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ON RADIALLY SYMMETRIC SOLUTIONS OF SECOND AND HIGHER

ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

SULBHA GOYAL AND VINOD GOYAL

Abstract. Explicit radially symmetric entire and non-entire solutions are obtained for the equa-
tions of the form

Δku + P(r)f (u) = 0, k � 1 (1.1)

where P(r) is a suitable function, Δ denotes n -dimensional Laplace operator and Δk is the
kth iterate of Δ . In particular, the cases

f (u) = ±bu
n+2k
n−2k

where b is a positive constant, are considered. For n = 2 , infinitely many entire solutions of

Δu + beu = 0

and non-entire solutions of
Δu = beu

are derived. Explicit solutions of some nonlinear Dirichlet and Neumann problems and some
singular nonlinear ordinary differential equations are also determined. These results are conse-
quence of a differential inequality or appropriately chosen form of the solution.
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