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Abstract. We provide an evaluation of variations of the mapping factor for conic mappings from
a sphere to a plane. The proved inequality allows to compare the variation coefficients of conic,
cylindrical and stereographic projections. Obtained inequality chain for variation coefficients
can be used to generate more computationally efficient numerical grids.

1. Introduction

The problem of the uniform grid generation for spherical regions is one of the
oldest problems of atmospheric modeling and meteorological analysis [3,5,7]. Different
approaches used to solve this problem can be classified according to the type of the
transformation of a sphere in the following way: using the original spherical longitude-
latitude grids (polar and rotated), conformal mappings from a sphere onto a plane,
non-conformal mappings onto a plane (such as gnomonic, icosahedral and geodesic
grids) and conformal mappings from a sphere onto a sphere [2,3,7].

Conformal mapping onto a plane is the most widespread approach because it
allows to keep a simple form of the primitive equations and guarantees locally isotropic
treatment of derivatives and smoothness of physicalmeshsize variation [6,7]. Commonly
used conformal projections are stereographic, conic and cylindrical, which can be
considered as specific cases of the conformal separable mappings [1]. The problem
of optimization of the numerical grid generation can be formulated as a minimization
of the variation coefficient, where the last is defined as the maximum variation of the
mapping factor (scale function) over considered domain [1]. Solution of this problem
separately for stereographic, conic and cylindrical conformal mappings considered over

circular spherical domain Ω with the centerpoint P =
(
θ, λ

)
and radius γ (that is,

the domain whose boundary is obtained by the intersection of a plane with a sphere)
was done in [1]. In particular, it was shown that the “best” stereographic and cylindrical
projections are the rotated ones, which are tangent to the sphere at the centerpoint P ,
and the “best” conic mapping is tangent to the sphere at the points P0 = (θ0, λ ) , where
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θ0 ∈ (θ − γ , θ
)
. The respective minimum values of the variation coefficients were

found in the form

αstr =
2

1 + cos γ
, αcyl =

1
cos γ

and

αcon =
sin θ0

sin
(
θ − γ

)
(

tan
((
θ − γ

)
/2
)

tan (θ0/2)

)cos θ0

=
sin θ0

sin
(
θ + γ

)
(

tan
((
θ + γ

)
/2
)

tan (θ0/2)

)cos θ0

for stereographic, cylindrical and conic mappings, respectively [1]. In the last formula
parameter θ0 is defined as

cosθ0 =
ln sin

(
θ + γ

)− ln sin
(
θ − γ

)
ln tan

((
θ + γ

)
/2
)− ln tan

((
θ − γ

)
/2
) .

To choose the best conformal separable mapping from a sphere to a plane we have
to compare these results. First, it is evident that

αstr =
2

1 + cos γ
<

1
cos γ

= αcyl

for any γ ∈ (0, π/2) . We are also able to prove the second evaluation:

αcyl =
1

cos γ
<

sin θ0

sin
(
θ + γ

)
(

tan
((
θ + γ

)
/2
)

tan (θ0/2)

)cos θ0

= αcon

for any θ and γ such that 0 < γ < θ < π/2 . Therefore the following inequality
chain is true:

αstr < αcyl < αcon.

Hence, for any fixed spherical circular domain Ω , the minimum variation coefficient is
reached by choosing the stereographic oblique mapping with the tangent point located
at the centercolatitude θ of the considered domain.

This result allows to generate more computationally efficient grids for hydrody-
namics limited area models over spherical domains. In particular, it permits to construct
more efficient regional and mesoscale numerical weather prediction models. The prin-
cipal point of this result is the penultimate inequality involving comparison between
αcyl and αcon , whose demonstration we provide in this paper.

2. Principal inequality

THEOREM 1. The function

f (x, a) =
sin y

sin (x + a)

(
tan ((x + a) /2)

tan (y/2)

)cos y

=
sin y

sin (x − a)

(
tan ((x − a) /2)

tan (y/2)

)cos y

,

(1)

cos y =
ln [sin (x + a) / sin (x − a)]

ln [tan ((x + a) /2) / tan ((x − a) /2)]
, (2)
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0 < a < x < π/2, 0 < y < π (3)

satisfies the inequalities
1

cos a
< f (x, a) <

1
cos2 a

(4)

for any x, a from (3) .

Proof. We divide the demonstration in three steps.

2a . Preliminary calculations.
1) Preliminary calculations for evaluation of the function y in (2).
Let us introduce two auxiliary frequently used functions

ls (x, a) = ln
sin (x + a)
sin (x − a)

, lt (x, a) = ln
tan x+a

2

tan x−a
2

(5)

and calculate their partial derivatives

lsx =
− sin 2a

sin (x + a) sin (x − a)
, (6)

lsa =
sin 2x

sin (x + a) sin (x − a)
, (7)

ltx =
−2 sin a cos x

sin (x + a) sin (x − a)
, (8)

lta =
2 sin x cos a

sin (x + a) sin (x − a)
. (9)

Now we calculate the limit values (one-sided limits) of the function cos y . The first
limit

L1 = lim
a→0+

cos y = lim
a→0+

ls
lt

is an indeterminate form of type 0/0 , which can be calculated by applying l’Hospital’s
rule

L1 = lim
a→0+

lsa

lta
= lim

a→0+

sin 2x
2 sin x cos a

= cos x. (10)

The second limit

L2 = lim
a→x−

cos y = lim
a→x−

ls
lt

is an indeterminate form of type ∞/∞ and l’Hospital’s rule can be applied to its
calculation

L2 = lim
a→x−

lsa

lta
= lim

a→x−

sin 2x
2 sin x cos a

= 1. (11)

The third limit

L3 = lim
x→a+

cos y = lim
x→a+

ls
lt
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is an indeterminate form of type ∞/∞ and l’Hospital’s rule can be applied once more

L3 = lim
x→a+

lsx

ltx
= lim

x→a+

sin 2a
2 sin a cos x

= 1. (12)

Finally, the forth limit
L4 = lim

x→π/2−
cos y = lim

x→π/2−

ls
lt

does not represent any kind of indetermination and can be calculated directly

L4 =
ln sin(π/2+a)

sin(π/2−a)

ln tan(π/4+a/2)
tan(π/4−a/2)

=
ln cos a

cos a

2 ln tan (π/4 + a/2)
= 0. (13)

Summarizing, we have the following results:

lim
a→0+

y = x, lim
a→x−

y = 0, lim
x→a+

y = 0, lim
x→π/2−

y = π/2. (14)

Let us calculate partial derivatives of cos y . Using results (6)-(9) and simplifying,
we obtain

(cos y)x =
(

ls
lt

)
x

=
1
lt2

(lsxlt − ltxls) = ln−1 tan x+a
2

tan x−a
2

· 2 sin a (cos x cos y− cos a)
sin (x+a) sin (x−a)

,

(15)

(cos y)a =
(

ls
lt

)
a

=
1
lt2

(lsalt−ltals) = ln−1 tan x+a
2

tan x−a
2

· 2 sin x (cos x− cos a cos y)
sin (x+a) sin (x−a)

. (16)

Or, isolating y , we rewrite these results in the form

yx = − ln−1 tan ((x + a) /2)
tan ((x − a) /2)

· 2 sin a (cos x cos y − cos a)
sin y sin (x + a) sin (x − a)

, (17)

ya = − ln−1 tan ((x + a) /2)
tan ((x − a) /2)

· 2 sin x (cos x − cos a cos y)
sin y sin (x + a) sin (x − a)

. (18)

2) Preliminary calculations for evaluation of the function f (x, a) in (1).
We consider the following two functions (in three variables):

F (x, a, y) =
sin y

sin (x + a)

(
tan ((x + a) /2)

tan (y/2)

)cos y

, (19)

G (x, a, y) =
sin y

sin (x − a)

(
tan ((x − a) /2)

tan (y/2)

)cos y

, (20)

which coincide with f (x, a) for the values of y from (2). After some algebra, partial
derivatives of these functions can be represented as follows

Fy = −F sin y ln
tan ((x + a) /2)

tan (y/2)
, (21)

Fx = F
cos y − cos (x + a)

sin (x + a)
, (22)

Gy = G sin y ln
tan (y/2)

tan ((x − a) /2)
, (23)



ONE INEQUALITY FOR CONFORMAL MAPPINGS OF SPHERICAL DOMAINS 237

Gx = G
cos y − cos (x − a)

sin (x − a)
. (24)

Using (17), (21) and (22) for y from (2), we can find the partial derivatives of f
in the form

f x = Fx + Fyyx = f Φ, (25)

where

Φ =
cos y − cos (x + a)

sin (x + a)
−

ln tan((x+a)/2)
tan(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

· 2 sin a (cos a − cos x cos y)
sin (x + a) sin (x − a)

. (26)

Similarly, applying (23), (24) and (17), we get

f x = Gx + Gyyx = f Φ, (27)

where

Φ =
cos y − cos (x − a)

sin (x − a)
−

ln tan((x−a)/2)
tan(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

· 2 sin a (cos a − cos x cos y)
sin (x + a) sin (x − a)

. (28)

Of course, expressions (26) and (28) coincide for y from (2). Calculation of the
half-sum of (25) and (27) yields the third representation for the same partial derivative

f x = f Φ, (29)

where

Φ = − sin x (cos x − cos a cos y)
sin (x + a) sin (x − a)

−
ln tan((x+a)/2) tan((x−a)/2)

tan2(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

· sin a (cos a − cos x cos y)
sin (x + a) sin (x − a)

(30)
is the third representation for the same function Φ .

Using direct substitution of the limit value and the last limit in (14), we can
calculate the following limit

lim
x→π/2−

Φ =
ln 1

2 ln tan (π/4 + a/2)
sin a cos a

cos2 a
− 1 · 0

cos2 a
= 0. (31)

Using direct substitution and the last limit in (14), we can find

lim
x→π/2−

yx =
1

ln tan (π/4 + a/2)
sin a
cos a

. (32)

The following limit

L5 = lim
x→π/2−

ln tan((x+a)/2) tan((x−a)/2)
tan2(y/2)

cos x − cos a cos y

represents an indeterminate form of type 0/0 and can be transformed using l’Hospital’s
rule to

L5 = lim
x→π/2−

1
sin(x+a) + 1

sin(x−a) − 2
sin y yx

− sin x + cos a sin y · yx
.
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The above limit is calculated by direct substitution, using (32) and the last limit in (14):

L5 =
2

cos a − 2 sin a
cos a

1
ln tan(π/4+a/2)

−1 + cos a sin a
cos a

1
ln tan(π/4+a/2)

= − 2
cos a

. (33)

The following limit

L6 = lim
x→a+

ln sin((x+a)/2)
sin((x−a)/2)

ln tan((x+a)/2)
tan((x−a)/2)

= lim
x→a+

ln sin((x+a)/2)
sin((x−a)/2)

lt

represents an indeterminate form of type ∞/∞ and can be calculated by l’Hospital’s
rule:

L6 = lim
x→a+

− sin a
2 sin((x+a)/2) sin((x−a)/2)

− 2 sin a cos x
sin(x+a) sin(x−a)

= 1. (34)

The limit

L7 = lim
x→a+

ln tan((x+a)/2)
tan(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

= lim
x→a+

ln tan((x+a)/2)
tan(y/2)

lt

represents an indeterminate form of type ∞/∞ and by applying l’Hospital’s rule it can
be transformed to

L7 = lim
x→a+

1
sin(x+a) − 1

sin yyx

− 2 sin a cos x
sin(x+a) sin(x−a)

.

Substitution of expression (17) for yx and simplification yields

L7 = lim
x→a+

⎡
⎣− sin (x − a)

2 sin a cos x
+

1
cos x

cos a − cos x cos y

ln tan((x+a)/2)
tan((x−a)/2) · sin2 y

⎤
⎦ .

Since the limit of the first summand equals 0, the considered limit can be rewritten in
the form

L7 =
1

cos a
lim

x→a+

cos a − cos x cos y

ln tan((x+a)/2)
tan((x−a)/2) · sin2 y

.

Substituting expressions for cos y and sin2 y and applying some algebra, we obtain

L7 =
1

cos a
lim

x→a+

⎡
⎣ cos a − cos x

4 ln cos((x−a)/2)
cos((x+a)/2)

+
cos a + cos x

4 ln sin((x+a)/2)
sin((x−a)/2)

⎤
⎦ = 0. (35)

The following limit is the simple consequence of (34) , (35) :

lim
x→a+

ln tan((x+a)/2)
tan(y/2) · ln sin((x+a)/2)

sin((x−a)/2)

ln2 tan((x+a)/2)
tan((x−a)/2)

= lim
x→a+

ln tan((x+a)/2)
tan(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

· lim
x→a+

ln sin((x+a)/2)
sin((x−a)/2)

ln tan((x+a)/2)
tan((x−a)/2)

= 0. (36)
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Using the well known result

lim
t→0+

tk lnm t = 0 , ∀k, m > 0, (37)

and making the following substitution

t =
tan ((x − a) /2)
tan ((x + a) /2)

, lim
x→a+

t = 0+,

we can calculate one more limit

lim
x→a+

ln tan((x+a)/2)
tan(y/2)

tan x−a
2 ln2 tan((x+a)/2)

tan((x−a)/2)

=
limx→a+ ln tan((x+a)/2)

tan(y/2)

limx→a+ tan x+a
2 · limt→0+ t ln2 t

= +∞. (38)

2b . Auxiliary inequality chain
Now we prove the following inequality chain

cos x < cos y <
cos x
cos a

< cos (x − a) (39)

for any a and x from (3).
Let us fix any x in the interval (0, π/2) and consider the function g (a) = cos y

with respect to one variable a . According to (10),(11) and (16) this function has
one-sided limits

lim
a→0+

g (a) = cos x, lim
a→x−

g (a) = 1 (40)

and its derivative has the following expression

g′ (a) = ln−1 tan ((x + a) /2)
tan ((x − a) /2)

· 2 sin x
sin (x + a) sin (x − a)

[cos x − cos a cos y] . (41)

Since the first two quotients in (41) are positive, the sign of the first derivative depends
on the expression in the square brackets. Let us suppose that at least one critical point
a0 ∈ (0, x) exists, that is, the equation

cos x − cos a · g (a) = 0 (42)

has at least one solution in the indicated interval. In this case, calculating the second
derivative, simplifying obtained expression and considering it at any critical point a0 ,
we have

g′′ (a0) = ln−1 tan ((x + a) /2)
tan ((x − a) /2)

· 2 sin x
sin (x + a0) sin (x − a0)

· sin a0 · g (a0) > 0. (43)

Therefore a0 is the local minimum point of the function g (a) . Because g (a) and its
first derivative g′ (a) are continuos functions on interval (0, x) and inequality (43) is
true for any critical point a0 , then it can exist at most one critical point and this point
is the local minimum point. According to (43) the first derivative changes sign passing
through the point a0 and therefore the function g (a) is decreasing to the left of the
point a0 and increasing to the right of this point. This guarantees that a0 is the absolute
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minimum point on the interval (0, x) . Hence, g (a) attains an absolute minimum value
at this point:

g (a0) =
cos x
cos a0

However, this value is bigger than the values of the function g (a) in some right-hand
neighborhood of point 0, because (40) holds. Therefore we obtain a contradiction and
this means that our supposition about existence of critical points is false.

Hence, no critical point exists and g′ (a) keeps the same sign for all values of
a ∈ (0, x) . According to the limit values (40) the function g (a) is strictly increasing,
that is, g′ (a) is positive on (0, x) . Therefore, expression in the square brackets in (41)
is positive and

g (a) <
cos x
cos a

for any a ∈ (0, x) and any fixed x < π/2 . Consequently,

cos y <
cos x
cos a

(44)

for any a and x from (3).
From the limit values (40) and positiveness of the derivative it follows also that

cos x < cos y for the same values of a and x .
Finally, using the inequality

cos (x − a) >
cos x
cos a

,

which comes from simple evaluation

cos (x − a) cos a > cos (x − a) cos a − sin (x − a) sin a = cos x,

we can conclude that the inequality chain (39) is true.

2c . Study of the function f x

Let us recall that by (25)
f x = f Φ,

where function Φ has different representations (26), (28) or (30). Therefore the
properties of the derivative f x depend on the properties of the function Φ , which we
will study first.

1) Details of the left-sided limit of the function Φ at x = π/2 for any fixed a
from (3).

First, we study the behavior of the function Φ in the left-sided neighborhood of
the point x = π/2 for any fixed a from (3). From (31) we know that function Φ
approaches 0 as x approaches π/2 from the left. Let us investigate whether function
Φ keeps determinate sign under this approaching. For that, we use representation (30)
of the Φ , which can be written in the form

Φ =
sin x (cos x − cos a cos y)
sin (x + a) sin (x − a)

Ψ (45)
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where

Ψ = −1 −
ln tan((x+a)/2) tan((x−a)/2)

tan2(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

· sin a (cos a − cos x cos y)
sin x (cos x − cos a cos y)

. (46)

By (39),
sin x (cos x − cos a cos y)
sin (x + a) sin (x − a)

> 0, (47)

for any x, a such that 0 < a < x < π/2 and

lim
x→π/2−

sin x (cos x − cos a cos y)
sin (x + a) sin (x − a)

= 0 (48)

according to (14).
The limit of Ψ can be calculated by using (33)

lim
x→π/2−

Ψ = lim
x→π/2−

⎡
⎣−1 −

ln tan((x+a)/2) tan((x−a)/2)
tan2(y/2)

cos x − cos a cos y
· sin a (cos a − cos x cos y)

sin x ln tan((x+a)/2)
tan((x−a)/2)

⎤
⎦

= −1+
2

cos a
· sin a cos a
2 ln tan (π/4 + a/2)

=
1

ln tan (π/4 + a/2)
(sin a − ln tan (π/4 + a/2)) .

Using Taylor series expansion [4]

ln t = 2
∞∑
k=1

1
2k − 1

(
t − 1
t + 1

)2k−1

, t > 0

for t = tan (π/4 + a/2) , we can evaluate this limit in the form

lim
x→π/2−

Ψ = − 1
ln tan (π/4 + a/2)

∞∑
k=2

sin2k−1 a
2k − 1

< 0. (49)

Therefore, function Ψ is negative in some left-sided neighborhood of the point π/2 for
any fixed a . Based on (45), (47)-(49)we can conclude that function Φ approaches 0 (as
x approaches π/2 from the left) keeping negative values in the left-sided neighborhood
of the point π/2 .

2) Details of the right-sided limit of the function Φ at x = a for any fixed a
from (3).
Now we study the behavior of the function Φ in right-sided neighborhood of the point
x = a for any fixed a from (3). First, let us calculate the limit

lim
x→a+

X (x, a) ,

where

X (x, a) =
ln tan((x+a)/2)

tan(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

· cos a − cos x cos y
sin (x − a)

.
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Substituting the expression for cos y and rearranging the terms yields

lim
x→a+

X (x, a)

= lim
x→a+

ln tan((x+a)/2)
tan(y/2)

ln2 tan((x+a)/2)
tan((x−a)/2)

(cos a− cos x) ln sin((x+a)/2)
sin((x−a)/2)+ (cos a + cos x) ln cos((x−a)/2)

cos((x+a)/2)

2 sin x−a
2 cos x−a

2

= lim
x→a+

ln tan((x+a)/2)
tan(y/2)

ln2 tan((x+a)/2)
tan((x−a)/2)

·
[

sin x+a
2

cos x−a
2

ln
sin ((x+a) /2)
sin ((x−a) /2)

+
cos x+a

2

sin x−a
2

ln
cos ((x−a) /2)
cos ((x+a) /2)

]

= sin a lim
x→a+

ln tan((x+a)/2)
tan(y/2) ln sin((x+a)/2)

sin((x−a)/2)

ln2 tan((x+a)/2)
tan((x−a)/2)

+ cos a ln
1

cos a
lim

x→a+

ln tan((x+a)/2)
tan(y/2)

tan x−a
2 ln2 tan((x+a)/2)

tan((x−a)/2)

.

The first limit is (36) and it equals 0, while the second limit is (38) and it equals +∞ .
Therefore,

lim
x→a+

X (x, a) = +∞.

Another limit we need is quite simple

lim
x→a+

cos y − cos (x + a)
sin (x + a)

=
1 − cos 2a

sin 2a
=

sin a
cos a

Now, using the representation (26) for function Φ , we find

lim
x→a+

Φ = lim
x→a+

cos y − cos (x + a)
sin (x + a)

− lim
x→a+

2 sin a
sin (x + a)

X (x, a) = −∞.

Thus, the values of the function Φ are negative in both left-sided neighborhood δπ/2−
of the point x = π/2 and right-sided neighborhood δa+ of the point x = a .

3) The sign of the function Φ on the entire interval x ∈ (a, π/2) for any fixed a .
Now we show that function Φ is negative on the entire interval x ∈ (a, π/2) , that is,
Φ (x, a) < 0 for any x, a from (3).

Let us suppose that the function Φ assumes positive values at some points. First,
we make the following observation: since the function Φ is continuous and negative in
neighborhoods δa+ and δπ/2− , the assumption implies that there exist at least two zero
points of function Φ on the interval x ∈ (a, π/2) .

Then we investigate some properties of the function at these zero points. Rewriting
(26) in the form

Φ (x, a) =
2 sin a (cos a − cos x cos y)

sin (x + a) sin (x − a)
Ω (x, a) , (50)

Ω (x, a) =
sin (x − a) (cos y − cos (x + a))

2 sin a (cos a − cos x cos y)
−

ln tan((x+a)/2)
tan(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

(51)
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and observing that
2 sin a (cos a − cos x cos y)

sin (x + a) sin (x − a)
> 0

for any x, a from (3) because

cos a > cos x > cos x cos y, (52)

we conclude that the sign of Ω coincides with the sign of Φ and Ω (x, a) = 0 if, and
only if, Φ (x, a) = 0 . Therefore, according to our assumption, there are at least two
points in which Ω (x, a) = 0 , that is, at these points the following equality holds

sin (x − a) (cos y − cos (x + a))
2 sin a (cos a − cos x cos y)

=
ln tan((x+a)/2)

tan(y/2)

ln tan((x+a)/2)
tan((x−a)/2)

. (53)

Now we find the partial derivative Ωx at these points. General expression for this
partial derivative can be given in the form:

Ωx =
[cos (x−a) (cos y− cos (x+a))+ sin (x−a) (− sin y · yx+ sin (x+a))]

2 sin a (cos a− cos x cos y)2 ×

× (cos a− cos x cos y)−sin (x−a) (cos y− cos (x+a)) (sin x cos y+ cos x sin y · yx)

2 sin a (cos a− cos x cos y)2

− 1

ln2 tan((x+a)/2)
tan((x−a)/2)

[(
1

sin (x + a)
− yx

sin y

)
ln

tan x+a
2

tan x−a
2

−
(

1
sin (x + a)

− 1
sin (x − a)

)
ln

tan x+a
2

tan y
2

]

Substituting yx from (17), rearranging the terms and simplifying, we have

Ωx =
cos a (cos y − cos (x + a)) (cos (x − a) − cos y)

2 sin a (cos a − cos x cos y)2

+
sin (x − a) sin (x + a) (cos a − cos x cos y)

2 sin a (cos a − cos x cos y)2

− sin (x − a) sin y (cos a − cos x cos (x + a))

2 sin a (cos a − cos x cos y)2

1

ln tan((x+a)/2)
tan((x−a)/2)

×

× 2 sin a (cos a − cos x cos y)
sin y sin (x + a) sin (x − a)

− 1

ln tan((x+a)/2)
tan((x−a)/2)

1
sin (x + a)

+
1

ln2 tan((x+a)/2)
tan((x−a)/2)

2 sin a (cos a − cos x cos y)
sin2 y sin (x + a) sin (x − a)

−
ln tan((x+a)/2)

tan(y/2)

ln2 tan((x+a)/2)
tan((x−a)/2)

2 sin a cos x
sin (x − a) sin (x + a)

.



244 LUDMILA BOURCHTEIN AND ANDREI BOURCHTEIN

Considering this derivative at the points where Ω = 0 , substituting (53) in the last term
and simplifying, we obtain

Ωx|Ω=0 =
cos a (cos y − cos (x + a)) (cos (x − a) − cos y)

2 sin a (cos a − cos x cos y)2

+
sin (x − a) sin (x + a) (cos a − cos x cos y)

2 sin a (cos a − cos x cos y)2

= − 1

ln tan((x+a)/2)
tan((x−a)/2)

2 cos a − 2 cos x cos (x + a)
sin (x + a) (cos a − cos x cos y)

+
1

ln2 tan((x+a)/2)
tan((x−a)/2)

2 sin a (cos a − cos x cos y)
sin2 y sin (x + a) sin (x − a)

Finally, applying some algebra to the first and second terms, we are able to write result
as follows:

Ωx|Ω=0 =− 1

ln tan((x+a)/2)
tan((x−a)/2)

2 sin x
(cos a − cos x cos y)

+
cos a (cos y − cos (x + a)) (cos (x − a) − cos y) +

(
cos2 a − cos2 x

)
(cos a − cos x cos y)

2 sin a (cos a − cos x cos y)2

+
1

ln2 tan((x+a)/2)
tan((x−a)/2)

2 sin a (cos a − cos x cos y)
sin2 y sin (x + a) sin (x − a)

=

⎡
⎣ 1

ln tan((x+a)/2)
tan((x−a)/2)

1
sin y

√
2 sin a (cos a − cos x cos y)

sin (x + a) sin (x − a)

− sin x sin y
cos a − cos x cos y

·
√

sin (x + a) sin (x − a)
2 sin a (cos a − cos x cos y)

]2

+
cos a (cos y − cos (x + a)) (cos (x − a) − cos y) +

(
cos2 a − cos2 x

)
(cos a − cos x cos y)

2 sin a (cos a − cos x cos y)2

−
(
cos2 a − cos2 x

)
sin2 x sin2 y

2 sin a (cos a − cos x cos y)3 .

The terms outside the square brackets can be represented in the form

Q =
q
p

where
p = 2 sin a (cos a − cos x cos y)3

is positive due to (52) and numerator can be simplified to the form

q = [cos a (cos y − cos (x + a)) (cos (x − a) − cos y) +
(
cos2 a − cos2 x

)×
× (cos a − cos x cos y)] (cos a − cos x cos y) − sin2 x sin2 y

(
cos2 a − cos2 x

)
= cos x (cos y − cos (x + a)) (cos (x − a) − cos y) (cos x − cos a cos y) .
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Each factor is positive due to (39) and, therefore, q is positive too. Hence, Q is posi-
tive and Ωx|Ω=0 is positive too. Therefore, it can exist exactly one point x ∈ (a, π/2)
such that Ω = 0 . By (50), the same is true for function Φ . Therefore we obtain a
contradiction with the initial observation that function Φ must have at least two zero
points on the interval x ∈ (a, π/2) . Hence, our supposition about existence of positive
values of the function Φ is false.

It remains to show that function Φ cannot assume zero values, which is the
simple consequence of the previous calculations. In fact, because the zero points of the
functions Φ and Ω coincide (if they would exist), the partial derivative of Φ at zero
points is positive:

Φx|Φ=0 =
(

2 sin a (cos a − cos x cos y)
sin (x + a) sin (x − a)

)
x

Ω
∣∣∣∣
Ω=0

+
2 sin a (cos a − cos x cos y)

sin (x + a) sin (x − a)
Ωx

∣∣∣∣
Ω=0

=
2 sin a (cos a − cos x cos y)

sin (x + a) sin (x − a)
Ωx

∣∣∣∣
Ω=0

> 0.

Therefore, if zero points would exist, then the function Φ have to be positive in their
right-hand neighborhoods, but this is false according to the above conclusions. Thus Φ
can assume only negative values on whole interval x ∈ (a, π/2) for any fixed a .

4) Concluding derivations
We have shown that Φ (x, a) < 0 for any x ∈ (a, π/2) and any fixed a from (3).

By (25), it means that f x (x, a) < 0 , that is, function f (x, a) is strictly decreasing in x
on the interval (a, π/2) . Let us find the limit values of f (x, a) at the end points of this
interval. The left-hand limit at the point π/2 can be calculated by direct substitution
and using the last result in (14):

lim
x→π/2−

f (x, a) = lim
x→π/2−

sin y
sin (x + a)

(
tan ((x + a) /2)

tan (y/2)

)cos y

=
1

cos a

(
tan
(π

4
+

a
2

))0
=

1
cos a

.

(54)

By applying the third limit in (14), the right-hand limit at the point a can be rewritten
in the following form:

lim
x→a+

f (x, a) = lim
x→a+

sin y
sin (x + a)

(
tan ((x + a) /2)

tan (y/2)

)cos y

=
tan a
sin 2a

lim
y→0+

sin y

(tan (y/2))cos y .

This limit represents indeterminate form of type 0/0 and can be transformed to the
form:

lim
x→a+

f (x, a) =
1

2 cos2 a
lim

y→0+

2 sin (y/2) cos (y/2) (cos (y/2))cos y

(sin (y/2))cos y

=
1

cos2 a
lim

y→0+

(
sin

y
2

)2 sin2 y
2
.
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The last limit can be calculated by substitution

t = sin
y
2

, lim
y→0+

t = 0+

and by using the limit (37):

lim
x→a+

f (x, a) =
1

cos2 a
lim

t→0+
t2t2 =

1
cos2 a

lim
t→0+

e2t2 ln t =
1

cos2 a
. (55)

Finally, since function f (x, a) has the limit values (54), (55) and it is strictly decreasing
in x on the entire interval (a, π/2) , we can conclude that

1
cos a

< f (x, a) <
1

cos2 a

for any x, a such that
0 < a < x < π/2.

This completes the proof of the theorem.
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