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SOME NEW INTEGRAL INEQUALITIES WITH APPLICATIONS

KE DING, JONG-KYU KIM AND NAN-JING HUANG

(communicated by Th. M. Rassias)

Abstract. In this paper, we introduce and study some new integral inequalities in one variable
and two independent variables which provide explicit bounds on unknown functions, and apply
these integral inequalities to study the qualitative behavior of the solution for a partial differential
equation and an integral equation, respectively.

1. Introduction

It is well known that integral inequalities which provide explicit bounds on un-
known functions play an important role in the development of differential and integral
equations. For details, we refer to [1]-[9] and references therein.

Recently, Lipovan [3] studied the following integral inequalities

u2(t) � c2 + 2
∫ α(t)

0
[f (s)u(s)w(u(s)) + g(s)u(s)]ds, t ∈ [0, +∞)

and

u2(t) � c2 + 2
∫ α(t)

0
f (s)u(s)w(u(s))ds + 2

∫ α(t)

0
g(s)u(s)w(u(s))ds, t ∈ [0, +∞).

Very recently, Sun [9] studied the following integral inequalities

um(t) � c
m

m−n +
m

m − n

∫ α(t)

0
[f (s)un(s)w(u(s)) + g(s)un(s)]ds, t ∈ [0, +∞)

and

um(t) � c
m

m−n +
m

m − n

∫ α(t)

0
f (s)un(s)w(u(s))ds

+
m

m − n

∫ t

0
g(s)un(s)w(u(s))ds, t ∈ [0, +∞).
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On the other hand, Meng and Li [5] studied the following integral inequality involving
two independent variables

up(x, y) � a(x, y) + b(x, y)
∫ x

0

∫ y

0
[c(s, t)u(s, t) + g(s, t)]dtds, x, y ∈ [0, +∞).

Inspired and motivated by previous papers, in this paper, we introduce and study
some new integral inequalities in one variable and two independent variables which
provide explicit bounds on unknown functions. By using these integral inequalities, we
study the qualitative behavior of the solution for a partial differential equation and an
integral equation, respectively.

2. Integral inequalities

For T > 0 , let R+ = (0,∞) and I = [0, T) . We first recall the following Lemma.

LEMMA 1. [7] Let a(t), u(t), b(t) be nonnegative and continuous functions defined
for t ∈ R+ . If

u(t) � a(t) +
∫ t

0
b(s)u(s)ds

for t ∈ R+ , then
u(t) � a(t)exp(

∫ t

0
b(s)ds)

for t ∈ R+ .

THEOREM 2.1. Let k(t), u(t), ai(t) ∈ C(I, R+) , αi(t) ∈ C1(I, I) be nondecreasing
with αi(t) < t on I , i = 1, 2 · · · , m. If

um(t) � k(t) +
m∑

i=1

∫ αi(t)

0
ai(s)ui(s)ds (2.1)

for t ∈ I , then

u(t) � k
1
m (t) +

1
m

k
1
m−1(t)e(t)exp(

m∑
i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)ds) (2.2)

for t ∈ I , where

e(t) =
m∑

i=1

∫ αi(t)

0
ai(s)k

i
m (s)ds (2.3)

for t ∈ I .

Proof. Let

z(t) =
m∑

i=1

∫ αi(t)

0
ai(s)ui(s)ds.

Then

um(t) < k(t) + z(t) = k(t)(1 +
z(t)
k(t)

). (2.4)
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From (2.1) and the generalization of Bernoulli’s inequality [4], i.e., (1 + x)a � 1 + ax ,
where 0 < a < 1 and −1 < x , we have

z(t) �
m∑

i=1

∫ αi(t)

0
ai(s)(k(s) + z(s))

i
m ds

=
m∑

i=1

∫ αi(t)

0
ai(s)k

i
m (s)(1 +

z(s)
k(s)

)
i
m

ds

�
m∑

i=1

∫ αi(t)

0
ai(s)k

i
m (s)(1 +

i
m

z(s)
k(s)

)ds

=
m∑

i=1

∫ αi(t)

0
ai(s)k

i
m (s)ds +

m∑
i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)z(s)ds

= e(t) +
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)z(s)ds,

(2.5)

where e(t) is defined by (2.3). Clearly, e(t) is nondecreasing in t ∈ I . We assume
e(t) > 0 for t ∈ I . From (2.5), we get

z(t)
e(t)

� 1 +
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)

z(s)
e(s)

ds. (2.6)

Let z(t)
e(t) = p(t) for t ∈ I , and define q(t) by the right hand of (2.6). Then q(t) > 0 ,

q(0) = 1 , p(t) < q(t) and

q′(t) �
m∑

i=1

i
m

ai(αi(t))k
i
m−1(αi(t))p(t)α′

i (t)

<

m∑
i=1

i
m

ai(αi(t))k
i
m−1(αi(t))q(t)α′

i (t).

From above inequality, we have

q′(t)
q(t)

<

m∑
i=1

i
m

ai(αi(t))k
i
m−1(αi(t))α′

i (t). (2.7)

Integrating above inequality from 0 to t , t ∈ I , we can get

q(t) � exp(
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)ds). (2.8)

In light of z(t)
e(t) = p(t) < q(t) and (2.8), we have

z(t) � e(t)exp(
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)ds). (2.9)
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From (2.9) and (2.4), we have

u(t) � k
1
m (t) +

1
m

k
1
m−1(t)z(t). (2.10)

Now, (2.9) and (2.10) imply (2.2). This completes the proof.

In order to prove following Theorem, we need to denote the class S of nonde-
creasing function g ∈ C(R+, R+) with g(x) > 0 for x > 0 , g(tx) > tg(x) for t � 0 ,
g(x) + g(y) > g(x + y) and

∫∞
1 ( dx

g(x) ) = ∞ .

THEOREM 2.2. Let k(t), u(t), ai(t) ∈ C(I, R+) , αi(t) ∈ C1(I, I) be nondecreasing
with αi(t) < t on I , and gi ∈ S , i = 1, 2 · · · , m. If

um(t) � k(t) +
m∑

i=1

∫ αi(t)

0
ai(s)gi(ui(s))ds, (2.11)

then for 0 � t � t1 ,

u(t) � k
1
m (t) +

1
m

k
1
m−1(t)e(t)G−1

(
G(1) +

m∑
i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)ds

)
,(2.12)

where

e(t) =
m∑

i=1

∫ αi(t)

0
ai(s)gi(k

i
m (s))ds, (2.13)

G−1 is the inverse function of

G(r) =
∫ r

0

ds
g(s)

, r > 0, (2.14)

g(·) = max1�i�m gi(·) , and t1 ∈ I is chosen so that

G(1) +
m∑

i=1

∫ αi(t)

0

i
m

ai(s)k
i
m−1(s)ds ∈ Dom(G−1)

for all t ∈ [0, t1] .

Proof. Let

z(t) =
m∑

i=1

∫ αi(t)

0
ai(s)gi(ui(s))ds.

Then

um(t) < k(t) + z(t) = k(t)(1 +
z(t)
k(t)

). (2.15)
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From (2.15) and the generalization of Bernoulli’s inequality, we have

z(t) �
m∑

i=1

∫ αi(t)

0
ai(s)gi((k(s) + z(s))

i
m )ds

=
m∑

i=1

∫ αi(t)

0
ai(s)gi(k

i
m (s)(1 +

z(s)
k(s)

)
i
m

)ds

�
m∑

i=1

∫ αi(t)

0
ai(s)gi(k

i
m (s) +

i
m

k
i
m−1(s)z(s))ds

�
m∑

i=1

∫ αi(t)

0
ai(s)gi(k

i
m (s))ds +

m∑
i=1

∫ αi(t)

0
ai(s)gi(

i
m

k
i
m−1(s)z(s))ds

= e(t) +
m∑

i=1

∫ αi(t)

0
ai(s)

i
m

k
i
m−1(s)

gi( i
m k

i
m−1(s)z(s))

i
m k

i
m−1(s)

ds

� e(t) +
m∑

i=1

∫ αi(t)

0
ai(s)

i
m

k
i
m−1(s)gi(z(s))ds (2.16)

where e(t) is defined by (2.13) which is nondecreasing in t ∈ I . We assume e(t) > 0 .
And the last inequality comes from the property of S that g(tx) > tg(x) . From (2.16),
we get

z(t)
e(t)

� 1 +
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)

gi(z(s))
e(s)

ds

� 1 +
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)gi(

z(s)
e(s)

)ds (2.17)

Let z(t)
e(t) = p(t) for t ∈ I , and define q(t) by the right hand of (2.17). Then q(t) > 0 ,

q(0) = 1 , p(t) < q(t) and

q′(t) �
m∑

i=1

i
m

ai(αi(t))k
i
m−1(αi(t))gi(p(αi(t))α′

i (t)

<

m∑
i=1

i
m

ai(αi(t))k
i
m−1(αi(t))gi(q(αi(t)))α′

i (t). (2.18)

Since g(·) = max{gi(·) : i = 1, 2 · · · , m} , from (2.18), we know that

q′(t) � g(q(t))
m∑

i=1

i
m

ai(αi(t))k
i
m−1(αi(t))α′

i (t), (2.19)

and
dG(q(t))

dt
=

q′(t)
g(q(t))

<

m∑
i=1

i
m

ai(αi(t))k
i
m−1(αi(t))α′

i (t),
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where G is defined by (2.14). Integrating above inequality from 0 to t , t ∈ I , we have

G(q(t)) � G(1) +
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)ds. (2.20)

By virtue of the definition of G−1 and the fact that G−1 is increasing, it follows from
(2.20) that

q(t) � G−1(G(1) +
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)ds). (2.21)

In light of z(t)
e(t) = p(t) < q(t) and from (2.21), we have

z(t) � e(t)G−1(G(1) +
m∑

i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s))ds). (2.22)

From (2.22) and (2.15), we get

u(t) � k
1
m (t) +

1
m

k
1
m−1(t)z(t). (2.23)

Now, (2.22) and (2.23) imply (2.12). This completes the proof.

THEOREM 2.3. Let k(t), u(t), ai(t) be the same as in Theorem 2.1. , and F :
R+ × R+ → R+ be a continuous function satisfying the condition

0 � F(t, ui) − F(t, vi) � Hi(t)(ui − vi), (2.24)

for ui > vi > 0, i = 1, 2, · · · , m, where Hi(t) is a nonnegative continuous function on
I , i = 1, 2, · · · , m. If

um(t) � k(t) +
∫ t

0
b(t)(um(s))ds +

m∑
i=1

∫ t

0
F(s, ui(s))ds (2.25)

for t ∈ I , then

u(t) � B
1
m (t)

[
k

1
m (t)+

1
m

k
1
m−1(t)G(t)exp

(
m∑

i=1

i
m

∫ t

0
Hi(s)B

i
m (s)k

i
m−1(s)dtds

)]

(2.26)
for t ∈ I , where

G(t) =
m∑

i=1

∫ t

0
F
(
s, B

i
m (s)k

i
m (s)

)
ds and B(t) = exp(

∫ t

0
b(t)ds) (2.27)

for t ∈ I .

Proof. Let

z(t) = k(t) +
m∑

i=1

∫ t

0
F(s, ui(s))ds. (2.28)

Then (2.25) can be restated as

um(t) � z(t) +
∫ t

0
b(s)um(s)ds. (2.29)
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It is obvious that z(t) is a nonnegative continuous and nondecreasing function in t for
t ∈ R+ . Using Lemma 1, we get

um(t) � B(t)z(t), (2.30)

where B(t) is defined by (2.27). From (2.28) and (2.30), we have

um(t) � B(t)[k(t) + v(t)], (2.31)

where v(t) =
∑m

i=1

∫ t
0 F(s, ui(s))ds . Using the generalization of Bernoulli’s inequality

to (2.31), we get

ui(t) � B
i
m (t)[k(t) + v(t)]

i
m

� B
i
m (t)[k

i
m (t) +

i
m

k
i
m−1(t)v(t)]. (2.32)

From (2.32) and the hypotheses on F , it follows that

v(t) �
m∑

i=1

∫ t

0
(F(s, B

i
m (s)[k

i
m (s) +

i
m

k
i
m−1(s)v(s)]ds

=
m∑

i=1

∫ t

0
(F(s, B

i
m (s)(k

i
m (s) +

i
m

k
i
m−1(s)v(s))) − F(s, B

i
m (s)k

i
m (s)))ds

+
m∑

i=1

∫ t

0
F(s, B

i
m (s)k

i
m (s))ds

� G(t) +
m∑

i=1

∫ t

0
Hi(s)B

i
m (s)

i
m

k
i
m−1(s)v(s)ds,

(2.33)

where G(t) is defined by (2.27) which is nondecreasing in t ∈ I . We assume G(t) > 0
for t ∈ I . Then from (2.33), we have

v(t)
G(t)

� 1 +
m∑

i=1

∫ t

0
Hi(s)B

i
m (s)

i
m

k
i
m−1(st)

v(s)
G(s)

ds. (2.34)

Let v(t)
G(t) = p(t) for t ∈ I , and define q(t) by the right hand of (2.34). Then q(t) > 0 ,

q(0) = 1 , p(t) < q(t) and

q′(t) �
m∑

i=1

Hi(t)B
i
m (t)

i
m

k
i
m−1(t)p(t)

�
m∑

i=1

Hi(t)B
i
m (t)

i
m

k
i
m−1(t)q(t)

� (t)
m∑

i=1

Hi(t)B
i
m (t)

i
m

k
i
m−1(t).
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From above inequality, we have

q′(t)
q(t)

�
m∑

i=1

Hi(t)B
i
m (t)

i
m

k
i
m−1(t).

Integrating above inequality from 0 to t , t ∈ I , we can get

q(t) � exp(
m∑

i=1

i
m

∫ t

0
Hi(s)B

i
m (s)k

i
m−1(s)ds). (2.35)

In light of v(t)
G(t) = p(t) < q(t) and (2.35), we have

v(t) � G(t)exp(
m∑

i=1

i
m

∫ t

0
Hi(s)B

i
m (s)k

i
m−1(s)ds). (2.36)

From (2.35) and (2.36), we have

u(t) � B
1
m (t)[k(t) + v(t)]

1
m

� B
1
m (t)[k

1
m (t) +

1
m

k
1
m−1(t)v(t)].

(2.37)

Now, (2.36) and (2.37) imply (2.26). This completes the proof.

3. The integral inequalities of two variables

In this section, we consider the two-independent-variable version of Section 3. Set
I1 = [0, X) , I2 = [0, Y) , where X, Y ∈ R+ , and denote Ω = I1 × I2 .

THEOREM3.1. Let k(x, y), u(x, y), ai(x, y) ∈ C(Ω, R+) , αi(x) ∈ C1(I1, I1), βi(y) ∈
C1(I2, I2) be nondecreasing with αi(x) < x on I1 , βi(y) < y on I2 , i = 1, 2 · · · , m.
If

um(x, y) � k(x, y) +
m∑

i=1

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)ui(s, t)dtds (3.1)

for (x, y) ∈ Ω , then

u(x, y) � k
1
m (x, y)

+
1
m

k
1
m−1(x, y)e(x, y)exp(

m∑
i=1

i
m

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)k

i
m−1(s, t)dtds)

(3.2)

for (x, y) ∈ Ω , where

e(x, y) =
m∑

i=1

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)k

i
m (s, t)dtds (3.3)

for (x, y) ∈ Ω .
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Proof. Let

z(x, y) =
m∑

i=1

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)ui(s, t)dtds. (3.4)

Then

um(x, y) � k(x, y) + z(x, y) = k(x, y)(1 +
z(x, y)
k(x, y)

). (3.5)

From (3.4) and (3.5), we have

z(x, y) �
m∑

i=1

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)k

i
m (s, t)(1 +

i
m

z(s, t)
k(s, t)

)dtds

=
m∑

i=1

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)k

i
m (s, t)dtds

+
m∑

i=1

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)

i
m

k
i
m (s, t)

z(s, t)
k(s, t)

dtds

= e(x, y) +
m∑

i=1

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)

i
m

k
i
m−1(s, t)z(s, t)dtds, (3.6)

where e(x, y) is defined by (3.3) which is nondecreasing in each of variables (x, y) ∈ Ω .
We assume that e(x, y) > 0 for (x, y) ∈ Ω . From (3.6), we get

z(x, y)
e(x, y)

� 1 +
m∑

i=1

i
m

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)k

i
m−1(s, t)

z(s, t)
e(s, t)

ds. (3.7)

Let z(x,y)
e(x,y) = p(x, y) for (x, y) ∈ Ω , and define q(x, y) by the right hand of (3.7). Then

q(x, y) > 0 , q(0, y) = q(x, 0) = 1 , p(x, y) < q(x, y) and

∂q(x, y)
∂x

�
m∑

i=1

∫ βi(y)

0
ai(α(x), t)k

i
m−1(α(x), t)p(α(x), t)α′(t)dt

�
m∑

i=1

∫ βi(y)

0
ai(α(x), t)k

i
m−1(α(x), t)q(α(x), t)α′(t)dt

� q(x, y)
m∑

i=1

∫ βi(y)

0
ai(α(x), t)k

i
m−1(α(x), t)α′(t)dt.

From above inequality, we have

∂q(x, y)
∂x

1
q(x, y)

�
m∑

i=1

∫ βi(y)

0
ai(α(x), t)k

i
m−1(α(x), t)α′(t)dt.

Integrating above inequality from 0 to x , x ∈ I1 , we can get

q(x, y) � exp(
m∑

i=1

i
m

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)k

i
m−1(s, t)dtds). (3.8)



264 KE DING, JONG-KYU KIM AND NAN-JING HUANG

In light of z(x,y)
e(x,y) = p(x, y) < q(x, y) and (3.8), we have

z(x, y) � e(x, y)exp(
m∑

i=1

i
m

∫ αi(x)

0

∫ βi(y)

0
ai(s, t)k

i
m−1(s, t)dtds). (3.9)

From (3.9) and (3.5), we have

u(x, y) � k
1
m (x, y) +

1
m

k
1
m−1(x, y)z(x, y). (3.10)

Now, (3.9) and (3.10) imply (3.2). This completes the proof.

THEOREM 3.2. Let k(x, y), u(x, y), ai(x, y) be the same as in Theorem 3.1 , and
gi ∈ S , i = 1, 2 · · · , m. If

um(x, y) � k(x, y) +
m∑

i=1

∫ αi(t)

0
ai(s, t)gi(ui(s, t))dtds, (3.11)

then for 0 � x � x1 and 0 � y � y1 ,

u(x, y) � k
1
m (x, y)+

1
m

k
1
m−1(x, y)e(x, y)G−1(G(1)+

m∑
i=1

i
m

∫ αi(t)

0
ai(s, t)k

i
m−1(s, t))dtds),

(3.12)
where

e(t) =
m∑

i=1

∫ αi(t)

0

∫ βi(y)

0
ai(s, t)gi(k

i
m (s, t))ds, (3.13)

G−1 is the inverse function of

G(r) =
∫ r

0

ds
g(s)

, r > 0, (3.14)

g(·) = max1�i�m gi(·) , and x1 ∈ I1, y1 ∈ I2 are chosen so that

G(1) +
m∑

i=1

∫ αi(x)

0

∫ βi(y)

0

i
m

ai(s, t)k
i
m−1(s, t)dtds ∈ Dom(G−1)

for all x ∈ [0, x1], y ∈ [0, y1] .

Proof. With the same way in Theorems 2.2 and 3.1, we can prove that (3.12)
holds.

THEOREM 3.3. Let k(x, y), u(x, y), ai(x, y) be the same as in Theorem 3.1 and
F : R+ × R+ × R+ → R+ be a continuous function satisfying the condition

0 � F(x, y, ui) − F(x, y, vi) � Hi(x, y)(ui − vi), (3.15)

for ui > vi > 0, i = 1, 2, · · · , m, where Hi(x, y) is a nonnegative continuous function
defined for x, y ∈ R+ , i = 1, 2, · · · , m. If

um(x, y) � k(x, y)+
∫ x

0

∫ y

0
b(s, t)(um(s, t))dtds+

m∑
i=1

∫ x

0

∫ y

0
F(s, t, ui(s, t))dtds (3.16)

for x, y ∈ R+ , then
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u(x, y) � B
1
m (x, y)[k

1
m (x, y) +

1
m

k
1
m−1(x, y) ×

× G(x, y) exp(
m∑

i=1

i
m

∫ x

0

∫ y

0
Hi(s, t)B

i
m (s, t)k

i
m−1(s, t)dtds)] (3.17)

for x, y ∈ R+ , where

G(x, y) =
m∑

i=1

∫ x

0

∫ y

0
F
(
s, t, B

i
m (s, t)k

i
m (s, t)

)
dtds,

B(x, y) = exp(
∫ x

0
b(s, y)ds)

(3.18)

for x, y ∈ R+ .

Proof. Let

z(x, y) = k(x, y) +
m∑

i=1

∫ x

0

∫ y

0
F(s, t, ui(s, t))dtds. (3.19)

Then (3.16) can be restated as

um(x, y) � z(x, y) +
∫ x

0

∫ y

0
b(s, t)um(s, t)dtds. (3.20)

It is obvious that z(x, y) is a nonnegative continuous and nondecreasing function in
x ∈ R+ . Treating y , y ∈ R+ fixed in (3.20), and using Lemma 1, we get

um(x, y) � B(x, y)z(x, y), (3.21)

where B(x, y) is defined by (3.18). From (3.19) and (3.21), we have

um(x, y) � B(x, y)[k(x, y) + v(x, y)], (3.22)

where v(x, y) =
∑m

i=1

∫ x
0

∫ y
0 F(s, t, ui(s, t))dtds . Using the generalization of Bernoulli’s

inequality to (3.22), we get

ui(x, y) � B
i
m (x, y)[k(x, y) + v(x, y)]

i
m

� B
i
m (x, y)[k

i
m (x, y) +

i
m

k
i
m−1(x, y)v(x, y)]. (3.23)

From (3.23) and the hypotheses on F , it follows that

v(x, y) �
m∑

i=1

∫ x

0

∫ y

0
F
(
s, t, B

i
m (s, t)[k

i
m (s, t) +

i
m

k
i
m−1(s, t)v(s, t)]

)
dtds

=
m∑

i=1

∫ x

0

∫ y

0
F
(
s, t, B

i
m (s, t)(k

i
m (s, t) +

i
m

k
i
m−1(s, t)v(s, t))

)

− F(s, t, B
i
m (s, t)k

i
m (s, t)))dtds +

m∑
i=1

∫ x

0

∫ y

0
F(s, t, B

i
m (s, t)k

i
m (s, t))dtds
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� G(x, y) +
m∑

i=1

∫ x

0

∫ y

0
Hi(s, t)B

i
m (s, t)

i
m

k
i
m−1(s, t)v(s, t)dtds. (3.24)

where G(x, y) is defined by (3.18) which is nondecreasing in each of variables x, y ∈
R+ . We assume that G(x, y) > 0 for x, y ∈ R+ . Then from (3.24), we have

v(x, y)
G(x, y)

� 1 +
m∑

i=1

∫ x

0

∫ y

0
Hi(s, t)B

i
m (s, t)

i
m

k
i
m−1(s, t)

v(s, t)
G(s, t)

dtds. (3.25)

Let v(x,y)
G(x,y) = p(x, y) for x, y ∈ R+ , and define q(x, y) by the right hand of (3.25). Then

q(x, y) > 0 , q(0, y) = q(x, 0) = 1 , p(x, y) < q(x, y) and

∂q(x, y)
∂x

�
m∑

i=1

∫ y

0
Hi(x, t)B

i
m (x, t)

i
m

k
i
m−1(x, t)p(x, t)dt

�
m∑

i=1

∫ y

0
Hi(x, t)B

i
m (x, t)

i
m

k
i
m−1(x, t)q(x, t)dt

� q(x, y)
m∑

i=1

∫ y

0
Hi(x, t)B

i
m (x, t)

i
m

k
i
m−1(x, t)dt.

From above inequality, we have

∂q(x, y)
∂x

1
q(x, y)

�
m∑

i=1

∫ y

0
Hi(x, t)B

i
m (x, t)

i
m

k
i
m−1(x, t)dt.

Integrating above inequality from 0 to x , x ∈ R+ , we can get

q(x, y) � exp(
m∑

i=1

i
m

∫ x

0

∫ y

0
Hi(s, t)B

i
m (s, t)k

i
m−1(s, t)dtds). (3.26)

In light of v(x,y)
G(x,y) = p(x, y) < q(x, y) and (3.26), we have

v(x, y) � G(x, y)exp(
m∑

i=1

i
m

∫ x

0

∫ y

0
Hi(s, t)B

i
m (s, t)k

i
m−1(s, t)dtds). (3.27)

From (3.22) and (3.23), we have

u(x, y) � B
1
m (x, y)[k(x, y) + v(x, y)]

1
m

� B
1
m (x, y)[k

1
m (x, y) +

1
m

k
1
m−1(x, y)v(x, y)]. (3.28)

Now (3.27) and (3.28) imply (3.17). This complete the proof.
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4. Some applications

In this section, we utilize the integral inequalities presented in Sections 2 and 3 to
analyze the bound of solutions for an integral equation and a partial differential equation,
respectively.

EXAMPLE 1. Consider a partial differential equation

pup−1(x, y)
∂2u(x, y)

∂x∂y
+p(p−1)up−2 ∂u(x, y)

∂x
∂u(x, y)

∂y
=

p∑
i=1

hi(x, y, u(x, y)) (4.1)

and

u(x, 0) = η(x), u(0, y) = θ(y), u(0, 0) = d, (4.2)

where h : R+ × R → R , η, θ : R+ → R are continuous functions and d is a real
constant, p > 1 is a constant. Suppose that

|hi(x, y, u)| � ai(x, y)|ui|, (4.3)

|η(x) + θ(y) − d| � k(x, y), (4.4)

where ai(x, y) and k(x, y) are nonnegative continuous functions for x, y ∈ R+ . Let
u(x, y) be a solution of (4.1) and (4.2) for x, y ∈ R+ . Then for x, y ∈ R+ ,

u(x, y) � k
1
m (x,y)+

1
m

k
1
m−1(x, y)e(x, y)exp(

m∑
i=1

i
m

αi(x)∫
0

βi(y)∫
0

ai(s, t)k
i
m−1(s, t)dtds). (4.5)

Proof. In fact, if u(x, y) is a solution of (4.1) and (4.2), then it can be written as
(see [9])

up(x, y) = η(x) + θ(y) − d +
p∑

i=1

∫ x

0

∫ y

0
hi(s, t, u)dtds (4.6)

for x, y ∈ R+ . From (4.3), (4.4) and (4.6), we have

up(x, y) � k(x, y) +
p∑

i=1

∫ x

0

∫ y

0
ai(s, t)ui(s, t)dtds. (4.7)

Now, using Theorem 3.1, we can get (4.5).

EXAMPLE 2. Consider the following integral equation

up(t) = k(t) +
p∑

i=1

∫ t

0
hi(u(s))ds, (4.8)

where hi : R+ → R, i = 1, 2 · · · , m . Suppose that

|hi(u(t))| � ai(t)|ui(t)|, (4.9)
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where ai(t) is a nonnegative continuous function for t ∈ R+ and i = 1, 2, · · · , m . Let
u(t) be a solution of (4.8). Then

u(t) � k
1
m (t)+

1
m

k
1
m−1(t)e(t) exp(

m∑
i=1

i
m

∫ αi(t)

0
ai(s)k

i
m−1(s)ds) for t ∈ R+. (4.10)

Proof. From (4.9), it is obvious that if u(t) is a solution of (4.8), then

up(t) � k(t) +
p∑

i=1

∫ t

0
ai(s)ui(s)ds.

From Theorem 2.1, we know that (4.10) holds. This completes the proof.
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