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(communicated by N. Elezović)

Abstract. For the incomplete gamma function and related functionse we establish functional
inequalities of the type f (x)f (y) − f (x + y) � 0 for all x, y ∈ (0,∞) .

1. Introduction and main results

The incomplete gamma function is defined by [2]

Γ(a; x) =
∫ ∞

x
ta−1e−t, a > 0, (1.1)

for real x . When x = 0 we find

Γ(a; 0) =
∫ ∞

0
ta−1e−t = Γ(a).

The incomplete gamma function plays a fundamental role in probability theory,statistics,
physics and many other disciplines which uses mathematical techniques. Gautschi’s
survey article [4] covers many of the important results on Γ(a; x) and its applications.
The aim of this paper is to establish functional inequalities of the type

f (x)f (y) − f (x + y) � 0, for every x, y � 0, (1.2)

for certain classes of functions f . The first result is the following.

THEOREM 1.1. For a fixed a > 0 , the function

f (x) := Γ(a; x)/Γ(a) (1.3)

satisfies (1.2) when a � 1 . If a � 1 then inequality in (1.2) is reversed.
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The proof will be given in §2 together with the proof of the following corollary.

COROLLARY 1.2. Let γ (a; x) be the incomplete gamma function defined by

γ (a; x) =
∫ x

0
ta−1 e−tdt. (1.4)

Then the function

g(x) := γ (a; x)/Γ(a),

satisfies

g(x)g(y) − g(x) − g(y) + g(x + y) > 0, (1.5)

when a � 1 . If 0 < a < 1 then the inequality in (1.5) is reversed. Moreover the
equality in (1.5) holds for all x > 0 if a = 1 .

The above corollary follows from Theorem 1.1 when replacing Γ(a; x) by Γ(a)−
γ (a; x) .

This work was motivated by the inequality [5, p. 291]

erf(x) erf(y) − erf(x) − erf(y) + erf(x + y) � 0, (1.6)

where erf is the error function

erf(x) :=
2√
π

∫ x

0
e−t2dt.

The inequality (1.6) has been recently extended to n variables by Alzer in [1].
Let u be a positive monotone twice continuously differentiable function on (0,∞)

and assume that e−tu(t) ∈ L1((0,∞)) . In §2 we shall prove the following generaliza-
tion of Theoem 1.1.

THEOREM 1.3. Let

h(x) :=
∫ ∞

x
e−t u(t) dt, f (x) :=

h(x)
h(0)

. (1.7)

If u(x + y)/u(x) is nonincreasing in x on (0,∞) for every y > 0 , then f satisfies
(1.2) . If u(x + y)/u(x) is nondecreasing in x on (0,∞) for every y > 0 , then f
satisfies the reversed inequality

f (x)f (y) − f (x + y) � 0. (1.8)

It is clear that Theorem 1.1 corresponds to the choice u(x) = xa−1 .
As an application of Theorem 1.3 consider the case u(x) = 2xa−1 sinh(λx) for

a � 1 and 0 < λ < 1 . In this case

u(x + y)
u(x)

=
(
1 +

y
x

)a−1
[cosh(λy) + sinh(λy) coth(λx)],
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hence is decreasing in x on (0,∞) . Moreover

h(x) = (1 − λ )−aΓ(a; (1 − λ )x) − (1 + λ )−aΓ(a; (1 + λ )x),

hence

f (x) =
(1 + λ )aΓ(a; (1 − λ )x) − (1 − λ )aΓ(a; (1 + λ )x)

Γ(a) [(1 + λ )a − (1 − λ )a]
. (1.9)

Thus f satisfies (1.2) for a � 1 . On the other hand the choice u(x) = 2xa−1 cosh(λx)
makes

u(x + y)
u(x)

=
(
1 +

y
x

)a−1
[cosh(λy) + sinh(λy) tanh(λx)],

which is an increasing function of x for x > 0 and 0 < a < 1 . In this case

f (x) =
(1 + λ )aΓ(a; (1 − λ )x) + (1 − λ )aΓ(a; (1 + λ )x)

Γ(a) [(1 + λ )a + (1 − λ )a]
(1.10)

and f satisfies (1.8) .
The problem of finding a q -analogue, [3] of the results of this paper remains open.

2. Proofs

In this section we give proofs of Theorems 1.1 and 1.3.

Proof of Theorem 1.1 . Let f be as in (1.3). For fixed y > 0 define the function
F by

F(x) = f (x)f (y) − f (x + y).

Formulas (1.1) and (1.3) yield

f (0) = 1, lim
x→∞ f (x) = 0,

hence F has the property

F(0) = 0, lim
x→∞F(x) = 0. (2.1)

Thus, we apply Rolle’s theorem to the function F on [0,∞) , and conclude that there
exists a point c ∈ (0,∞) such that f ′(c) = 0 . On the other hand

F′(x) = f (y)e−xxa−1H(x), H(x) :=
[

e−y

f (y)

(
1 +

y
x

)a−1
− 1

]
. (2.2)

Thus H(c) = 0 . The case a = 1 is trivial because F(x) ≡ 0 in this case. If a > 1 , the
function H(x) strictly decreases with x , hence H(x) > 0 on (0, c) . Moreover F′(x) ,
being a positive multiple of H(x) , vanishes only at x = c . Since F′ has the same
sign as H , F is strictly increasing on (0, c) and strictly decreasing on (c,∞) . This
fact together with (2.1) implies F(x) > 0 for x > 0 when a > 1 . When 0 < a < 1
the function F′ in (2.2) is negative for x < c and positive for x > c . As in the case
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a > 1 , we argue that F′(x) = 0 if and only if x = c , and F(x) < 0 on (0,∞) . This
completes the proof. �

Proof of Theorem 1.3 . The proof is similar to the proof of Theorem 1.1. Fix
y > 0 , and define F by

F(x) = f (x)f (y) − f (x + y)

so that F(0) = 0 and F(+∞) = 0 , hence F′(c) = 0 for some c > 0 . A calculation
gives

F′(x) = f (y)e−xu(x)H(x),

H(x) :=
[
e−yu(x + y)

f (y)u(x)
− 1

]
.

(2.3)

The rest of the proof is as before.
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