x)) = 1 (2.7)

and
rsUn−1(x) − b(t − 1)Un−2(x) = 0, (2.8)

where Tn and Un are the Chebyshev polynomials of the first kind of degree n and of
the second kind of degree n , respectively. If Un−2(x) = 0 , then it follows from (2.8)
that Un−1(x) = 0 and so Tn(x) = 1 , i.e., n = 0 which is a contradiction. From (2.8),
for x with Un−2(x) �= 0 , we have

b(t − 1) =
rsUn−1(x)
Un−2(x)
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and so, from (2.7),

rn−1(rsTn(x) − rsUn−1(x)
Un−2(x)

Tn−1(x)) = 1. (2.9)

Multiplying Un−2(x) of each side in (2.9) gives

Tn(x)Un−2(x) − Un−1(x)Tn−1(x) =
1

rns
Un−2(x).

But, by using well known equalities on Chebyshev polynomials (see p. 71 of [7] and p.
9 of [8]), we have

Tn(x)Un−2(x) − Un−1(x)Tn−1(x)

=(xTn−1(x) − (1 − x2)Un−2(x))Un−2(x) − (xUn−2(x) + Tn−1(x))Tn−1(x)

= − (1 − x2)U2
n−2(x) − T2

n−1(x)

= − 1.

Hence, for x with Un−2(x) �= 0 , we get

Un−2(x) = −rns = −|y|ns = −(t − 2)|z|ns,
where z is a nonreal zero of h∗s (z) . It follows from the fact |Un−2(x)| � n − 1 that

|z|n � (t − 2)(n − 1)
s

and

|z| �
(

(t − 2)(n − 1)
s

) 1
n

. (2.10)

Since the zeros of hs(z) are the inverse of the zeros of h∗s (z) , it follows from (2.10)
that all nonreal zeros of hs(z) lies in

|z| �
(

s
(t − 2)(n − 1)

) 1
n

.

This completes the proof of the left inequality of (2.4). �

From above theorem, the following is immediately obtained.

COROLLARY 2.5. If s > (t− 2)(n− 1) , then all nonreal zeros of hs(z) lie outside
U .

Finally, we investigate the location of the positive real zero of hs(z) .

PROPOSITION 2.6. For t � 3 , if 0 < s � (t − 1)(t − 2)−1/n + 1 , then the positive
real zero of hs(z) is at least

1
(t − 2)1/n(d1 + 1)

,
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where c = (t − 2)−1/n − 1 and

d1 =
−ns+(c+1)(n−1)(t−1)+

√
(ns−(c+1)(n−1)(t−1))2−4(n−1)s(c+s−(c+1)t)

2(n−1)s
.

Proof. For t � 3 and s > 0 , let

h∗s (z) = −znhs

(
1
z

)
= szn − (t − 1)zn−1 − (t − 2),

0 < b = (t − 2)−1/n � 1, z = (t − 2)1/ny.

Now h∗s (z) = 0 becomes

s(t − 2)yn − (t − 1)(t − 2)
n−1

n yn−1 − (t − 2) = 0,

and
syn − (t − 1)byn−1 − 1 = 0. (2.11)

Lets assume that z is real and positive, b = c + 1 where −1 < c � 0 , and y = x + 1 .
Then x > −1 and (2.11) becomes

s(x + 1)n − (t − 1)(c + 1)(x + 1)n−1 − 1 = 0

and
(x + 1)n−1(sx + s − (t − 1)(c + 1)) = 1.

Suppose that s � (t − 1)(c + 1) + 1 and

(x + 1)n−1(sx + s − (t − 1)(c + 1)) > 1. (2.12)

Then x > 0 . On the other hand, for −1 < x � 0

sx + s − (t − 1)(c + 1) > 1,

which leads to a contradiction. The inequality (2.12) is fulfilled when

((n − 1)x + 1)(sx + s − (t − 1)(c + 1)) > 1,

and it holds when
x > d1 � 0,

where

d1 =
−ns+(c+1)(n−1)(t−1)+

√
(ns−(c+1)(n−1)(t−1))2−4(n−1)s(c+s−(c+1)t)

2(n−1)s
.

Here the fact that d1 is nonnegative follows from s � (t − 1)(c + 1) + 1 and

(ns−(c+1)(n−1)(t−1))2−4(n−1)s(c+s−(c+1)t)−(−ns+(c+1)(n−1)(t−1))2

= −4(n − 1)s(c + s − t(c + 1)) � 0

Thus the positive zero z of hs(z) (the reciprocal of h∗s (z) ) satisfies

z � 1
(t − 2)1/n(d1 + 1)

. �
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