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Abstract. Let f be an increasing convex (concave, respectively) function defined on [0, 1] and

{ai}i∈N be an increasing positive sequence such that
{

i
(

ai
ai+1

−1
)}

i∈N
decreases

( {
i
(

ai+1
ai

−
1
)}

i∈N
increases, respectively

)
, then the sequence

{
1
n
∑n

i=1 f
(

ai
an

)}
n∈N

is decreasing.

Let f be an increasing convex (concave, respectively) positive function defined on [0, 1]
and ϕ be an increasing convex positive function defined on [0,∞) such that ϕ(0) = 0 and the

sequence
{
ϕ(i)

[
ϕ(i)
ϕ(i+1) − 1

]}
i∈N

decreases, then the sequence
{

1
ϕ(n)

∑n
i=1 f

(
ϕ(i)
ϕ(n)

)}
n∈N

is decreasing.
As applications, taking special sequence {ai}i∈N and special functions f and ϕ , many

new inequalities between ratios of means are obtained, and the Alzer’s inequality, the Minc-
Sathre’s inequality, and the like, are recovered.

1. Introduction

Let I be an interval in R . Then f : I → R is said to be convex if for all x, y ∈ I
and λ ∈ [0, 1] ,

f (λx + (1 − λ )y) � λ f (x) + (1 − λ )f (y). (1)

If (1) is strict for all x �= y and λ ∈ (0, 1) , then f is said to be strictly convex.
If the inequality in (1) is reversed, then f is said to be concave. If inequality (1)

is reversed and strict for all x �= y and λ ∈ (0, 1) , then f is said to be strictly concave.
The finite difference of a sequence {ai}i∈N can be defined by

Δ0ai = ai, Δai = ai+1 − ai, Δmai = Δ(Δm−1ai). (2)

We shall say that a sequence {ai}i∈N is convex of order m (m -convex) if Δmai � 0
for m � 0 , i ∈ N . If {ai}i∈N is 2 -convex, we have ai+1 + ai−1 � 2ai for i � 2 , the
sequence {ai}i∈N is called convex; if ai+1 + ai−1 � 2ai for i � 2 ,, we call {ai}i∈N

being concave.
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Let {ai}i∈N be a positive sequence. If ai+1ai−1 � a2
i for i � 2 , we call {ai}i∈N

a logarithmically convex sequence; if ai+1ai−1 � a2
i for i � 2 , we call {ai}i∈N a

logarithmically concave sequence.
Let f be a strictly increasing convex (or concave) function in (0, 1] , J.-Ch. Kuang

in [8] verified that

1
n

n∑
k=1

f
( k

n

)
>

1
n + 1

n+1∑
k=1

f
( k

n + 1

)
>

∫ 1

0
f (x)dx. (3)

In [15], the first author generalized the results in [8] and obtained the following
main result and some corollaries: Let f be a strictly increasing convex (or concave)
function in (0, 1] , then the sequence 1

n

∑n+k
i=k+1 f

(
i

n+k

)
is decreasing in n and k and

has a lower bound
∫ 1

0 f (t)dt , that is,

1
n

n+k∑
i=k+1

f
( i

n + k

)
>

1
n + 1

n+k+1∑
i=k+1

f
( i

n + k + 1

)
>

∫ 1

0
f (t)dt, (4)

where k is a nonnegative integer, n a natural number.
With the help of these conclusions, we can deduce the Alzer’s inequality, the Minc-

Sathre’s inequality, and more other inequalities involving the sum of powers of positive
numbers or the ratios of the arithmetic means of n numbers. These inequalities have
been investigated by many mathematicians. For more information, please refer to the
references in this paper.

In this article, by similar procedure as in [8, 15], considering the convexity of a
given function or sequence, using the Hermite-Hadamard inequality in [7, 11], we obtain

THEOREM 1. Let f be an increasing convex (concave) function defined on [0, 1]
and {ai}i∈N be an increasing positive sequence such that the sequence

{
i
(

ai
ai+1

−1
)}

i∈N

decreases
( {

i
( ai+1

ai
− 1
)}

i∈N
increases

)
, then the sequence

{
1
n

∑n
i=1 f

(
ai
an

)}
n∈N

is
decreasing. That is

1
n

n∑
i=1

f
( ai

an

)
� 1

n + 1

n+1∑
i=1

f
( ai

an+1

)
�
∫ 1

0
f (t)dt. (5)

THEOREM 2. Let f be an increasing convex (concave) positive function defined
on [0, 1] and ϕ be an increasing convex positive function defined on [0,∞) such
that ϕ(0) = 0 and the sequence

{
ϕ(i)

[ ϕ(i)
ϕ(i+1) − 1

]}
i∈N

decreases, then the sequence{
1

ϕ(n)

∑n
i=1 f

( ϕ(i)
ϕ(n)

)}
n∈N

is decreasing. That is

1
ϕ(n)

n∑
i=1

f

(
ϕ(i)
ϕ(n)

)
� 1

ϕ(n + 1)

n+1∑
i=1

f

(
ϕ(i)

ϕ(n + 1)

)
. (6)

As applications, taking special sequence {ai}i∈N and special functions f and ϕ
satisfying Theorem 1 and Theorem 2, many new inequalities between ratios of mean
values are obtained, and the Alzer’s inequality, the Minc-Sathre’s inequality, and the
like, are recovered.
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2. Proofs of Theorems

Proof. [Proof of Theorem 1] The left inequality in (5) is equivalent to

n
n+1∑
i=1

f
( ai

an+1

)
� (n + 1)

n∑
i=1

f
( ai

an

)
,

n
n∑

i=1

f
( ai

an+1

)
+ nf (1) � (n + 1)

n∑
i=1

f
( ai

an

)
,

n
n∑

i=1

f
( ai

an+1

)
�

n∑
i=1

[
(i − 1)f

(ai−1

an

)
+ (n − i + 1)f

( ai

an

)]
,

n∑
i=1

f
( ai

an+1

)
�

n∑
i=1

[ i − 1
n

f
(ai−1

an

)
+
(
1 − i − 1

n

)
f
( ai

an

)]
,

(7)

where we let a0 = 0 .

Since the sequence
{

i
(

ai
ai+1

− 1
)}

i∈N

decreases and
{

i
(

ai+1

ai
− 1
)}

i∈N

increases,

then we have
n
( an

an+1
− 1
)

� (i − 1)
(ai−1

ai
− 1
)
, (8)

n
(an+1

an
− 1
)

� i
(ai+1

ai
− 1
)
. (9)

Inequality (8) can be rewritten as

(i − 1)ai−1 + (n − i + 1)ai

nan
� ai

an+1
, (10)

and inequality (9) yields

(n + 1)
(an+1

an
− 1
)

� i
(ai+1

ai
− 1
)
,

iai+1 + (n − i + 1)ai

(n + 1)an+1
� ai

an
.

(11)

Since f is increasing, from (10) and (11), we have

f

(
(i − 1)ai−1 + (n − i + 1)ai

nan

)
� f

( ai

an+1

)
, (12)

f

(
iai+1 + (n − i + 1)ai

(n + 1)an+1

)
� f

( ai

an

)
. (13)

If f is convex, then

i − 1
n

f
(ai−1

an

)
+
(
1 − i − 1

n

)
f
( ai

an

)
� f

(
(i − 1)ai−1 + (n − i + 1)ai

nan

)
. (14)



250 F. QI AND B.-N. GUO

Combination of (14) with (12) leads to

f
( ai

an+1

)
�
[ i − 1

n
f
(ai−1

an

)
+
(
1 − i − 1

n

)
f
( ai

an

)]
, (15)

inequality (7) follows.
If f is concave, then

i
n + 1

f
( ai+1

an+1

)
+
(
1 − i

n + 1

)
f
( ai

an+1

)

� f
( i

n + 1
· ai+1

an+1
+

n − i + 1
n + 1

· ai

an+1

)

= f
( iai+1 + (n − i + 1)ai

(n + 1)an+1

)
.

(16)

From (13) and (16), we obtain

n∑
i=1

[ i
n + 1

f
( ai+1
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)
+
(
1 − i

n + 1

)
f
( ai
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)]
�
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f
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)
,

that is
n∑

i=1

i
n + 1

f
( ai+1

an+1

)
+

n∑
i=1

( n
n + 1

− i − 1
n + 1

)
f
( ai

an+1

)

=
n

n + 1
f (1) +

n
n + 1

n∑
i=1

f
( ai

an+1

)

=
n

n + 1

n+1∑
i=1

f
( ai

an+1

)
�

n∑
i=1

f
( ai

an

)
.

(17)

The final line in (17) implies the left inequality in (5).
Finally, by definition of definite integral, the right inequality in (5) follows.

Proof. [Proof of Theorem 2] Since

ϕ(i)
(

ϕ(i)
ϕ(i + 1)

− 1

)
� ϕ(i − 1)

(
ϕ(i − 1)
ϕ(i)

− 1

)
, (18)

therefore we obtain

ϕ(n)
(

ϕ(n)
ϕ(n + 1)

− 1

)
� ϕ(i − 1)

(
ϕ(i − 1)
ϕ(i)

− 1

)
, (19)

that is
ϕ(i)

ϕ(n + 1)
� ϕ2(i − 1) + [ϕ(n) − ϕ(i − 1)]ϕ(i)

ϕ2(n)
. (20)
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From monotonicity of f and letting ϕ(0) = 0 , we have

f

(
ϕ(i)

ϕ(n + 1)

)
� f

(
ϕ2(i − 1) + [ϕ(n) − ϕ(i − 1)]ϕ(i)

ϕ2(n)

)
,
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i=1

f

(
ϕ(i)
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)
�
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i=1

f

(
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ϕ2(n)

)
.

(22)

Since ϕ is convex and f is positive, if f is convex, then

n∑
i=1

f

(
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�
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f

(
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.
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From (22) and (23), we get
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f

(
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�
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(
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)}
,

that is
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f

(
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ϕ(n + 1)

)

�
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{
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(
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ϕ(n)

)
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(
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f

(
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)
− ϕ(n)f (1).

(24)

Inequality (24) is equivalent to
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(
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)
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1
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(
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(
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)
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(25)

Now assume f is concave. Then

ϕ(i)
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f

(
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ϕ(n + 1)

)
+
(
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)
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(
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ϕ(i)ϕ(i + 1) + ϕ(i)ϕ(n + 1) − ϕ2(i)

ϕ2(n + 1)

)
.

(26)
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Since ϕ is increasing and convex, then easy computation gives us

ϕ(i)ϕ(i + 1) + ϕ(i)ϕ(n + 1) − ϕ2(i)
ϕ2(n + 1)

� ϕ(i)
ϕ(n)

. (26)

Therefore, from convexity of ϕ , we have
n∑

i=1

f

(
ϕ(i)
ϕ(n)

)
�

n∑
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{
ϕ(i)

ϕ(n + 1)
f

(
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)
+
(

1 − ϕ(i)
ϕ(n + 1)

)
f

(
ϕ(i)

ϕ(n + 1)

)}

=
n+1∑
i=1

ϕ(n + 1) + ϕ(i − 1) − ϕ(i)
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f

(
ϕ(i)

ϕ(n + 1)

)

� ϕ(n)
ϕ(n + 1)
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f

(
ϕ(i)
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)
.

The proof is complete.

3. Corollaries

In this section, as applications, taking special sequence {ai}i∈N and special func-
tions f and ϕ satisfying Theorem 1 and Theorem 2, many new inequalities between
ratios of means will be obtained , and the Alzer’s inequality, the Minc-Sathre’s inequal-
ity, and the like, are recovered.

COROLLARY 1. Let f be an increasing convex (or concave, respectively) function
defined on [0, 1] , {ai}i∈N a logarithmically convex (or a logarithmically concave,
respectively) increasing positive sequence, then the sequence

{
1
n

∑n
i=1 f

(
ai
an

)}
n∈N

is
decreasing.

COROLLARY 2. Let f be an increasing convex (or concave, respectively) positive
function defined on [0, 1] , and let ϕ be an increasing, convex, logarithmically convex,
positive function defined on (0,∞) , then the sequence

{
1

ϕ(n)

∑n
i=1 f

( ϕ(i)
ϕ(n)

)}
n∈N

is
decreasing.

It is clear that the function f (x) = xr is strictly increasing in [0, 1] for r > 0 ,
convex for r � 1 , and concave for 0 < r < 1 . Taking ai = i in Theorem 1, we
recover the Alzer’s inequality as follows:

COROLLARY 3. ([1])Let n ∈ N , then for any r > 0 , we have

n
n + 1

�
(

1
n

n∑
i=1

ir
/

1
n + 1

n+1∑
i=1

ir
)1/r

. (27)

The lower bound is best possible.

The first easy proof of Alzer’s inequality is due to J. Sándor who used Cauchy
mean value theorem and mathematical induction in his proof, see [22]. Recently, some
new proofs were given in [3].

If let f (x) = xr , r > 0 , x ∈ [0, 1] , and ai = i + k , where k is a given natural
number, in Theorem 1, then we obtain
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COROLLARY 4. ([14]) Let n and m be natural numbers, k a nonnegative integer.
Then

n + k
n + m + k

<

(
1
n

n+k∑
i=k+1

ir
/

1
n + m

n+m+k∑
i=k+1

ir
)1/r

, (28)

where r is any given positive real number. The lower bound is best possible.

Let f (x) = xr , r > 0 , x ∈ [0, 1] , ϕ = x + k , where k is a given nonnegative
integer, in Theorem 2, then we have

COROLLARY 5. Let n and m be natural numbers, k a nonnegative integer, then

(
1

n + k

n+k∑
i=k+1

ir
/

1
n + k + m

n+k+m∑
i=k+1

ir
)1/r

>
n + k

n + k + m
, (29)

where r is any given positive real number.

Since ln(1 + x) and ln x
1+x are strictly increasing concave function in (0, 1] , let

f (x) = ln(1 + x) or f (x) = ln x
1+x in (5) respectively, by direct calculation, we have

COROLLARY 6. If {ai}i∈N is an increasing positive sequence such that
{
i
( ai+1

ai
−

1
)}

i∈N
increases, then we have

an

an+1
�

n
√∏n

i=1(ai + an)

n+1
√∏n+1

i=1 (ai + an+1)
�

n
√∏n

i=1 ai

n+1
√∏n+1

i=1 ai

. (30)

Let f (x) = ln(1 + x) in (6), by direct computation, we obtain

COROLLARY 7. If the function ϕ is an increasing convex positive function defined
on (0,∞) such that

{
ϕ(i)

[ ϕ(i)
ϕ(i+1) − 1

]}
i∈N

decreases, then

[ϕ(n)]n/ϕ(n)

[ϕ(n + 1)](n+1)/ϕ(n+1) �
ϕ(n)
√∏n

i=1 [ϕ(i) + ϕ(n)]

ϕ(n+1)
√∏n+1

i=1 [ϕ(i) + ϕ(n + 1)]
. (31)

REMARK 1. The inequalities (30) and (31) generalize those obtained in [8], [15],
and [21]. If taking more special functions f , ϕ , and {ai}i∈N in Theorem 1 and 2, we
can obtain more new concrete inequalities between the ratios of mean values involving
sums or products of positive sequences.

RE F ER EN C ES

[1] H. ALZER, On an inequality of H. Minc and L. Sathre, J. Math. Anal. Appl., 179, (1993), 396–402.
[2] T. H. CHAN, P. GAO AND F. QI, On a generalization of Martins’ inequality, Monatsh. Math., 138, 3

(2003), 179–187. RGMIA Res. Rep. Coll., 4, 1 (2001), Art. 12, 93–101. Available online at URL:
http://rgmia.vu.edu.au/v4n1.html.

[3] CH.-P. CHEN, F. QI, Notes on proofs of Alzer’s inequality, Octogon Math. Mag., 11, 1 (2003), 29–33.



254 F. QI AND B.-N. GUO

[4] CH.-P. CHEN, F. QI, P. CERONE, AND S. S. DRAGOMIR, Monotonicity of sequences involving convex and
concave functions, Math. Inequal. Appl., 6, 2 (2003), 229–239. RGMIA Res. Rep. Coll., 5, 1 (2002),
Art. 1, 3–13. Available online at URL: http://rgmia.vu.edu.au/v5n1.html.
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