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ON RECIPROCAL POLYNOMIALS WITH ZEROS OF MODULUS ONE

LÁSZLÓ LOSONCZI

(communicated by Z. Daróczy)

Abstract. The purpose of this paper is to characterize reciprocal polynomials all of whose zeros
are on the unit circle. Using this characterization we give bounds for the coefficients of such
polynomials and show how other necessary conditions (inequalities for the coefficients) can be
obtained from the characterization theorem.

1. Introduction

The aim of this paper is to characterize reciprocal polynomials all of whose zeros
are on the unit circle. First, using elementary algebra, we give a factorization of
reciprocal polynomials whose zeros are on the unit circle. In Section 2 we prove a
Viéta–like formula for such reciprocal polynomials and give their characterization in
terms of the coefficients. In Section 3 we find bounds for the coefficients of reciprocal
polynomials whose zeros lie on the unit circle. In Section 4 we prove some other
necessary conditions (inequalities) for the coefficients.

DEFINITION 1.A polynomial pm of the form

pm(z) =
m∑

j=0

ajz
j (z ∈ C)

where m ∈ N, am �= 0, a0, . . . , am ∈ C and

aj = am−j (j = 0, . . . , m)

is called a reciprocal polynomial of degree m.
If p2n is a reciprocal polynomial of degree 2n with n ∈ N then

p2n(z) =
2n∑
j=0

ajz
j = zn

[
a2n

(
zn +

1
zn

)
+ · · · + an+1

(
z +

1
z

)
+ an

]
.

This shows that if β is a zero of p2n then so is
1
β

.
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LEMMA 1. A complex reciprocal polynomial p2n of degree 2n has all its zeros on
the unit circle if and only if there are n real numbers α1, . . . ,αn in the interval [−2, 2]
such that

p2n(z) = a2n

n∏
k=1

(z2 − αkz + 1). (1)

Proof. If β is a zero of p2n on the unit circle then
1
β

= β̄ is also a zero, hence
the polynomial has a factor of the form

(z − β)(z − β̄) = z2 − (β + β̄) + 1 = z2 − αz + 1

where α = β + β̄ = 2Re(β) with Re denoting the real part of a complex number.

Clearly |α| = 2|Re(β)| � 2. Collecting all zeros of p2n into pairs

(
βk,

1
βk

)
, (k =

1, . . . , n) and multiplying the corresponding factors we obtain the factorization (1)
where αk = βk + β̄k, (k = 1, . . . , n) .

Conversely, if (1) holds then p2n is clearly a complex reciprocal polynomial with
all zeros are on the unit circle.

We remark that by the help of Chebysev transformation one can characterize
reciprocal polynomials that have a given (even) number of zeros on the unit circle (see
Lakatos [3] where a related result is proved for polynomials with real coefficients).
From Lemma 1 it follows that if all zeros of a complex monic reciprocal polynomial are
on the unit circle then all of its coefficients are real.

2. Characterization

From Lemma 1 it follows that all zeros of a monic reciprocal polynomial

p2n(z) =
2n∑

k=0

A2n,kz
k (A2n,0 = 1, A2n,k = A2n,2n−k for k = 0, 1, . . . , 2n)

of even degree 2n are on the unit circle if and only if it has the form

p2n(z) =
n∏

k=1

(z2 − αkz + 1).

where αk ∈ [−2, 2] (k = 1, 2, . . . , n).
First we prove an identity (a Viéta–like formula for p2n ).

LEMMA 2. For every n ∈ N and z,α1, . . . ,αn ∈ C we have the identity
n∏

k=1

(z2 − αkz + 1) =
2n∑

k=0

A2n,kz
k (2)

where {
A2n,k = (−1)k

[ k
2 ]∑

l=0

(n−k+2l
l

)
σ(n)

k−2l for k = 0, 1, . . . , n

A2n,k = A2n,2n−k for k = n + 1, n + 2, . . . , 2n
(3)
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and σ(n)
k = σ(n)

k (α1, . . . ,αn) (k = 1, . . . , n) denotes the k th elementary symmetric

polynomial of the variables α1,α2, . . . ,αn and σ(n)
0 = σ(n)

0 (α1, . . . ,αn) := 1.

Proof. We prove by induction with respect to n. For n = 1 equation (3) reduces
to

A2,0 =
(

2
0

)
σ(1)

0 = 1, A2,1 = −
(

1
0

)
σ(1)

1 = −α1, A2,2 = A2,0 = 1

which is obviously true.
Assume (3) to hold. Multiplying p2n by z2 − αn+1z + 1 and comparing the

coefficients we get that⎧⎪⎪⎨
⎪⎪⎩

A2n+2,0 = A2n,0,
A2n+2,1 = −αn+1A2n,0 +A2n,1,
A2n+2,k = A2n,k−2 −αn+1A2n,k−1 +A2n,k (k = 2, . . . , n),

A2n+2,n+1 = A2n,n−1 −αn+1A2n,n +A2n,n−1,

(4)

where, by (3) , on the right hand side of the last equation we have replaced the (first)
term A2n,n+1 by A2n,n−1. Thus by the induction assumption and the recurrence equation

αn+1σ
(n)
k =

⎧⎨
⎩

σ(n+1)
k+1 − σ(n)

k+1 if k = 0, 1 . . . , n − 1

σ(n+1)
k+1 if k = n

(5)

we get from (4) that

A2n+2,0 =
(

n
0

)
σ(n)

0 =
(

n + 1
0

)
σ(n+1)

0 ,

A2n+2,1 = −αn+1

(
n
0

)
σ(n)

0 −
(

n − 1
0

)
σ(n)

1 = −
(

n
0

)
σ(n+1)

1 ,

A2n+2,k = (−1)k−2

[
k−2

2

]∑
l=0

(
n−k+2+2l

l

)
σ(n)

k−2−2l+(−1)k

[
k−1

2

]∑
l=0

(
n−k+1+2l

l

)
αn+1σ

(n)
k−1−2l

+ (−1)k

[ k
2 ]∑

l=0

(
n − k + 2l

l

)
σ(n)

k−2l

= (−1)k

⎡
⎢⎣ [ k

2 ]∑
l=1

(
n − k + 2l

l − 1

)
σ(n)

k−2l +

[
k−1

2

]∑
l=0

(
n − k + 1 + 2l

l

)(
σ(n+1)

k−2l − σ(n)
k−2l

)

+
[ k

2 ]∑
l=0

(
n − k + 2l

l

)
σ(n)

k−2l

⎤
⎥⎦

where k = 2, 3, . . . , n,
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A2n+2,n+1 = 2(−1)n−1

[ n−1
2 ]∑

l=0

(
2l + 1

l

)
σ(n)

n−1−2l + (−1)n+1

[ n
2 ]∑

l=0

(
2l
l

)
αn+1σ

(n)
n−2l

= (−1)n+1

⎡
⎢⎣[ n+1

2 ]∑
l=1

2

(
2l − 1
l − 1

)
σ(n)

n+1−2l + αn+1σ(n)
n +

[ n
2 ]∑

l=1

(
2l
l

)
αn+1σ

(n)
n−2l

⎤
⎥⎦

= (−1)n+1

⎡
⎢⎣
[ n+1

2 ]∑
l=1

(
2l
l

)
σ(n)

n+1−2l + σ(n+1)
n+1 +

[ n
2 ]∑

l=1

(
2l
l

)(
σ(n+1)

n+1−2l − σ(n)
n+1−2l

)⎤⎥⎦ ,

where in the first sum of A2n+2,k, A2n+2,n+1 we shifted the summation index and for the
latter applied the identity

2

(
2l − 1
l − 1

)
=
(

2l
l

)
(l = 1, 2, . . . ).

Case 1 : k = 2s is even, 2 � k � n.

As
[

k−2
2

]
=
[

k−1
2

]
= s − 1,

[
k
2

]
= s starting by the first term of the second sum

of A2n+2,k , we have

A2n+2,k = (−1)k

[
s∑

l=0

(
n+1−k+2l

l

)
σ(n+1)

k−2l −
(

n+1
s

)
σ(n+1)

0

]

+(−1)k

[
s∑

l=1

(
n−k+2l

l−1

)
σ(n)

k−2l−
s−1∑
l=0

(
n−k+1+2l

l

)
σ(n)

k−2l+
s∑

l=0

(
n−k+2l

l

)
σ(n)

k−2l

]
.

The expression in the last bracket is

s∑
l=1

[(
n − k + 2l

l − 1

)
−
(

n − k + 1 + 2l
l

)
+
(

n − k + 2l
l

)]
σ(n)

k−2l

−
(

n − k + 1
0

)
σ(n)

k +
(

n − k + 1 + 2s
s

)
σ(n)

k−2s +
(

n − k
0

)
σ(n)

k

=
(

n + 1
s

)
σ(n)

0 =
(

n + 1
s

)
σ(n+1)

0

as the sum of the three binomial coefficients is zero. Thus

A2n+2,k = (−1)k
s∑

l=0

(
n + 1 − k + 2l

l

)
σ(n+1)

k−2l (6)

proving (3) for k = 2, 4, . . . , n if n + 1 is odd.
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If n + 1 = 2s is even then

A2n+2,n+1 = (−1)n+1

[
s∑

l=1

(
2l
l

)
σ(n)

n+1−2l + σ(n+1)
n+1 +

s−1∑
l=1

(
2l
l

)(
σ(n+1)

n+1−2l − σ(n)
n+1−2l

)]

= (−1)n+1

[(
2s
s

)
σ(n)

0 + σ(n+1)
n+1 +

s−1∑
l=1

(
2l
l

)
σ(n+1)

n+1−2l

]

= (−1)n+1
s∑

l=0

(
2l
l

)
σ(n+1)

n+1−2l

completing the proof in Case 1.

Case 2 : k = 2s + 1 is odd, 2 � k � n.

As
[

k−2
2

]
= s − 1,

[
k−1

2

]
=
[

k
2

]
= s starting by the second term of A2n+2,k , we

have

A2n+2,k = (−1)k
s∑

l=0

(
n + 1 − k + 2l

l

)
σ(n+1)

k−2l + (−1)k

[
s∑

l=1

(
n − k + 2l

l − 1

)
σ(n)

k−2l

−
s∑

l=0

(
n − k + 1 + 2l

l

)
σ(n)

k−2l +
s∑

l=0

(
n − k + 2l

l

)
σ(n)

k−2l

]
.

The expression in the bracket is
s∑

l=1

[(
n−k+2l

l−1

)
−
(

n−k+1+2l
l

)
+
(

n−k+2l
l

)]
σ(n)

k−2l

−
(

n−k+1
0

)
σ(n)

k +
(

n−k
0

)
σ(n)

k = 0.

Thus (6) holds proving (3) for k = 3, 5, . . . , n if n + 1 is even.
If n + 1 = 2s + 1 is odd then

A2n+2,n+1 = (−1)n+1

[
s+1∑
l=1

(
2l
l

)
σ(n)

n+1−2l+σ(n+1)
n+1 +

s∑
l=1

(
2l
l

)(
σ(n+1)

n+1−2l−σ(n)
n+1−2l

)]

= (−1)n+1

[(
2s+2
s+1

)
σ(n)

0 +σ(n+1)
n+1 +

s∑
l=1

(
2l
l

)
σ(n+1)

n+1−2l

]

= (−1)n+1
s+1∑
l=0

(
2l
l

)
σ(n+1)

n+1−2l

completing the proof in Case 2.

THEOREM 1. (Characterization Theorem) A complex monic reciprocal polynomial

p2n(z) =
2n∑

k=0

A2n,kz
k (A2n,k ∈ C, A2n,0 = 1, A2n,k = A2n,2n−k for k = 0, 1, . . . , 2n
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of even degree 2n (n ∈ N) has all of its zeros on the unit circle if and only if there exist
real numbers αk ∈ [−2, 2] (k = 1, . . . , n) such that⎧⎪⎨
⎪⎩ A2n,k = (−1)k

[ k
2 ]∑

l=0

(n−k+2l
l

)
σ(n)

k−2l(α1, . . . ,αn) for k = 0, 1, . . . , n

A2n,k = A2n,2n−k for k = n + 1, n + 2, . . . , 2n

(7)

holds.
A complex monic reciprocal polynomial p2n+1(z) of odd degree 2n + 1 (n ∈ N) has
all of its zeros on the unit circle if and only if p2n+1(z) = (z + 1)p2n(z) where for the
coefficients of p2n (7) holds.

Proof. For even degree polynomials this follows from Lemmas 1, 2. For odd
degree polynomials z = −1 is always a zero thus we have p2n+1(z) = (z + 1)p2n(z)
where p2n(z) is also reciprocal, thus the first part of the statement applies.

3. Coefficient estimate

Using the Characterization Theorem we can obtain bounds for the coefficients of
a reciprocal polynomial whose zeros are on the unit circle.

THEOREM 2. (Coefficient estimate) If all zeros of the complex monic reciprocal
polynomial

p2n(z) =
2n∑

k=0

A2n,kz
k (A2n,k ∈ C, A2n,0 = 1, A2n,k = A2n,2n−k for k = 0, 1, . . . , 2n

of even degree 2n (n ∈ N) are on the unit circle, but there are no zeros of p2n in the
arcs

{ eiu : −β � u � β } and { eiu : π − β � u � π + β }
where 0 � β � π

2 then

|A2n,k| = |A2n,2n−k| �
[ k

2 ]∑
l=0

(
n − k + 2l

l

)(
n

k − 2l

)
(2 cosβ)k−2l (k = 0, 1, . . . , n).

(8)

Proof. We have |αk| � 2 cosβ hence using the characterization theorem and the
estimate

|σ(n)
k (α1, . . . ,αn)| �

(
n
k

)
(2 cosβ)k

we get

|A2n,k| �
[ k

2 ]∑
l=0

(
n−k+2l

l

)
|σ(n)

k−2l(α1, . . . ,αn)| �
[ k

2 ]∑
l=0

(
n−k+2l

l

)(
n

k − 2l

)
(2 cosβ)k−2l

for k = 0, 1, . . . , n proving (8).
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REMARK. A β > 0 (with the property in Theorem 2) exists if ±1 is not a zero of
p2n. In the case when β = 0 (8) goes over into

|A2n,k| = |A2n,2n−k| �
(

2n
k

)
(k = 0, 1, . . . , n) (9)

as applying the binomial theorem, expanding 1 + 2x + x2 by the polynomial theorem,
rearranging the sum according to the powers of x and comparing the coefficients of xk

in

2n∑
k=0

(
2n
k

)
xk = (1 + x)2n = (1 + 2x + x2)n =

∑
s,l�0, s+l�n

2sxs+2ln!
s! l! (n − s − l)!

=
2n∑

k=0

⎛
⎝[ k

2 ]∑
l=0

2k−2ln!
(k−2l)! l! (n−k+l)!

⎞
⎠ xk =

2n∑
k=0

⎛
⎝[ k

2 ]∑
l=0

(n−k+2l
l

)( n
k−2l

)
2k−2l

⎞
⎠ xk

we conclude that
[ k

2 ]∑
l=0

(
n − k + 2l

l

)(
n

k − 2l

)
2k−2l =

(
2n
k

)
.

The estimate (9) also obviously follows from the usual Viéta formulae.
Cartwright and Steiger [1], Corollary 1.1 found sharp constraints for the coefficients

of an arbitrary complex monic polynomial all of whose zeros are of the same modulus.
Their result however does not seem to be easily specialized for our case.

4. Further necessary conditions

In the sequel we show how further necessary conditions can be obtained by the
help of our characterization theorem. Let n ∈ N be fixed and

Sk(α1, . . . ,αn) =
n∑

j=1

αk
j (k ∈ N).

Sk being a symmetric polynomial of the αj ’s can be expressed by help of the elementary
symmetric polynomials σ1, . . .σn (where, for the sake of simplicity we omitted the
upper subscript (n) from the σk ’s) according the equations (see [8], p. 232)

S1 − σ1 = 0

S2 − σ1S1 + 2σ2 = 0

S3 − σ1S2 + σ2S1 − 3σ3 = 0

...

Sn−1 − σ1Sn−2 + · · · + (−1)n−2σn−2S1 + (−1)n−1(n − 1)σn−1 = 0.
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Therefore

σ1 = S1

σ2 = 1/2
(
S2

1 − S2
)

σ3 = 1/6
(
S3

1 − 3S1S2 + 2S3
)

σ4 = 1/24
(
S4

1 − 6S2
1S2 + 8S1S3 + 3S2

2 − 6S4
)

σ5 = 1/120
(
S5

1 − 10S3
1S2 + 20S2

1S3 + 15S1S2
2 − 30S1S4 − 20S2S3 + 24S5

)
. . . .

From (7)

A2n,0 = σ0 A2n,3 = − [σ3 +
(n−1

1

)
σ1
]

A2n,1 = −σ1 A2n,4 = σ4 +
(n−2

1

)
σ2 +

(n
2

)
σ0

A2n,2 = σ2 +
(n

1

)
σ0 A2n,5 = − [σ5 +

(n−3
1

)
σ3 +

(n−1
2

)
σ1
]
. . . .

which shows that σk ’s can be obtained as linear combinations of the coefficients A2n,k.
We can obtain further necessary conditions in the following ways.

1 . Using well-known inequalities for the σk ’s.
Newton’s inequality (see Mitrinović [6] p. 95) states that for k = 1, 2, . . . , n − 1

E2
k � Ek−1Ek+1 (10)

with equality if and only if α1 = · · · = αn, where

Ek = Ek(α1, . . .αn) =
σk(α1, . . .αn)(n

k

) .

Maclaurin’s theorem (see [6] p. 97) reads as follows. For 1 < k < l < n we have

E1/l
l � E1/k

k (11)

with equality if and only if α1 = · · · = αn.

Several other inequalities can be found for the Ek ’s in the paper of Niculescu [7]
and in the references there.

2 . Using the estimate |σ(n)
k (α1, . . . ,αn)| �

(n
k

)
2k or (under the conditions of

Theorem 2) the inequality |σ(n)
k (α1, . . . ,αn)| �

(n
k

)
(2 cosβ)k.

3. We can also use the inequalities

−2kn � Sk � 2kn if k is odd,

0 � Sk � 2kn if k is even
(12)

and, by this, we can estimate σk and also A2n,k.
We show examples for the above methods.
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THEOREM 3. If all zeros of the complex monic reciprocal polynomial

p2n(z) =
2n∑

k=0

A2n,kz
k (A2n,k ∈ C, A2n,0 = 1, A2n,k = A2n,2n−k for k = 0, 1, . . . , 2n

of degree 2n (n ∈ N) are on the unit circle then A2n,k (k = 0, 1, . . . , 2n) are real and

(
A2n,2 − n(n

2

)
)2

� A2n,1 (A2n,3 − (n − 1)A2n,1)(n
1

)(n
3

) , (13)

(
−A2n,3 + (n − 1)A2n,1(n

3

)
)1/3

�
(

A2n,2 − n(n
2

)
)1/2

, (14)

−
(

n
3

)
23 � −A2n,3 + (n − 1)A2n,1 �

(
n
3

)
23, (15)

− n � A2n,2. (16)

In (13) and (14) we have equality if and only if p2n(z) = (z2 − αz + 1)n with
α ∈ [−2, 2].

In (15) we have equality on the left if p2n(z) = (z + 1)2n and on the right if
p2n(z) = (z − 1)2n.

In (16) we have equality if and only if n is even and p2n(z) = (z2 − 1)n.

Proof. We have

σ1 = −A2n,1, σ2 = A2n,2 − n, σ3 = −A2n,3 + (n − 1)A2n,1 (17)

hence by the inequality (10) for k = 2, and by (11) for k = 2, l = 3 we get (13),
(14) respectively. Equality holds in these if and only if α1 = · · · = αn = α ∈ [−2, 2]
which gives the extremal polynomial (z2 − αz + 1)n.

To prove (15) use (9) for k = 3, apply the last equation of (17) and the second
proposed method. Equality holds on the left side if α1 = · · · = αn = −2 and on the
right side if α1 = · · · = αn = 2.

Finally by (12) 0 � S2
1 � 4n2, 0 � S2 � 4n hence

−2n � σ2 = 1/2
(
S2

1 − S2
)

or by (17) − 2n � A2n,2 − n

proving (16). Equality holds if and only if S1 =
∑n

k=1 αk = 0, S2 =
∑n

k=1 α
2
k = 4n

i.e. if and only if n = 2m is even and half of the αk ’s equals 2 , the other half equal
−2, which gives the extremal polynomial p2n(z) = (z2 − 2z + 1)m(z2 + 2z + 1)m =
(z2 − 1)2m = (z2 − 1)n. We remark that for odd n the coefficient of zn−2 of p2n is also
−n but p2n is not reciprocal.

We remark that there are several sufficient conditions (see Lakatos [2], [3], Schinzel
[9], Lakatos and Losonczi [4], [5]) for the coefficients of reciprocal and self-inversive
polynomials to have all their zeros on the unit circle.
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