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Abstract. Fractal interpolation constitutes an advance in the techniques of approximation in the
sense that the functions used are not necessarily differentiable and show the rough aspect of real-
world signals. We prove here that the affine fractal interpolation functions play, for non-smooth
functions, a role similar to polynomials for smooth functions. The affine fractal interpolation
operator is studied and its linearity and continuity is proven. A sufficient condition for the
convergence of this type of interpolant as the step tends to zero is also given. As a consequence,
the density of affine fractal functions in the space of continuous functions is deduced. The error
of interpolation is bounded in two ways, in terms of the scale factors of the transformation and
by means of the Lebesgue constant of the associated partition. Finally, a general method of data
fitting is proposed and the validity and convergence of the procedure is proven as well.

1. Introduction

The reconstruction of an unknown function providing a set of data can be ap-
proached by means of fractal interpolation ([1], [2]). The power of that methodology
allows us to generalize any other interpolant, both smooth and non-smooth ([7], [8], [9]).
Another important fact is that this technique provides one of the few methods of non-
differentiable interpolation ([10]). We prove here that fractal interpolation functions
play, for non-smooth functions, a role similar to polynomials for smooth functions. The
affine fractal interpolation operator is defined and studied and its linearity and conti-
nuity proven. Affine fractal functions become eigenfunctions (or fixed points) of this
operator.

The error of interpolation is bounded in two ways, in terms of the scale factors of
the transformation and by means of the Lebesgue constant of the associated partition.
We give a sufficient condition for the convergence of this type of interpolants, when
the step tends to zero. As a consequence, the density of affine fractal functions in the
space of continuous functions on a compact interval is deduced. The sensitivity of the
interpolants to small data errors is studied.

Another specific feature is the fact that the graph of these interpolants possesses a
fractal dimension. This parameter constitutes a geometric characterization of the signal
that can be used as a measure of the complexity of a phenomenon. The authors have
used the fractal dimension of electroencephalographic recordings in order to describe
the increase in the bioelectric complexity during several tests of attention in children
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([9]). From this practical point of view, we propose a general method of data fitting,
and prove the validity and convergence of the procedure if the step is low enough.

2. Fractal interpolation functions

Let t0 < t1 < ... < tN be real numbers, and I = [t0, tN ] be the closed interval
that contains them. Let a set of data points {(tn, xn) ∈ I × R : n = 0, 1, 2, ..., N}
be given. Set In = [tn−1, tn] and let Ln : I → In, n ∈ {1, 2, ..., N} be contractive
homeomorphisms such that

Ln(t0) = tn−1, Ln(tN) = tn, (1)

|Ln(c1) − Ln(c2)| � l |c1 − c2| ∀ c1, c2 ∈ I (2)
for some 0 � l < 1 .

Let −1 < αn < 1 ; n = 1, 2, ..., N , F = I × [c, d] for some −∞ < c < d < +∞
and N continuous mappings, Fn : F → R be given satisfying:

Fn(t0, x0) = xn−1, Fn(tN , xN) = xn, n = 1, 2, ..., N, (3)

|Fn(t, x) − Fn(t, y)| � r|x − y|, t ∈ I, x, y ∈ R, 0 � r < 1. (4)
Now define functions wn(t, x) = (Ln(t), Fn(t, x)), ∀ n = 1, 2, ..., N .

THEOREM 2.1. [(Barnsley [2])] The iterated function system (IFS) {F, wn : n =
1, 2, ..., N} defined above admits a unique attractor G . G is the graph of a continuous
function f : I → R which obeys f (tn) = xn for n = 0, 1, 2, ..., N .

The previous function is called a fractal interpolation function (FIF) corresponding
to {(Ln(t), Fn(t, x))}N

n=1 .

Let G be the set of continuous functions f : [t0, tN ] → [c, d] such that f (t0) = x0 ;
f (tN) = xN . G is a complete metric space with respect to the uniform norm

‖f ‖∞ = sup{|f (t)|; t ∈ I}.
Define a mapping T : G → G by

(Tf )(t) = Fn(L−1
n (t), f ◦ L−1

n (t)) ∀ t ∈ [tn−1, tn], n = 1, 2, ..., N. (5)

T is a contraction mapping on the metric space (G , ‖ · ‖∞)

‖Tf − Tg‖∞ � |α|∞‖f − g‖∞ (6)
where |α|∞ = max {|αn|; n = 1, 2, ..., N} . Since |α|∞ < 1 , T possesses a unique
fixed point on G , that is to say, there is f ∈ G such that (Tf )(t) = f (t) ∀ t ∈ [t0, tN ] .
This function is the FIF corresponding to wn and it is the unique f ∈ G satisfying the
functional equation ([1])

f (t) = Tf (t) = Fn(L−1
n (t), f ◦ L−1

n (t)), (7)

with n = 1, 2, ..., N, and t ∈ In = [tn−1, tn] .
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3. A basis of affine fractal interpolation functions

The most widely studied fractal interpolation functions so far are defined by the
IFS {

Ln(t) = ant + bn

Fn(t, x) = αnx + qn(t)
(8)

where

an =
(tn − tn−1)
(tN − t0)

and bn =
(tN tn−1 − t0tn)

(tN − t0)
. (9)

αn is called the vertical scaling factor of the transformation wn and α = (α1,α2, . . . ,αN)
is the scale vector of the IFS. If qn(t) is a line, the FIF is termed affine (AFIF). In this
case, by equations (3) qn(t) = cnt + dn , with

cn =
xn − xn−1

tN − t0
− αn

xN − x0

tN − t0
, (10)

dn =
tNxn−1 − t0xn

tN − t0
− αn

tNx0 − t0xN

tN − t0
. (11)
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Figure 1. Graph of an affine fractal interpolation function with data
{(0, 0.5), (0.2, 3), (0.4, 1), (0.6, 1.4), (0.8, 2), (1, 0)} and scale factors

αn = 0.3 ∀n = 1, 2, · · · , 5

In order to simplify the computations, we consider here the interval I = [0, 1] and
a partition, for N > 1 :

ΔN : 0 <
1
N

<
2
N

< . . . <
N
N

= 1. (12)

In this case
an =

1
N

and bn =
n − 1

N
, (13)

cn = xn − xn−1 − αn(xN − x0), (14)
dn = xn−1 − αnx0, (15)

and, if f is the associated function, by (7)

f (t) = Tf (t) = αnf ◦ L−1
n (t) + qn ◦ L−1

n (t), (16)

with n = 1, 2, ..., N, and t ∈ In = [tn−1, tn] .
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REMARK 1. If αn = 0 ∀ n = 1, 2, ..., N , f (t) = qn ◦ L−1
n (t) ∀ t ∈ In and f is

piecewise linear with vertices (tn, xn) ([1]).

DEFINITION 1. Let us consider the data {(tn, xkn)}N
n=0 such that tn = n

N and xkn =
δkn where δkn is the delta of Kronecker. The k− th affine fractal interpolation function
f αkN with respect to the scale vector α ∈ R

N and the partition ΔN is defined by the
equality

f αkN (tn) = xkn ∀ n = 0, 1, ..., N. (17)

LEMMA 3.1. Let us consider the function f αkN previously defined. The corre-
sponding iterated function system is given by the mappings {(Ln, Fkn)}N

n=0 such that
Ln(t) = ant + bn where

an =
1
N

, bn =
n − 1

N
(18)

and Fkn(t, x) = αnx + qkn(t) where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q01(t) = (−1 + α1)(t − 1)
q02(t) = α2 (t − 1)
q03(t) = α3 (t − 1)
...

q0N(t) = αN (t − 1)

(19)

for 1 � k � N − 1 : ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qk1(t) = 0

qk2(t) = 0
...

qkk(t) = t

qk(k+1)(t) = −t + 1

...

qkN(t) = 0

(20)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qN1(t) = α1(−t)
qN2(t) = α2 (−t)
...

qNN(t) = (−1 + αN) (−t)

(21)

Proof. It is a trivial consequence of the definition of f αkN and the equalities (14)
and (15) . �
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LEMMA3.2. Let {(tn, xn)}N
n=0 be data points and let {(Ln, Fn)}N

n=0 with Fn(t, x) =
αnx+ qn(t) be the associated iterated function system. Let qkn be the functions defined
by (19) , (20) and (21) . The following equality holds for 1 � n � N

qn(t) =
N∑

k=0

xkqkn(t) ∀ t ∈ I.

Proof. For n = 1 ,

N∑
k=0

xkqk1(t) = x0q01(t) + x1q11(t) + xNqN1(t),

N∑
k=0

xkqk1(t) = x0(−1 + α1)(t − 1) + x1t + xNα1(−t).

For n �= 1 , n �= N ,

N∑
k=0

xkqkn(t) = x0q0n(t) + xn−1q(n−1)n(t) + xnqnn(t) + xNqNn(t),

N∑
k=0

xkqkn(t) = x0αn(t − 1) + xn−1(−t + 1) + xnt + xNαn(−t) = cnt + dn.

For n = N ,
N∑

k=0

xkqkN(t) = x0q0N(t) + xN−1q(N−1)N(t) + xNqNN(t),

N∑
k=0

xkqkN(t) = x0αN(t − 1) + xN−1(−t + 1) + xN(−1 + αN)t.

In all the cases N∑
k=0

xkqkn(t) = cnt + dn,

where

cn = (xn − xn−1) − αn(xN − x0),
dn = xn−1 − αnx0,

and
N∑

k=0

xkqkn(t) = qn(t). �
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PROPOSITION 3.3. Let f αN be the fractal interpolation function associated to
partition ΔN and data points {(tn, xn)}N

n=0 with scale vector α . f αN can be expressed
as

f αN =
N∑

k=0

xkf
α
kN . (22)

Proof. We will prove that f αN =
∑N

k=0 xkf αkN is the affine fractal interpolation
functionwith respect to the data {(tn, xn)}N

n=0 with scale vector α . If t ∈ In = [tn−1, tn] ,
let T be the mapping of the IFS associated to the data (5)

Tf αN (t) = T

( N∑
k=0

xkf
α
kN

)
(t)

= Fn(L−1
n (t), f αN ◦ L−1

n (t))

= αnf
α
N ◦ L−1

n (t) + qn ◦ L−1
n (t),

by Lemma 3.2

qn =
N∑

k=0

xkqkn,

and

T(f αN )(t) = αn

( N∑
k=0

xkf
α
kN

)
◦ L−1

n (t) +
( N∑

k=0

xkqkn

)
◦ L−1

n (t)

=
N∑

k=0

xk

(
αnf

α
kN ◦ L−1

n (t) + qkn ◦ L−1
n (t)

)
.

On the other hand, f αkN is the FIF associated to {(Ln, Fkn)} where Fkn(t, x) = αnx +
qkn(t) , therefore for t ∈ In ,

f αkN(t) = αnf
α
kN ◦ L−1

n (t) + qkn ◦ L−1
n (t),

and

T(f αN ) =
N∑

k=0

xkf
α
kN = f αN .

f αN is the fixed point of the transformation T . By the uniqueness of the FIF, the result
is obtained. �

In the space of real-valued functions defined on [0, 1] , consider the bilinear form
provided by the partition ΔN

〈 f , g〉 =
N∑

n=0

f
( n

N

)
g

( n
N

)
. (23)
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LEMMA 3.4. The family {f αkN}N
k=0 is an orthonormal system with respect to the

form (23) .

Proof.

〈 f αkN , f αjN〉 =
N∑

n=0

f αkN
( n

N

)
f αjN

( n
N

)
=

N∑
n=0

δknδjn = 0 if j �= k. �
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Figure 2. Basis function f α35 with scale αn = 0.3, ∀n = 1, 2, · · · , 5

Let Bα
N be the set of AFIF associated to the partition ΔN with scale vector α ∈ R

N .

THEOREM 3.5. The system {f αkN}N
k=0 is a basis of the linear space Bα

N .

Proof. By Proposition 3.3 , {f αkN}N
k=0 spans Bα

N . The independence is a conse-
quence of Lemma 3.4 , because if

N∑
k=0

λkf
α
kN = 0

then

0 = 〈
N∑

k=0

λkf
α
kN , f αjN〉 =

N∑
k=0

λk〈 f αkN , f αjN〉

= λj〈 f αjN , f αjN〉 = λj

N∑
n=0

(
f αjN

( n
N

))2

= λj

N∑
n=0

δ 2
jn = λj. �

REMARK 2 Bα
N is a space of finite dimension (see also [6]). As a consequence, if

Bα
N is considered as subspace of C[0, 1] with the uniform norm, Bα

N is a closed subset.

Barnsley’s Theorem assures that the following general problem of finite interpola-
tion has a solution for X = Bα

N and li(f ) = f (ti) :
“Let X be a linear space of dimension N + 1 and let l0, l1, . . . , lN be N + 1

given linear functionals defined on X . For a given set of values x0, x1, . . . , xN , find an
element of X , say f , such that li(f ) = xi for i = 0, 1, . . . , N ”

The next result is provided in [4].
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THEOREM 3.6. ([4]) Let X be a linear space of dimension N + 1 and let X∗

be its algebraic conjugate space. The general problem of finite interpolation possesses
a solution for arbitrary x0, x1, . . . , xN if and only if the operators {li}N

i=0 are linearly
independent in X∗ .

From this result one can deduce that the elements li ∈ (Bα
N)∗ defined by li(f ) =

f (ti) are linearly independent and consequently form a basis of the dual space (Bα
N)∗ .

In [10] Chen gives some sufficient conditions for the nowhere differentiability of
an affine fractal interpolation function.

THEOREM 3.7. ([10]) If |αn| � 1
N and xn − xn−1 �= xN−x0

N for all n ∈
{1, 2, . . . , N} , then the associated AFIF is nowhere differentiable in the interval (0, 1) .

The former condition is fulfilled by f α0N and f αNN whenever minn |αn| � 1
N ,

(N � 2 ). In consequence, at least the basis functions are nowhere differentiable for
k = 0 and k = N in this case.

DEFINITION 2. Let g be a real-valued function defined in [0, 1] , the operator of
affine fractal interpolation Aα

N is defined by the equality

Aα
N(g)(t) =

N∑
k=0

g

(
k
N

)
f αkN(t) (24)

∀ t ∈ [0, 1].

LEMMA 3.8. Let f and g be defined in [0, 1] such that f (tk) = g(tk) ∀ tk ∈ ΔN

for some N , then
Aα

N(f ) = Aα
N(g).

Proof. ∀t ∈ [0, 1]

Aα
N(f )(t) =

N∑
k=0

f

(
k
N

)
f αkN(t) =

N∑
k=0

g

(
k
N

)
f αkN(t) = Aα

N(g)(t) �

The set Δ = ∪N∈NΔN is dense in the interval I .

LEMMA 3.9. If f and g are functions defined on I such that

lim
N→∞

Aα
N(f )(t) = g(t) ∀ t ∈ Δ

then
f (t) = g(t) ∀ t ∈ Δ.

Proof. If t ∈ Δ , then t ∈ ΔN0 for some N0 , t = n
N0

and

Aα
N0

(f )(t) = f (t).

If the sequence of partitions {ΔmN0} is considered t = n
N0

= mn
mN0

∈ ΔmN0 and
Aα

mN0
(f )(t) = f (t)

f (t) = lim
m→∞Aα

mN0
(f )(t) = g(t). �
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LEMMA 3.10. If, in addition to the hypotheses of Lemma 3.9 , f , g ∈ C[0, 1] , then
f = g .

Proof. It is a consequence of the density of Δ in [0, 1] and the continuity of f
and g . If t ∈ [0, 1] one can find a sequence tm ∈ Δ such that tm → t as m → ∞ . In
this case f (tm) → f (t) and g(tm) → g(t) . But f (tm) = g(tm) and as a consequence
f (t) = g(t) . �

PROPOSITION 3.11. If g is uniform limit of Aα
N(f ) with f ∈ C[0, 1] as N → ∞ ,

then f = g .

Proof. In this case g is continuous because Aα
N(f ) are so. The hypotheses of

Lemma 3.10 are fulfilled and the result is obtained. �

4. Error of interpolation

Let C[0, 1] be the space of continuous functions defined on I = [0, 1] , endowed
with the uniform norm

‖f ‖∞ = sup{|f (t)|; t ∈ [0, 1]}
PROPOSITION 4.1. Aα

N is a linear operator of C[0, 1] .

Proof. Aα
N(g) is a continuous function and ∀ t ∈ [0, 1]

Aα
N(f + g)(t) =

N∑
k=0

(f + g)
(

k
N

)
f αkN(t) = Aα

N(f )(t) + Aα
N(g)(t). �

PROPOSITION 4.2. Aα
N is a bounded operator.

Proof. If g ∈ C[0, 1] , Aα
N(g) is an affine fractal interpolation function associated

to {(tn, xn = g(tn))} . In [5] Feng and Xie prove, for functions of this type,

‖Aα
N(g)‖∞ � 1 + |α|∞

1 − |α|∞ max
0�n�N

{|xn|} � 1 + |α|∞
1 − |α|∞ ‖g‖∞,

where |α|∞ = max1�n�N{|αn|} . As a consequence

‖Aα
N‖ � 1 + |α|∞

1 − |α|∞ . �

PROPOSITION 4.3. If gα is an affine fractal interpolation function associated to
the partition ΔN with scale vector α ∈ R

N , then

Aα
N(gα) = gα .
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Proof.

Aα
N(gα) =

N∑
k=0

gα
(

k
N

)
f αkN =

N∑
k=0

xkf
α
kN .

In Proposition 3.3 we have proved that
∑N

k=0 xkf αkN is an AFIF associated to the data
points {(tk, xk)}N

k=0 . By the uniqueness of this kind of functions

gα = Aα
N(gα). �

REMARK 3. The AFIF with scale vector α are fixed points or eigenfunctions of the
operator Aα

N and 1 ∈ σp(Aα
N) where σp(Aα

N) is the point spectrum of Aα
N . Aα

N is not
a contraction since, if it were, there would be a unique fixed point.

PROPOSITION 4.4.
Aα

N ◦ Aα
N = Aα

N .

Proof. It is a consequence of Proposition 4.3 , since Aα
N(g) is an affine fractal

interpolation function associated to the partition ΔN with scale vector α ∈ R
N and

therefore a fixed point of Aα
N

Aα
N(Aα

N(g)) = Aα
N(g). �

PROPOSITION 4.5. ∀f , g ∈ C[0, 1]

‖Aα
N(f ) − Aα

N(g)‖∞ � 1 + |α|∞
1 − |α|∞ ‖f − g‖∞.

Proof. By the linearity and boundness of the operator

‖Aα
N(f ) − Aα

N(g)‖∞ � ‖Aα
N(f − g)‖∞ � 1 + |α|∞

1 − |α|∞ ‖f − g‖∞. �

REMARK 4.As explained in Remark 1, A0
N is the operator that maps each function

g to the piecewise linear function with vertices (tn, g(tn)) .

PROPOSITION 4.6. The sequence of operators A0
N of C[0, 1] converges to the

identity as N tends to ∞ .

Proof. A0
N(g) is a piecewise linear function with vertices (tn, g(tn) = xn) . Let us

denote ḡ = A0
N(g) . In the interval [tn−1, tn]

ḡ(t) = xn +
xn − xn−1

tn − tn−1
(t − tn). (25)

Then ∀ t ∈ In ,

|ḡ(t) − g(t)| = |xn +
xn − xn−1

tn − tn−1
(t − tn) − g(t)| � |xn − xn−1| + |xn − g(t)|. (26)



ERROR BOUNDS FOR AFFINE FRACTAL INTERPOLATION 283

Let w(h) be the modulus of continuity of g defined as

w(h) = sup
|t−t′|�h

|g(t) − g(t′)|.

Then ∀ t ∈ In ,

|xn − xn−1| = |g(tn) − g(tn−1)| � w

(
1
N

)
,

|xn − g(t)| = |g(tn) − g(t)| � w

(
1
N

)
.

The inequality (26) implies

|ḡ(t) − g(t)| � 2 w

(
1
N

)
∀ t ∈ In

and

‖A0
N(g) − g‖∞ � 2 w

(
1
N

)
. (27)

If g is uniformly continuous, w(h) → 0 when h → 0 ([3]). In consequence,

‖A0
N(g) − g‖∞ → 0

as N → ∞ , from which the result is deduced. �

THEOREM 4.7. (Error bound of affine fractal interpolation) If g ∈ C[0, 1] the
following inequality holds

‖Aα
N(g) − g‖∞ � 2 w

(
1
N

)
+

2|α|∞
1 − |α|∞ ‖g‖∞. (28)

Proof.

‖Aα
N(g) − g‖∞ � ‖Aα

N(g) − A0
N(g)‖∞ + ‖A0

N(g) − g‖∞. (29)

In [9] we proved that if gα is the AFIF associated to the data {(tk, g(tk))}N
k=0 , and

ḡ = A0
N(g) is the polygonal with vertices {(tk, g(tk))}N

k=0

‖gα − ḡ‖∞ � 2|α|∞
1 − |α|∞ max

0�k�N
{|g(tk)|}.

As a consequence, the first term of (29) satisfies

‖Aα
N(g) − A0

N(g)‖∞ � 2|α|∞
1 − |α|∞ ‖g‖∞.

The second is bounded in Proposition 4.6 by (27)

‖A0
N(g) − g‖∞ � 2 w

(
1
N

)
,

and the result is deduced. �
As a consequence one has the following result.
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THEOREM 4.8. (Sufficient condition of convergence). If the scale factors are
chosen so that

|α|∞ = O((ln N)−p)
with p > 0 , or an infinitesimal of higher order, then the sequence of affine fractal
interpolation functions of g at ΔN tends to the function g ∈ C[0, 1] as N tends to
infinity.

Proof. It is a consequence of Theorem 4.7 . As g is uniformly continuous,
w( 1

N ) → 0 as N tends to infinity ([3]) and the second term of (28) does as well due to
the proposed hypothesis. �

Let B = ∪N∈N,α∈JBα
N be the set of affine fractal interpolation functions with scale

factors α such that |α|∞ < 1 on any finite partition of I = [0, 1] .

THEOREM 4.9. B is dense in C[0, 1] .

Proof. It is a consequence of Theorem 4.7 , since for each g ∈ C[0, 1] and each
ε > 0 , some sufficiently small α ∈ J and 1

N can be chosen so that the difference
between Aα

N(g) and g be lower than ε . �
REMARK 5. The same result is proved in the reference [9] by means of other

procedures.

REMARK 6. It is important to emphasize the parallelism existing between fractal
interpolation functions for non-differentiable functions, and polynomials for smooth
functions.

In the following, a bound of the interpolation error by means of the Lebesgue
constant of ΔN is obtained.

DEFINITION 3. ([4]) A scheme of interpolation nodes which is fixed a priori (inde-
pendently of the functions to be approximated),

K =

⎛
⎜⎜⎜⎝

t10 t11

t20 t21 t22

t30 t31 t32 t33
...

...
...

...
. . .

⎞
⎟⎟⎟⎠

is called a node matrix.

DEFINITION 4. ([4]) The Lebesgue function of K of order N + 1 is

ΛN(t; K) =
N∑

i=0

|ϕi,N(t)|,

where ϕiN is the i-th interpolant polynomial respect to the partition t0N , t1N , · · · tNN

defined by
ϕiN(tjN) = δij.

The Lebesgue constant of K of order N + 1 is

ΛN(K) = ‖ΛN(t; K)‖∞.
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Let PN [0, 1] be the set of polynomials of degree at most N in the interval [0,1].
The fact that PN [0, 1] has a finite dimension allows the existence of a minimum distance
from a function f ∈ C[0, 1] to this subspace

d∗
N(f ) = d(f ,PN [0, 1]) (30)

THEOREM 4.10. ([4]). For a function f ∈ C[a, b] and a sequence of polynomial
interpolants {pN(f )}∞N=1 with respect to the node matrix K , the following inequality
holds

‖f − pN(f )‖∞ � d∗
N(f )(1 + ΛN(K)), N = 1, 2, . . .

The Lebesgue constant (which depends on the node matrix K but not on f ) gives
a measure of the separation of the interpolation error from the minimum error d∗

N(f ) .

THEOREM 4.11. If g ∈ C[0, 1] , then

‖Aα
N(g) − g‖∞ � (d∗

N(g) + d∗
N(Aα

N(g)))(1 + ΛN(K))

with ΛN(K) being the Lebesgue constant of the node matrix corresponding to partitions
ΔN .

Proof. If pN(g) is the polynomial interpolant of g with respect to ΔN

Aα
N(g) − g = Aα

N(g) − pN(Aα
N(g)) + pN(Aα

N(g)) − pN(g) + pN(g) − g.

But pN(g) = pN(Aα
N(g)) because the functions g and Aα

N(g) agree at the points of ΔN

and
‖Aα

N(g) − g‖∞ � ‖Aα
N(g) − pN(Aα

N(g))‖∞ + ‖g − pN(g)‖∞,

‖Aα
N(g) − g‖∞ � (d∗

N(Aα
N(g)) + d∗

N(g))(1 + ΛN(K)),

according to Theorem 4.10 . �
The behaviour of d∗

N(g) for functions g with specific properties is treated in [3].
The generalized Jackson’s theorem states the inequality

d∗
N(g) � c w

(
1
N

)
,

where c is a constant and w the modulus of continuity of g .

5. Fitting real data

In this paragraph we propose a general method of real data fitting, and prove the
validity and convergenceof the procedure if the sampling frequency is sufficiently large.

Let {(tn, xn)}J
n=0 be a subset of the data, that are considered equidistant here,

tn = t0 + nh , t0 = 0 and tJ = 1 . These values are used as interpolation nodes, and we
consider the intermediate points of the signal t̄j ∈ In = [tn−1, tn] , j = 1, 2, ..., m− 1 as
target points to define the fit. If t̄j are also equidistant

t̄j =
(m − j)tn−1 + jtn

m
and L−1

n (t̄j) =
(m − j)t0 + jtN

m
=

j
m

. (31)
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The value of the FIF at the point t̄j is given by the equation (16) . Replacing the
value of the function f in L−1

n (t̄j) by the value of a chosen interpolant of the data, fΔ ,
(with interpolation nodes tn )

f (t̄j) � αnfΔ ◦ L−1
n (t̄j) + qn ◦ L−1

n (t̄j) (32)
where

qn ◦ L−1
n (t̄j) = cn

j
m

+ dn,

according to (14) and (15)

qn ◦ L−1
n (t̄j) =

(m − j)xn−1 + jxn

m
− αn

(m − j)x0 + jxN

m

and by (31) and (32)

f (t̄j) � αn

(
fΔ

(
j
m

)
− (m − j)x0 + jxN

m

)
+

(m − j)xn−1 + jxn

m

x̄j = f (t̄j) � αnu(j) + v1(j).

Now we can compute αn by means of least squares approximation

min E(αn) =
m−1∑
j=1

(αnu(j) + v1(j) − x̄j)2.

Differentiating with respect to αn , if v(j) = v1(j) − x̄j , the following value of αn is
obtained

αn =
−∑m−1

j=1 v(j)u(j)∑m−1
j=1 u(j)2

(33)

where

u(j) = fΔ(
j
m

) − (m − j)x0 + jxN

m
,

−v(j) = x̄j − (m − j)xn−1 + jxn

m
.

The point (t̄j,
(m−j)xn−1+jxn

m ) lies on the polygonal g with vertices (tn, xn) . In
Proposition 4.6 , the inequality (27) gives an upper bound of the distance between g
and the original continuous function g . The bound tends to zero as N tends to infinity,
and thus v(j) . u(j) does not depend on the interpolation step h . As a consequence,
α → 0 if h → 0 . This fact allows us to obtain a step h low enough to get |α|∞ < 1 .

5.1. Bounding the errors

By (33)
αn = − u.v

|u|22
where u = (u(1), u(2), . . . , u(m − 1)) and v = (v(1), v(2), . . . , v(m − 1)) .
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Applying Schwartz’s inequality

|αn| � |v|2
|u|2 ,

where |u|2 =
√∑m−1

j=1 u(j)2 . The point (t̄j,
(m−j)xn−1+jxn

m ) lies on the line passing

trough (tn−1, xn−1) , (tn, xn) and therefore, using (27)

|v(j)| � 2w

(
1
J

)
,

|v|2 � 2w

(
1
J

)√
m − 1,

and

|α|∞ �
2w( 1

J )
√

m − 1

|u|2 = C.

If C < 1 ,
|α|∞

1 − |α|∞ � C
1 − C

.

Theorem 4.7 bounds the distance between the original function g and the defined AFIF
f . Using the former inequalities one has

‖f − g‖∞ � 2w

(
1
J

)
+

2C
1 − C

‖g‖∞ = 2w

(
1
J

) (
1 +

2
√

m − 1
|u|2(1 − C)

‖g‖∞
)

.

The convergence of f towards g as J tends to infinity is guaranteed if g is continuous.

6. The condition of function and parameters

The number of condition describes the sensitivity of the approximants to pertur-
bations of the data. Let x0, x1, . . . , xN unperturbed data points and x̃0, x̃1, . . . , x̃N the
perturbed data. Let us denote |x − x̃|∞ = max0�n�N{|x̃n − xn|} . The condition of
parameters measures the variation of the constants defining the interpolant when the
data are changed. The equalities (14) and (15) provide

|cn− c̃n| = |xn− x̃n− (xn−1− x̃n−1)+αn((xN − x̃N)− (x0− x̃0)| � 2|x− x̃|∞(1+ |α|∞)

and the condition of this parameter is

kc � 2(1 + |α|∞) .

For the second coefficient of the line qn

|dn − d̃n| = |xn−1 − x̃n−1 − αn(x0 − x̃0)| � |x − x̃|∞(1 + |α|∞)

and consequently
kd � 1 + |α|∞.
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The condition of function values kf is obtained from the norm of Aα
N

‖Aα
N(f ) − Aα

N( ˜f )‖∞ � ‖Aα
N‖ ‖f − ˜f ‖∞ ,

then

kf � 1 + |α|∞
1 − |α|∞ .

RE F ER EN C ES

[1] M. F. BARNSLEY, Fractals Everywhere, Academic Press, Inc. 1988.
[2] M. F. BARNSLEY, Fractal functions and interpolation, Constr. Approx., 2, (4) (1986), 303–329.
[3] E. W. CHENEY, Approximation Theory, AMS Chelsea Publ. 1966.
[4] P. J. DAVIS, Interpolation and Approximation, Dover 1963.
[5] Z. FENG, H. XIE, On stability of fractal interpolation, Fractals, 6, (3) (1998), 269–273.
[6] P. MASSOPUST, Fractal functions and their applications, Chaos Solitons Fractals, 8, (2), (1997), 171–

190.
[7] M. A. NAVASCUES, M. V. SEBASTIAN, Generalization of Hermite functions by fractal interpolation, J. of

Approx. Theory, 131, (1) (2004), 19–29.
[8] M. A. NAVASCUES, M. V. SEBASTIAN, Some results of convergence of spline fractal interpolation

functions, Fractals, 11, (1) (2003), 1–7.
[9] M. A. NAVASCUES, M. V. SEBASTIAN, Fitting curves by fractal interpolation: an application of cognitive

brain processes. In: Thinking in Patterns: Fractal and Related Phenomena in Nature. Novak M.M.(ed.),
World Sci. 2004.

[10] S. CHEN, The non-differentiability of a class of fractal interpolation functions, Acta Math. Sci., 19, (4)
(1999), 425–430.

[11] J. SZABADOS, P. VERTESI, Interpolation of functions, World Scientific. 1990.
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Dpto. de Matemáticas-Facultad de Ciencias

Universidad de Zaragoza
Pza. San Francisco, s/n

50009 Zaragoza
Spain

e-mail: msebasti@unizar.es

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


