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ON RADIALLY SYMMETRIC SOLUTIONS OF SECOND AND HIGHER

ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

SULBHA GOYAL AND VINOD GOYAL

(communicated by V. Lakshmikantham)

Abstract. Explicit radially symmetric entire and non-entire solutions are obtained for the equa-
tions of the form

Δku + P(r)f (u) = 0, k � 1 (1.1)

where P(r) is a suitable function, Δ denotes n -dimensional Laplace operator and Δk is the
kth iterate of Δ . In particular, the cases

f (u) = ±bu
n+2k
n−2k

where b is a positive constant, are considered. For n = 2 , infinitely many entire solutions of

Δu + beu = 0

and non-entire solutions of
Δu = beu

are derived. Explicit solutions of some nonlinear Dirichlet and Neumann problems and some
singular nonlinear ordinary differential equations are also determined. These results are conse-
quence of a differential inequality or appropriately chosen form of the solution.

1. Introduction

Many results have appeared in the literature on the subject for the equation

Δu = f (u) (1.2)

or, more generally, the differential inequality

Δu � f (u). (1.3)

It is well known that the equation (1.2) has no entire solution, i.e. a C2 function which
satisfies (1.2) in all of Euclidean n -space R

n , under various conditions on f . For
instance, if f is continuous, positive and increasing and if f satisfies the condition∫ ∞

0
(
∫ t

0
f (s)ds)−

1
2 dt < ∞
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then (1.3) has no entire solutions [6, 9]. In particular, Δu = eu has no entire solutions
for all n � 2 [13, 16]. However, Walter [14] obtained the startling result that when
n � 3 and k � 2 , there do exist radially symmetric entire solutions of (1.1) when
f (u) = −eu and P(r) = 1 .

Nehari [8], used a result of Osserman [9] and obtained explicit upper and lower
radial bounds for solutions of (1.3) for a certain class of functions f . In addition, he
proved the nonexistence of entire solutions for other types of functions f .

In [5], by applying Nehari’s technique, explicit radially symmetric solutions for
some nonlinear equations of the form

Δu = P(r)f (u) (1.4)

were obtained. In particular, it was found that the function

u =

(
R
√

n(n − 2)√
c(R2 − r2)

) n−2
2

, n � 3, c > 0

is a non-entire solution of
Δu = cu

n+2
n−2

in the ball BR(0) of radius R and center at the origin and that the function

u =
1
r2

[
16λ (λ + 1

2 )
(R2 − r2)2

]λ
, λ > 0

is a solution of
Δu = r2(1+ 1

λ )u(1+ 1
λ )

in BR(0) − {0} when n = 4 . Nonexistence of entire solutions was also proved in the
case of

Δu � P(x)f (u)

where P(x) = P(x1, x2, . . . , xn) � 0 and such that

| grad P|2 − PΔP � 0.

In [10] explicit entire and non-entire solutions of equations

Δku = ±βeu (β > 0)

were found when k � 1 .
Here, we follow Nehari’s method and obtain an inequality which leads to explicit

solutions of nonlinear equations of the form

Δku + P(r)f (u) = 0.

Explicit entire and non-entire solutions are also derived for the equation (1.1) where

f (u) = ±βu
n+2k
n−2k . These results lead to the solutions of some nonlinear singular ordinary

differential equations as well as the explicit solutions of some nonlinear Dirichlet and
Neumann problems.
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2. Explicit solutions

Let BR(0) denote the open ball of radius R and center at the origin in Eu-
clidean n -space and let r denote the distance from the origin to an arbitrary point
x = (x1, x2, . . . , xn) in BR(0) . In this section we derive explicit entire and non-entire
radial solutions of some equations of the form

Δu + P(r)f (u) = 0 (2.1)

in certain Euclidean spaces R
n .

First, we prove the following differential inequality.

THEOREM 2.1. Let f be a positive C1 function on (0,∞) for which∫ ∞

γ

dt
f (t)

exists , (γ > 0), f ′(γ )
∫ ∞

γ

dt
f (t)

� 1 + λ . (λ � 0) (2.2)

If, for a positive constant k � 1, u(r) is defined by

c(R2k + r2k)2

R2k
=

1
P(r)

∫ ∞

u

dt
f (t)

, c = constant (2.3)

where R is any positive constant and P(r) is a positive C2 function on (0,∞) , then
u satisfies the differential inequality

Δu � P(r)f (u)
[
−4kc

{
(n + 2k − 2)r2k−2 + (n − 2 − 4kλ )

r4k−2

R2k

}

+
16kcr2k(R2k + r2k)Ṗ(r)

P(r)R2k
λ

−2c(R2k + r2k)2

R2k

{
2r2P(r)P̈(r) + nP(r)Ṗ(r) − 2r2Ṗ2(r)(1 + λ )

P2(r)

}] (2.4)

where the dot denotes differentiation with respect to r2(r < R) .

Proof. To derive (2.4), let x denote one of the variables xj and differentiate (2.3)
twice with respect to x . This yields

4kcx(R2k + r2k)r2k−2

R2k
= − ux

P(r)f (u)
− 2xṖ(r)

P2(r)

∫ ∞

u

dt
f (t)

(2.5)

4kc(R2k + r2k)r2k−2 + 8kcx2(k − 1)(R2k + r2k)r2k−4 + 8k2cx2r4k−4

R2k

= − uxx

P(r)f (u)
+

4xṖ(r)ux

P2(r)f (u)
+

f ′(u)u2
x

P(r)f 2(u)

+
{
−2Ṗ(r)

P2(r)
+

8x2Ṗ2(r)
P3(r)

− 4x2P̈(r)
P2(r)

}∫ ∞

u

dt
f (t)

(2.6)
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Now using (2.3) and (2.5), we can write (2.6) as

uxx

P(r)f (u)
= − 4kcr2k−2 − 8kc(k − 1)x2r2k−4

−
(

4kcr4k−2 + 8kc(k − 1)x2r4k−4 + 8k2cx2r4k−4

R2k

)

− 16kcx2r2k−2(R2k + r2k)Ṗ(r)
P(r)R2k

+
4c2x2

R4k
f ′(u)P(r)(R2k + r2k)2

{
2kr2k−2 +

Ṗ(r)
P(r)

(R2k + r2k)
}2

− 2
P2(r)

{2x2P̈(r) + Ṗ(r)}
∫ ∞

u

dt
f (t)

.

Summing over the variables xj , we obtain

Δu
P(r)f (u)

= − 4kc(n + 2k − 2)r2k−2 − 4kc(n + 2(k − 1) + 2k2)
r4k−2

R2k

− 16kcr2k(R2k + r2k)Ṗ(r)
R2kP(r)

+
4c2r2

R4k
f ′(u)P(r)(R2k + r2k)2

{
2kr2k−2 +

Ṗ(r)
P(r)

(R2k + r2k)
}2

− 2
P2(r)

{2r2P̈(r) + nṖ(r)}
∫ ∞

u

dt
f (t)

.

Finally, by (2.2) and (2.3), it reduces to

Δu
P(r)f (u)

� − 4kc(n + 2k − 2)r2k−2 − {4kc(n − 2 − 4kλ )} r4k−2

R2k

+
16kcr2k(R2k + r2k)Ṗ(r)

R2kP(r)
λ

− 2c(R2k + r2k)2

R2k

{
2r2P(r)P̈(r) + nP(r)Ṗ(r) − 2r2Ṗ2(r)(1 + λ )

P2(r)

}
.

which completes the proof of (2.4).

It is worth noting that the inequality (2.2) is always satisfied, for λ = 0 , if ln f (t)
is a convex function of t . We also note that the equality holds in (2.4) if equality holds

in (2.2). This will occur if f (t) = t1+ 1
λ when λ > 0 and, for λ = 0 , if f (t) = et .

We now distinguish between two cases depending on λ .

Case I: λ > 0 .
In this case equality holds in (2.2) and (2.4) if

f (t) = t1+ 1
λ . (2.7)
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Letting P(r) = d , a positive constant, then (2.4) reduces to

Δu =
[
−4kc(n + 2k − 2)r2k−2 − 4kc(n − 2 − 4kλ )

r4k−2

R2k

]
d u1+ 1

λ .

Now if λ = n−2
4k and c = 1

4k(n+2k−2) , then

Δu + dr2k−2u1+ 4k
n−2 = 0, n � 3. (2.8)

The solution of (2.8) follows from

(R2k + r2k)2

4k(n + 2k − 2)R2k
=

1
d

∫ ∞

u

dt

t1+ 4k
n−2

i.e.
d(R2k + r2k)2

(n − 2)(n + 2k − 2)R2k
= u−

4k
n−2 .

Consequently, we have the non-trivial solution of (2.8) in R
n is

u =
{

(n − 2)(n + 2k − 2)R2k

d(R2k + r2k)2

} n−2
4k

, n � 3 (2.9)

where R is any positive constant.

REMARK 1. If k = 1 in (2.9) then we have

u =

[
R
√

n(n − 2)√
d(R2 + r2)

] n−2
2

, n � 3 (2.9′)

the well-known entire solution of

Δu + du
n+2
n−2 = 0 (2.8′)

which was also obtained in [10] by a different method.

If we let P(r) = r
n−2
λ , then

2r2P̈(r)P(r) + nP(r)Ṗ(r) − 2r2Ṗ2(r)(1 + λ ) = 0

and (2.4) becomes

Δu =
[
−4kc(−n + 2 + 2k)r2k−2 + 4kc(n − 2 + 4kλ )

r4k−2

R2k

]
r

n−2
λ u1+ 1

λ .

For n = 2k + 2 where k is an integer � 1 and c = 1
16k2 , we get

Δu =
(
λ +

1
2

)
r2k(2+ 1

λ )−2

R2k
u1+ 1

λ .

Now by the transformation

V =
(λ + 1

2 )
λ

R2kλ u

we obtain the nonlinear equation

ΔV = r2k(2+ 1
λ )−2 V1+ 1

λ , (2.10)
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and the solution of (2.10) is obtained by determining u from

(R2k + r2k)2

16k2R2k
=

1

r
2k
λ

∫ ∞

u

dt

t1+ 1
λ

.

Since

u =

[
16k2λR2k

r
2k
λ (R2k + r2k)2

]λ

we have

V =
1
r2k

[
16k2λ (λ + 1

2 )
(R2k + r2k)2

]λ
(2.11)

is the solution of (2.10) in R
n − {0} for n = 2k + 2 .

Case II: λ = 0 .
In this case equality holds in (2.2) as well as in (2.4) if

f (t) = et

and then for (2.4), we have

Δu
P(r)eu

=
[
−4kc(n + 2k − 2)r2k−2 − 4kc(n − 2)

r4k−2

R2k

]

− 2c(R2k + r2k)2

R2k

{
2r2P(r)P̈(r) + nP(r)Ṗ(r) − 2r2Ṗ2(r)

P2(r)

} (2.12)

For P(r) = b , a positive constant, we write (2.12) as

Δu = −4kc

[
(n + 2k − 2)r2k−2 + (n − 2)

r4k−2

R2k

]
beu.

Now if n = 2 and c = 1
8k2 , then

Δu = −br2k−2eu. (2.13)

The solution of (2.13) follows from

(R2k + r2k)2

8k2R2k
=

1
b

∫ ∞

u

dt
et

i.e.
b(R2k + r2k)2

8k2R2k
= e−u.

Hence, the entire solution of (2.13) in R
n is

u = 2 ln

√
8kRk

√
b(R2k + r2k)

. (2.14)

for n = 2 .

Consequently if u(0, 0) = lnα , then R =
(

8k2

bα

) 1
2k

where α is a positive constant.
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REMARK 2. If k , b = 1 in (2.13) and (2.14) respectively then we get the
well-known solution

u = 2 ln

√
8R

R2 + r2

of
Δu + eu = 0.

REMARK 3. Writing (2.13) as

Δu + beu+(2k−2) ln r = 0

and letting
V = u + (2k − 2) ln r

we get
ΔV + beV = 0 (2.13′)

and that its solution is
V = 2 ln

√
8krk−1Rk

√
b(R2k + r2k)

. (2.14′)

for n = 2 .
We observe that the nonlinear equation (2.13′ ) has infinitely many entire solutions

(2.14′ ) in R
n for n = 2 since k � 1 .

REMARK 4. We note that following the method of complex variables it can be
easily checked that the function

u = 2 ln

( √
8|f ′(z)|√

b(1 + |f (z)|2)

)
(2.14′′)

if f (z) is regular in a domain and f ′(z) �= 0 , is also a solution of (2.13′ ).
REMARK 5. Further, we note that there are no known explicit solutions of

Δu = eu

when n � 3 . But in the case of (2.13′ ), it can be checked that the function

u = ln

(
2n − 4

br2

)
(2.14′′′)

is a non-entire solution when n � 3 .
Finally, if we let P(r) = r2δ , where δ is a positive arbitrary constant, we have

2r2P(r)P̈(r) + nP(r)Ṗ(r) − 2r2Ṗ2(r) = 0

and (2.12) reduces to

Δu =
[
−4kc(n + 2k − 2)r2k−2 − 4kc(n − 2)

r4k−2

R2k

]
r2δeu.

If n = 2 and c = 1
8k2 , then

Δu + r2δ+2k−2eu = 0 (2.15)
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and u is given by
(R2k + r2k)2

8k2R2k
=

1
r2δ

∫ ∞

u

dt
et

i.e.

u = 2 ln

( √
8kRk

rδ (R2k + r2k)

)
(2.16)

is the non-entire solution of (2.15) in R
n − {0} for n = 2 .

REMARK 6. Writing (2.15) as

Δu + eu+(2k+2δ−2) ln r = 0

and letting V = u + (2k + 2δ − 2) ln r we again get infinitely many entire solutions of

ΔV + eV = 0

in the form

V = 2 ln

(√
8krk−1Rk

r2k + R2k

)
. (2.16′)

which agree with (2.14′ ) if b = 1 there.
More generally, if ln P(r) is harmonic and a > 0 is a constant, then the infinitely

many entire solutions of
Δu + P(r)eau = 0, n = 2 (2.17)

are given by

u =
2
a

ln

( √
8krk−1Rk√

aP(r)(R2k + r2k)

)
(2.18)

since we can write (2.17) as
Δu + eau+ln P(r) = 0

and let
V = au + ln P(r)

and then use (2.13′ ).
In a similar manner we obtain non-entire solutions of equations of the form

Δu = P(r)f (u)

as a consequence of the following inequality:

THEOREM 2.2. Let f be a positive C1 function on (0,∞) which satisfies the
conditions (2.2) . If for a positive constant k � 1 , P(r) is defined by

c(R2k − r2k)2

R2k
=

1
P(r)

∫ ∞

u

dt
f (t)

, c = constant (2.19)

where P(r) is a positive C2 function on (0,∞) , then u satisfies the differential
inequality
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Δu � P(r)f (u)
[
r2k−24kc(n + 2k − 2)

− r4k−2

R2k
{4kc(n − 2 − 4kλ )} − 16kcr2kṖ(r)

P(r)R2k
(R2k − r2k)λ

− 2c(R2k − r2k)2

R2k

{
2r2P̈(r) + nṖ(r)

P(r)
− 2r2Ṗ2(r)(1 + λ )

P2(r)

}]
.

(2.20)

Proof is exactly the same as that of Theorem 2.1. As before, we consider the cases
depending on λ .

Case I: λ > 0
Again, the equality holds in (2.2) and (2.20) if

f (t) = t1+ 1
λ .

Now for P(r) = α , a positive constant, λ = n−2
4k and c = 1

4k(n+2k−2) , (2.20) reduces
to

Δu = αr2k−2u1+ 4k
n−2 , n � 3 (2.21)

where the non-entire solution of (2.21) in R
n is

u =
{

(n − 2)(n − 2 + 2k)R2k

α(R2k − r2k)2

} n−2
4k

, n � 3. (2.22)

REMARK 7. If k = 1 , then (2.10) and (2.11) in [5] are special cases of (2.21) and
(2.22) respectively in BR(0) .

If we take P(r) = r
n−2
λ then for n = 2k+2 where k is an integer � 1 and c = 1

16k2

(2.20) reduces to

Δu =
(
λ +

1
2

)
r2k(2+ 1

λ )−2 u1+ 1
λ

R2k
.

Using the change of the variable

u =
R2kλV

(λ + 1
2 )

λ , (2.23)

we get the nonlinear equation

ΔV = r2k(2+ 1
λ )−2 V1+ 1

λ . (2.24)

Since

u =

[
16λk2R2k

r
2k
λ (R2k − r2k)2

]λ

the solution of (2.24) in R
n − {0} is

V =
1
r2k

[
16λk2(λ + 1

2 )
(R2k − r2k)2

]λ
. (2.25)

for n = 2k + 2 .

REMARK 8. For k = 1 , (2.12) and (2.13) in [5] are special cases of (2.24) and
(2.25) respectively in BR(0) − {0} for n = 4 .
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Case II: λ = 0 .
In this case equality will hold in (2.2) and (2.20) if

f (t) = et,

and then for (2.20), we have

Δu = P(r)eu

[{
r2k−2(n + 2k − 2)4kc − r4k−2

R2k
(4kc(n − 2))

}

− 2c(R2k − r2k)2

R2k

{
2r2P̈(r) + nṖ(r)

P(r)
− 2r2Ṗ2(r)

P2(r)

}] (2.26)

If, P(r) = β , where β is an arbitrary positive constant, n = 2 and c = 1
8k2 then (2.26)

reduces to
Δu = βr2k−2eu (2.27)

and u is given by
R2k − r2k

8k2R2k
=

1
β

∫ ∞

u

dt
et

i.e.

u = 2 ln

( √
8kRk√

β(R2k − r2k)

)
(2.28)

is the solution of (2.27) in R
n for n = 2 .

REMARK 9. If k = 1 and β = 1 in (2.27) and (2.28) then we get the well-known
solution of Δu = eu is

u = 2 ln

√
8R

R2 − r2

for n = 2 in BR(0) .

REMARK 10. Writing (2.27) as

Δu = βeu+(2k−2) ln r

and letting
V = u + (2k − 2) ln r

we get
ΔV = βeV (2.29)

where the solution V is given by

V = 2 ln

( √
8krk−1Rk√

β(R2k − r2k)

)
. (2.30)

Thus, (2.29) has infinitely many non-entire solutions given by (2.30) for k � 1 and
n = 2 .

Now if we let P(r) = r2γ , where γ is a positive arbitrary constant, then (2.20)
reduces to

Δu =
[
r2k−24kc(n + 2k − 2) − r4k−2

R2k
(4kc(n − 2))

]
r2γ eu.
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Further, if n = 2 and c = 1
8k2 , we get

Δu = r2γ+2k−2eu (2.31)

and u is given by
u = 2 ln

( √
8kRk

rγ (R2k − r2k)

)
(2.32)

in R
n − {0} .
REMARK 11. If k = 1 then (2.15) and (2.16) in [5] are special cases of (2.31) and

(2.32) respectively in BR(0) − {0} .

REMARK 12. Further, we note that (2.31) can be written as

Δu = eu+(2γ+2k−2) ln r.

Now substituting
V = u + (2γ + 2k − 2) ln r

we get
ΔV = eV (2.33)

where, from (2.32),
V = 2 ln

(√
8krk−1Rk

(R2k − r2k)

)
. (2.34)

In this case also we get infinitely many non-entire solutions for (2.33) which agree with
(2.30) if β = 1 .

REMARK 13. It can be checked that

V = 2 ln
2

r(D −√
2 ln r)

where D is an arbitrary constant is also a non-entire solution of (2.33).
More generally, if lnP(r) is harmonic, then the infinitelymany non-entire solutions

of
Δu = P(r)eau, n = 2 (2.35)

are given by

u =
2
a

ln

( √
8krk−1Rk√

aP(r)(R2k − r2k)

)
. (2.36)

REMARK 14. If k , a = 1 then (2.17) and (2.18) in [5] are special cases of (2.35)
and (2.36) respectively.

We now determine some explicit radial solutions of

Δku ± bu
n+2k
n−2k = 0 (k � 2)

which are not entire solutions as well as some which are entire solutions in certain
Euclidean spaces R

n .
First, we have the following Lemma:

LEMMA 2.1.

Δk(r−m) =
m(m+2)(m+4) . . . (m+(2k−2))(m+2−n)(m+4−n) . . . (m+2k−n)

rm+2k
,
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which can be easily proved by the method of Induction. As an immediate consequence
we have the following theorem.

THEOREM 2.3. The radial function

u =
{

m(m+2)(m+4) . . . (m+(2k−2))(m+2−n)(m+4−n) . . . (m+2k−n)
b

} m
2k 1

rm

(2.37)
is a positive non-entire solution of

Δku = bu
m+2k

m

where k � 1 is an integer, b and m are positive constants and that m + 2 > n .

Proof. Let
u =

Am

rm

where Am is a constant to be determined. It follows by the Lemma 2.1 that

Δku = Am
m(m+2)(m+4) . . . (m+(2k−2))(m+2−n)(m+4−n) . . . (m+2k−n)

rm+2k
.

If we choose

Am =
{

m(m+2)(m+4) . . . (m+(2k−2))(m+2−n)(m+4−n) . . . (m+2k−n)
b

} m
2k

then, we get

Δku=

(
b

{
m(m+2)(m+4) . . . (m+(2k−2))(m+2−n)(m+4−n) . . . (m+2k−n)

b

} m
2k 1
rm

)m+2k
m

= bu
m+2k

m .

In particular, from Theorem 2.3, the function

u =
{

m(m + 2)(m + 2 − n)(m + 4 − n)
b

}m
4

· 1
rm

is a positive non-entire solution of

Δ2u = bu
m+4
m

where m + 2 > n .

THEOREM 2.4. The radial function

u =

⎡
⎣Rk

√
(n−2k)(n−2(k−1))(n−2(k−2)) . . . (n+2(k−2))(n+2(k−1))

√
b(R2 − r2)k

⎤
⎦

n−2k
2k

(2.38)
is a non-entire solution of

Δku = bu
n+2k
n−2k , (b > 0 is a constant) (2.39)

in BR(0) in R
n when n � 2k + 1 .
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Proof. To prove the result we use an induction argument. First, we take u to be
of the form

u =
a

(R2 − r2)c

where a and c are positive constants to be determined. Then, we compute

Δu =
2ca

(R2 − r2)c+2
[nR2 + r2(2(c + 1) − n)]

Δ2u =
4c(c + 1)a

(R2 − r2)c+4

[
n(n + 2)R4 + 2(n + 2)(2(c + 2) − n)R2r2

+ {(2(c + 2) − n)(2(c + 2) − (n + 2))}r4
]

Δ3u =
8c(c + 1)(c + 2)a

(R2 − r2)c+6

[
n(n + 2)(n + 4)R6 + 3(n + 2)(n + 4)(2(c + 3) − n)R4r2

+ 3(n + 4)(2(c + 3) − n)(2(c + 3) − (n + 2))R2r4

+ (2(c + 3) − n)(2(c + 3) − (n + 2))(2(c + 3) − (n + 4))r6
]

Δ4u =
16c(c + 1)(c + 2)(c + 3)a

(R2 − r2)c+8

[
n(n + 2)(n + 4)(n + 6)R8

+ 4(n + 2)(n + 4)(n + 6)(2(c + 4) − n)R6r2

+ 6(n + 4)(n + 6)(2(c + 4) − n)(2(c + 4) − (n + 2))R4r4

+ 4(n + 6)(2(c + 4) − n)(2(c + 4) − (n + 2))(2(c + 4) − (n + 4))R2r6

+ (2(c+4)−n)(2(c+4)−(n+2))(2(c+4)−(n+4))(2(c+4)−(n+6))r8
]

Now, in view of the pattern that Δu , Δ2u , Δ3u and Δ4u appear to follow, we have the
induction hypothesis

Δku =
2kc(c+1)...(c+k−1)a

(R2 − r2)c+2k

[(
k
o

)
{(n+2(k−1))(n+2(k−2)) . . . (n+4)(n+2)n}R2k

+
(

k
1

)
{(n+2(k−1))(n+2(k−2))...(n+4)(n+2)}{(2(c+k)−n)}R2(k−1)r2

+
(

k
2

)
{(n+2(k−1))(n+2(k−2))...(n+6)(n+4)}×

× {(2(c+k)−n)(2(c+k)−(n+2))}R2(k−2)r4

+ · · · +
(

k
p

)
{(n+2(k−1))...(n+2p)}×

× {(2(c+k)−n)...(2(c+k)−(n+2(p−1))}R2(k−p)r2p

+ · · · +
(

k
k

)
{(2(c+k)−n)(2(c+k)−(n+2))...(2c−(n−2))}r2k ]
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where
(k

p

)
denotes the binomial coefficient and p = 1, 2, . . . , (k − 1) . Choosing

c = n−2k
2 and

a =
{

R2k(n − 2k)(n − 2(k − 1)) . . . (n − 2)n(n + 2) . . . (n + 2(k − 1))
b

} (n+2k)
4k

we get

Δku = b

⎛
⎝Rk

√
(n − 2k)(n − 2(k − 1)) . . . (n − 2)n(n + 2) . . . (n + 2(k − 1))

√
b(R2 − r2)k

⎞
⎠

(n+2k)
2k

= bu
n+2k
n−2k

where

u =

⎛
⎝Rk

√
(n − 2k)(n − 2(k − 1)) . . . (n − 2)n(n + 2) . . . (n + 2(k − 1))

√
b(R2 − r2)k

⎞
⎠

n−2k
2k

.

In particular, the function

u =

⎛
⎝R2

√
(n − 4)(n − 2)n(n + 2)
√

b(R2 − r2)2

⎞
⎠

n−4
4

solves
Δ2u = bu

n+4
n−4 (n � 5)

whereas the solution of
Δ3u = bu

n+6
n−6 (n � 7)

is given by

u =

⎛
⎝R3

√
(n − 6)(n − 4)(n − 2)n(n + 2)(n + 4)

√
b(R2 − r2)3

⎞
⎠

n−6
6

In the same way, we obtain an entire solution to the equation

Δku = (−1)kbu
n+2k
n−2k . (2.40)

THEOREM 2.5. The radial function

u =

⎛
⎝Rk

√
(n − 2k)(n − 2(k − 1)) . . . (n − 2)n(n + 2) . . . (n + 2(k − 1))

√
b(R2 + r2)k

⎞
⎠

n−2k
2k

(2.41)
is an entire solution of (2.40) in R

n if n > 2k .
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Proof. Again, the result follows by an induction argument. Suppose u to be of
the form

u =
a

(R2 + r2)c

where c and a are positive constants to be determined. We compute

Δu = − 2ca
(R2 + r2)c+2

[nR2 + r2(n − 2(c + 1))]

Δ2u =
22c(c + 1)a
(R2 + r2)c+4

[n(n + 2)R4 + 2(n + 2)(n − 2(c + 2))R2r2

+ {(n − 2(c + 2))((n + 2) − 2(c + 2))}r4]

Δ3u = −23c(c + 1)(c + 2)a
(R2 + r2)c+6

[n(n + 2)(n + 4)R6+3(n + 2)(n + 4)(n − 2(c + 3))R4r2

+ 3(n + 4)(n − 2(c + 3))((n + 2) − 2(c + 3))R2r4

+ (n − 2(c + 3))((n + 2) − 2(c + 3))((n + 4) − 2(c + 3))r6].

Again, based on the pattern that Δu , Δ2u and Δ3u appear to follow, we have the
induction hypothesis

Δku =
(−1)k2kc(c+1)...(c+k − 1)a

(R2+r2)c+2k

[(
k
0

)
{(n+2(k−1))(n+2(k−2))...(n + 2)n}R2k

+
(

k
1

)
{(n+2(k−1))(n+2(k−2))...(n+4)(n+2)}(n−2(c+k))R2(k−1)r2

+
(

k
2

)
{(n+2(k−1))(n+2(k−2))...(n+6)(n+4)}(n−2(c+k))((n+2)−2(c+k))R2(k−2)r4

+ · · · +
(

k
p

)
{(n+2(k−1))(n+2(k−2))...(n+2p)}×

× (n−2(c+k))...((n+2(p−1))−2(c+k))R2(k−p)r2p

+ · · · +
(

k
k

)
{(n−2(c+k))((n+2)−2(c+k))...((n−2)−2c)}r2k ]

If we let c = n−2k
2 and

a=
(

R2k(n−2k)(n−2(k−1)) . . . (n−2)n(n+2) . . . (n+2(k−2))(n+2(k−1))
b

) n−2k
4k

then

Δku =(−1)kb

(
Rk
√

(n−2k)(n−2(k−1))...(n−2)n(n+2)...(n+2(k−2))(n+2(k−1))√
b(R2 + r2)k

)n+2k
2k

=(−1)kbu
n+2k
n−2k



318 SULBHA GOYAL AND VINOD GOYAL

where

u=

(
Rk
√

(n−2k)(n−2(k−1))...(n−2)n(n+2)...(n+2(k−2))(n+2(k−1))√
b(R2 + r2)k

) n−2k
2k

This completes the proof of Theorem 2.5.

In particular, the function u =

(
R2
√

(n − 4)(n − 2)n(n + 2)√
b(R2 + r2)2

) n−4
4

is a solution
of

Δ2u = bu
n+4
n−4 , n � 5

and the function u =

(
R3
√

(n − 6)(n − 4)(n − 2)n(n + 2)(n + 4)√
b(R2 + r2)3

) n−6
6

solves the
equation

Δ3u + bu
n+6
n−6 = 0, n � 7.

3. Solutions of ordinary differential equations

It is well known that if n = 3 then

Δmu =
d2mu
dr2m

+
2m
r

d2m−1u
dr2m−1

where u is a function of r only. Further, if

u =
v
r

then

Δmu =
1
r

d2mv
dr2m

.

Hence, the equation

Δmu = u
k+2m

k

is equivalent to
d2mv
dr2m

= r−
2m
k v

k+2m
k , (3.1)

and because of the Theorem 2.3 its solution is

v =
{k(k+2)(k+4) . . . (k+2m−2)(k−1)(k+1) . . . (k+2m−3)} k

2m

rk−1
. (3.2)

In the same way, since, the solution of

Δu + cr2k−2u1+ 4k
n−2 = 0 n � 3, k � 1
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by (2.9) is

u =

[
Rk
√

(n − 2)(n + 2k − 2)√
c(R2k + r2k)

] n−2
2k

therefore the function

v = r

(
Rk
√

1 + 2k√
c(R2k + r2k)

) 1
2k

(3.3)

solves the equation
d2v
dr2

+
c

r2k+2
v1+4k = 0 (3.4)

where c > 0 is a constant.
Further, as by (2.22)

u =

(
Rk
√

(n − 2)(n + 2k − 2)√
c(R2k − r2k)

) n−2
2k

n � 3, k � 1

is a solution of

Δu = cr2k−2u1+ 4k
n−2

hence the function

v = r

(
Rk
√

1 + 2k√
c(R2k − r2k)

) 1
2k

(3.5)

solves the equation
d2v
dr2

− c
r2k+2

v1+4k = 0. (3.6)

Finally, since by (2.14′′′ ) the solution of

Δu + P(r)eau = 0, a > 0 is a constant (3.7)

is the function

u =
1
a

ln

(
2n − 4
ar2P(r)

)
(3.8)

provided lnP(r) is harmonic and n � 3 , consequently the function

v =
r
a

ln

(
2

ar2P(r)

)
(3.9)

is the solution of the equation

d2v
dr2

+ rP(r)ea v
r = 0 (3.10)

if d2

dr2 lnP(r) + 2
r

d
dr lnP(r) = 0 .
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4. Solutions of some Dirichlet and Neumann problems

There is a vast literature [see e.g. [3] and [7]] dealing with existence, nonexistence,
uniqueness and nonuniqueness of solutions to problems of the form

Δu + P(r)f (u) = 0 in D

u = 0 on ∂D

where D is a bounded domain in R
n such as D = BR(0) . However, there do not seem

to be any ‘explicit’ solution results when a solution does exist. For example, a number
of mathematicians, in particular, Bieberbach [2] have considered solving the Dirichlet
problem for the equation

Δu − F(x)eu = f (x) (4.1)

in a bounded domain D in R
n . The method of Bieberbach only shows that for any

bounded functions f and F there is at least one solution of the Dirichlet problem for
the equation (4.1). In [4] the explicit solution of the problem

Δu − F(x)eau = f (x) in D

u = 0 on ∂D
(4.2)

where D is a bounded domain in R
n and a > 0 is a constant, was obtained as

u =
1
a

ln

(
f (x)
F(x)

)

provided the function f (x) and F(x) are positive and such that ln
(

F(x)
f (x)

)
is harmonic

in D and f (x) = F(x) on ∂D . Here, we give some more explicit solution results:
In view of equation (2.8) and (2.9) one easily concludes

THEOREM 4.1. The solution of the nonlinear Dirichlet problem

Δu + cr2k−2u1+ 4k
n−2 = 0 in DR

u = φ on ∂DR

(4.3)

is given by
u =

(
Rk
√

(n − 2)(n + 2k − 2)√
c(R2k + r2k)

) n−2
2k

, n � 3, k � 1

where Rk =
√

(n−2)(n+2k−2)
c · 1

2φ
2k

n−2

. If φ = 0 when r = R then the problem (4.3)

has no solution except u = 0 .

Again, because of equations (2.17) and (2.18) with k = 1 , we have

THEOREM 4.2. If a > 0 is an arbitrary constant and ln(P(r)) is harmonic, the
solution of the problem

Δu + P(r)eau = 0 in BR(0)
u = ψ on ∂BR(0)

(4.4)
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is given by
u =

2
a

ln

( √
8R√

aP(r)(R2 + r2)

)
, n = 2

where R2 = 2
aP(R)eaψ . If ψ = 0 when r = R then R2 = 2

aP(R) .

Bandle [1] also treated this problem by a method of complex variables when P(r)
is a positive constant and a = 1 . See also [10] for the case a = 1 .

We now consider a more general problem

Δu + P(r)f (u) � 0 in BR(0)
u = φ on ∂BR(0)

(4.5)

We first establish the following differential inequalitywhich is a special case of Theorem
2 in [5] in a manner similar to Theorem 2.1.

LEMMA 4.1. Let f (t) and g(t) be positive, increasing and differentiable functions
and such that ∫ γ

0

dt
f (t)

and
∫ δ

0

dt
g(t)

exist for γ , δ > 0 and let

u = u(x1, x2, . . . , xn) and v = v(x1, x2, . . . , xn)

be two functions related by the identity∫ u

0

dt
f (t)

=
∫ v

0

dt
g(t)

(4.6)

then
Δu

f (u)
� Δv

g(v)
(4.7)

provided f ′(u) � g′(v) .

Proof. We write x as one of the variables x1, x2, . . . , xn and differentiate (4.6)
twice with respect to x . This results in

ux

f (u)
=

vx

g(v)
(4.8)

uxx

f (u)
− f ′(u)u2

x

f 2(u)
=

vxx

g(v)
− g′(v)v2

x

g2(v)
(4.9)

With the help of (4.8), (4.9) becomes

uxx

f (u)
=

vxx

g(v)
+ (f ′(u) − g′(v))

v2
x

g2(v)
.

Since f ′(u) � g′(v) , we get, by summing over all xk

Δu
f (u)

� Δv
g(v)

which completes the proof of the lemma.



322 SULBHA GOYAL AND VINOD GOYAL

THEOREM 4.3. Under the conditions of the lemma (4.1) on f , the solution of the
problem (4.5) , if lnP(r) is harmonic, is given by

1 − P(r)(R2 + r2)2

8R2
=
∫ u

0

dt
f (t)

, (n = 2) (4.10)

where R2 = 2
P(R)

(
1 − ∫ φ0 dt

f (t)

)
. If φ = 0 when r = R then R2 = 2

P(R) .

Proof. If, in (4.7) g(v) = ev , then

Δv + P(r)ev = 0 (4.11)

implies
Δu + P(r)f (u) � 0 (4.12)

where the solution of (4.12) is determined by∫ u

0

dt
f (t)

=
∫ v

0

dt
et

. (4.13)

Since in BR(0)

v = ln

(
8R2

P(r)(R2 + r2)2

)
, (n = 2)

u is obtained, with the help of (4.13), from

1 − P(r)(R2 + r2)2

8R2 =
∫ u

0

dt
f (t)

. (4.14)

If u = φ when r = R , equation (4.14) yields

R2 =
2

P(R)

(
1 −

∫ φ

0

dt
f (t)

)
.

However, if φ = 0 when r = R , then

R2 =
2

P(R)

which proves the assertion.

Next result is concerning the Dirichlet problem for the Yamabe equation

Δu + k(x)u
n+2
n−2 =

n − 2
4(n − 1)

k0(x)u. (4.15)

The existence of a positive solution for (4.15) if k(x) is a positive constant was proved
by Yamabe [17], Trudinger [12] and Schoen [11]. Here, we give an explicit solution for
(4.15) and the corresponding Dirichlet problem by an elementary method.

THEOREM 4.4. The solution of the Dirichlet problem

Δu + k(x)u
n+2
n−2 =

n − 2
4(n − 1)

k0(x)u in D

u = φ on ∂D
(4.16)
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where the function k(x) and k0(x) are positive, is given by

u =
(

n − 2
4(n − 1)

k0(x)
k(x)

) n−2
4

n � 3 (4.17)

If
(

k0(x)
k(x)

) n−2
4

is harmonic in D and k0(x) = 4(n−1)k(x)
(n−2) φ

4
n−2 on ∂D.

Proof. First, we write (4.15) as

Δu + k(x)u
(

u
4

n−2 − n − 2
4(n − 1)

k0(x)
k(x)

)
= 0.

Clearly, if

Δ
(

k0(x)
k(x)

) n−2
4

= 0

then

u =
(

n − 2
4(n − 1)

k0(x)
k(x)

) n−2
4

is a solution of (4.15).
Hence (4.17) is the solution of the problem (4.16) if

k0(x) =
4(n − 1)
n − 2

k(x)φ
4

n−2

on ∂D .

In a manner similar to Theorems 4.1 and 4.2, we obtain explicit solutions for the
following Neumann problems:

THEOREM 4.5. The solution of the Neumann problem

Δu + cu
n+2
n−2 = 0 in BR(0)
∂u
∂ν

= φ on ∂BR(0)
(4.18)

is given by
u =

(
R
√

n(n − 2)√
c(R2 + r2)

) n−2
2

, n � 3

provided
φ = −

(√
n(n − 2)

c

) n−2
2

· n − 2
(2R)n/2

(4.19)

when r = R . If φ = 0 on the boundary then the only possible solution is u ≡ 0 .

Thus the problem (4.18) has no solution if φ is positive.

THEOREM 4.6. If a > 0 is a constant and ln P(r) is harmonic, then the solution
of

Δu + P(r)eau = 0 in BR(0)
∂u
∂ν

= 0 on ∂BR(0)
(4.20)
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is the function

u =
2
a

ln

( √
8R√

aP(r)(R2 + r2)

)
, n = 2

if P(R) = B
R4 on the boundary, where B is an arbitrary constant.
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