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ERROR BOUNDS FOR AFFINE FRACTAL INTERPOLATION

M. A. NAVASCUÉS AND M. V. SEBASTIÁN

Abstract. Fractal interpolation constitutes an advance in the techniques of approximation in the
sense that the functions used are not necessarily differentiable and show the rough aspect of real-
world signals. We prove here that the affine fractal interpolation functions play, for non-smooth
functions, a role similar to polynomials for smooth functions. The affine fractal interpolation
operator is studied and its linearity and continuity is proven. A sufficient condition for the
convergence of this type of interpolant as the step tends to zero is also given. As a consequence,
the density of affine fractal functions in the space of continuous functions is deduced. The error
of interpolation is bounded in two ways, in terms of the scale factors of the transformation and
by means of the Lebesgue constant of the associated partition. Finally, a general method of data
fitting is proposed and the validity and convergence of the procedure is proven as well.
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