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Abstract. We reformulate a quadratic functional equation of the form

f (x + y + z) + f (x− y + z) + f (x + y − z) + f (−x + y + z) = 4f (x) + 4f (y) + 4f (z)

and an inequality

|f (x + y + z) + f (x − y + z) + f (x + y − z) + f (−x + y + z) − 4f (x) − 4f (y) − 4f (z)| � ε

in the space of distributions. In view of this fact, we use a mollifier and Gauss transform to
show that every distributional solution of the inequality is a tempered distribution and finally the
stability problem of the equation in the sense of distributions.

1. Introduction

The concept of the stability for a functional equation arises when the equation is
replaced by an inequality which acts as a perturbation of the equation. Here, the stability
question is how the solutions of the inequality differ from the solution of the original
equation.

This type of problem was first studied by D. H. Hyers [8] in 1941, who solved the
stability problem of Cauchy functional equation as follows.

THEOREM 1.1. [8] Let f : E1 → E2 with E1, E2 Banach spaces be an ε−additive,
that is, f satisfies

‖f (x + y) − f (x) − f (y)‖ � ε, (1.1)

for all x, y ∈ E1 . Then there exists a unique additive mapping g : E1 → E2 such that

‖f (x) − g(x)‖ � ε

for all x ∈ E1 . Here, an additive mapping g : E1 → E2 means the inequality (1.1)
satisfies for ε = 0 .

Since the work of Hyers [8], the stability problems of various functional equations,
for example: Pexider equation, Jensen equation, D’Alembert equation and so on, have
been proposed by many mathematicians.
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Consider the functional equation

f (x + y) + f (x − y) − 2f (x) − 2f (y) = 0, (1.2)

for all x and y in the domain of f . This equation is said to be quadratic, for the simple
reason that the quadratic functions f : R → R defined by f (x) = cx2 , c ∈ R , are
solutions of the equation (1.2). The stability of the quadratic equation (1.2) was first
studied by F. Skof [11], and has been developed by a number of authors, such as P. W.
Chilewa [2], S. Czerwik [6], and G. H. Kim [9].

In 2003, J. H. Bae, K. W. Jun and S. M. Jung [1] considered the functional equation

f (x+y+z)+f (x−y+z)+f (x+y−z)+f (−x+y+z)−4f (x)−4f (y)−4f (z) = 0, (1.3)

for all x, y, z in the domain of f , which they also called quadratic. In the paper [1], they
proved an interesting fact that for given vector spaces X and Y , a function f : X → Y
is a solution of the equation (1.3) if and only if f is a solution of the quadratic equation
(1.2), and investigated the stability problem of the equation (1.3). After this result, the
estimates of the stability problem of the equation has recently improved by P. Găvruţă
and L. Cădariu [7].

This paper deals with the stability problems of the equation (1.3) in the space
of distributions. In the papers [3, 4, 5], J. Chung, D. Kim and the third author have
proposed methods of how to solve the stability problems in the various spaces of
generalized functions. Following the same approaches of them, the equation (1.3) and
the inequality

|f (x+y+ z)+ f (x−y+ z)+ f (x+y− z)+ f (−x+y+ z)−4f (x)−4f (y)−4f (z)| � ε

is reformulated in the space of distributions as

u ◦ A1 + u ◦ A2 + u ◦ A3 + u ◦ A4 + u ◦ P1 + u ◦ P2 + u ◦ P3 = 0, (1.4)

and

‖u ◦ A1 + u ◦ A2 + u ◦ A3 + u ◦ A4 + u ◦ P1 + u ◦ P2 + u ◦ P3‖ � ε, (1.5)

where A1, A2, A3, A4, P1, P2 and P3 are the functions such that

A1(x, y, z) = x + y + z, A2(x, y, z) = x − y + z,

A3(x, y, z) = x + y − z, A4(x, y, z) = −x + y + z,

P1(x, y, z) = x, P2(x, y, z) = y and P3(x, y, z) = z,

for x, y, z ∈ R
n . Here, ◦ denotes the distributional pullback and ‖v‖ � ε means that

|〈 v,ϕ〉 | � ε‖ϕ‖L1 for all test functions ϕ .
Making use of the functions δt(x) := t−nδ( x

t ), x ∈ Rn, t > 0, where δ is an
infinitely differentiable function such that

δ � 0, supp δ ⊂ {x ∈ R
n| |x| � 1},

∫
δ = 1,
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we first show that every distribution satisfying the inequality (1.5) is a tempered distri-

bution. This fact enables us to convolve the heat kernel E(x, t) := (4πt)−
n
2 exp(− |x|2

4t ),
x ∈ Rn, t > 0 on the inequality (1.5) so that, as in [3, 4, 5], we may reduce the problem
on distributions to that of infinitely differentiable functions defined on Rn × (0,∞) .

As a result, we prove that every distribution u with the inequality (1.5) satisfies

‖u −
∑

1�i�j�n

aij xixj‖ � 3
8
ε, x = (x1, · · · xn) ∈ R

n,

for some aij ∈ C, 1 � i � j � n .

2. Preliminaries

We briefly introduce the space D ′(Rn) of distributions, and the space S ′(Rn) of
tempered distributions. Here we use the multi-index notations, |α| = α1 + · · · + αn ,
α! = α1! · · ·αn! , xα = xα1

1 · · · xαn
n and ∂α = ∂α1

1 · · · ∂αn
n , for x = (x1, . . . , xn) ∈ Rn ,

α = (α1, . . . ,αn) ∈ Nn
0 , where N0 is the set of non-negative integers and ∂j = ∂

∂xj
.

We denote by C∞(Rn) the set of all infinitely differentiable functions on R
n and

by C∞
o the set of all functions in C ∞ which have a compact support.

DEFINITION 2.1. A distribution u is a linear form on C∞
o (Rn) such that for every

compact set K ⊂ Rn there exist constants C > 0 and N ∈ N0 such that

|〈 u,ϕ〉 | � C
∑
|α|�N

sup |∂αϕ|

for all ϕ ∈ C∞
o (Rn) with supports contained in K . The set of all distributions is

denoted by D ′(Rn) .

DEFINITION 2.2. We denote by S (Rn) the Schwartz space of all infinitely differ-
entiable functions ϕ in R

n satisfying

sup
x

|xα∂βϕ(x)| < ∞

for all α , β ∈ Nn
0 . A linear form u on S (Rn) is said to be tempered distribution if

there is a constant C � 0 and a nonnegative integer N such that

|〈 u,ϕ〉 | � C
∑

|α|,|β|�N

sup |xα∂βϕ|,

for all ϕ ∈ S (Rn) . The set of all tempered distributions is denoted by S ′(Rn) .

The remaining of this section is devoted to introduce regularization and Gauss
transform, which play an important role in this paper. We denote by δ the function on
Rn satisfying

δ(x) =

{
A exp(−(1 − |x|2)−1),|x| < 1

0,|x| � 1,
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where

A =

(∫
|x|<1

exp(−(1 − |x|2)−1)dx

)−1

.

It is easy to see that δ is an infinitely differentiable function supported in the set
{x : |x| � 1} satisfying

∫
δ = 1 . For each t > 0 , let δt(x) = t−nδ(x/t) . Then δt has

all the properties of δ except that the support of δt is contained in the ball of radius t
with center at 0 . Suppose u belongs to D ′(Rn) . It is well known that for each t > 0 ,
(u ∗ δt)(x) = 〈 uy, δt(x− y)〉 is a smooth function in Rn and (u ∗ δt)(x) → u as t → 0+

in the sense of distributions, that is, for every ϕ ∈ C∞
o (Rn) ,

〈 u ∗ δt,ϕ〉 =
∫

(u ∗ δt)(x)ϕ(x)dx −→ 〈 u,ϕ〉 as t → 0+.

For each t > 0 , the function u ∗ δt is called a regularization of u and the transform
which maps u to u ∗ δt is called a mollifier.

On the other hand, the n -dimensional heat kernel is the fundamental solution
E(x, t) of the heat operator ∂t −�x in Rn × (0,∞) given by

E(x, t) =
{

(4πt)−n/2 exp(−|x|2/4t) , x ∈ Rn, t > 0,

0 , x ∈ Rn, t � 0.

For convenience, we sometimes use the notation Et(x) instead of E(x, t) . The semi-
group property

(Es ∗ Et)(x) = Es+t(x), x ∈ R
n, s, t > 0 (2.1)

of the heat kernel is very useful later.
Since for each t > 0 , E(·, t) belongs to S (Rn) , the following transform G of u

Gu(x, t) := (u ∗ E)(x, t) = uy(E(x − y, t)), x ∈ R
n, t > 0

is well defined for each u ∈ S ′(Rn) , which is called the Gauss transform of u . It is
easy to see that for any t > 0 , Gu(·, t) is contained in S (Rn) .

It is shown in [10] that the Gauss transform Gu(x, t) of u is a C∞ solution of the
heat equation in Rn × (0,∞) and Gu(·, t) converges to u as t → 0+ in the following
sense that for each ϕ ∈ S (Rn) ,

〈Gu(·, t),ϕ〉 =
∫

Gu(x, t)ϕ(x)dx −→ 〈 u,ϕ〉 as t → 0+.

3. Main theorem

In this section, we solve the stability problem of the quadratic equation (1.3) in
the space of distributions. First, we show that every distribution satisfies the inequality
(1.5) is a tempered distribution. To see this, we first show the following lemma.

LEMMA 3.1. Let f : Rn → C be a measurable function satisfying

f (x+y+z)+f (x−y+z)+f (x+y−z)+f (−x+y+z)−4f (x)−4f (y)−4f (z) = 0 (3.1)
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Then
f (x) =

∑
1�i�j�n

aijxixj, x = (x1, · · · xn) (3.2)

for some aij ∈ C, 1 � i � j � n .

Proof. To prove the lemma, we use the induction. For n = 1 , it is obvious. Now,
assume that the lemma holds for n = l , and let f : Rn → C be a measurable function
satisfying (3.1). Then (3.1) can be rewritten as

f (x + y + z, ξ + η + ζ) + f (x − y + z, ξ − η + ζ) + f (x + y − z, ξ + η− ζ)
+f (−x + y + z,−ξ + η + ζ) − 4f (x, ξ) − 4f (y,η) − 4f (z, ζ) = 0,

(3.3)
for x, y, z ∈ Rn and ξ ,η, ζ ∈ R . Now, let h(x, ξ) = f (x, ξ)− f (0, ξ)− f (x, 0). Then
it is easily seen that h satisfies

h(0, ξ) = 0, ξ ∈ R, (3.4)

h(x, 0) = 0, x ∈ R
n (3.5)

and

h(x+y+z, ξ+η+ζ)+h(x−y+z, ξ−η+ζ)+h(x+y−z, ξ+η−ζ)
+h(−x+y+z,−ξ+η+ζ)−4h(x, ξ)−4h(y,η)−4h(z, ζ) = 0,

(3.6)

for x, y, z ∈ Rn and ξ ,η, ζ ∈ R .
Putting y = z = 0 and η = ζ = 0 in (3.6), we have

h(x, ξ) = h(−x,−ξ), x ∈ R
n, ξ ∈ R. (3.7)

Now, let y = z = 0 and ζ = 0 in (3.6). Then from (3.7) we have

h(x, ξ + η) + h(x, ξ − η) − 2h(x, ξ), x ∈ R
n, ξ ,η ∈ R,

which is, from (3.5), equivalent to the equation

h(x, ξ + η) = h(x, ξ) + h(x,η), x ∈ R
n, ξ ,η ∈ R.

This implies that for each x ∈ Rn , the function h(x, ·) satisfies Cauchy equation, and
hence h(x, ξ) = h(x, 1)ξ , for x ∈ Rn and ξ ∈ R .

But putting z = 0 , η = ζ = 0 and ξ = 1 in (3.6), it is easily seen that there
exist b1, · · · , bl ∈ C such that

h(x, 1) = b1x1 + · · · + blxl, x = (x1, · · · , xl) ∈ R
l.

Since f (x, ξ) = f (x, 0) + h(x, ξ) + f (0, ξ) , it follows from the induction assumption
that we complete the proof. �

THEOREM 3.2. Let u ∈ D ′(Rn) satisfy the inequality (1.5). Then u is an element
in S ′(Rn) .
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Proof. Convolving δt(x)δs(y)δr(z) in the left-hand side of (1.5) we have

| (u ∗ δt ∗ δs ∗ δr)(x + y + z) + (u ∗ δt ∗ δs ∗ δr)(x − y + z)
+ (u ∗ δt ∗ δs ∗ δr)(x + y − z) + (u ∗ δt ∗ δs ∗ δr)(−x + y + z)

− 4(u ∗ δt)(x) − 4(u ∗ δs)(y) − 4(u ∗ δr)(z) | � ε
(3.8)

for all x, y, z ∈ Rn and t, s, r > 0 . In view of (3.8) it is easy to see that

f (x) := lim sup
t→0+

(u ∗ δt)(x)

exists, for all x ∈ Rn .
Putting x = y = z = 0 and t = s = r = sn → 0+ so that (u ∗ δsn)(0) → f (0) in (3.8),
we have

|f (0)| � ε
8
. (3.9)

Now, let y = z = 0 and, for any x ∈ Rn , put t = tn → 0+ so that (u ∗ δtn)(x) → f (x) ,
and s = sn → 0+ so that (u ∗ δsn)(0) → f (0) in (3.8). Then from (3.9), we have

|−(u ∗ δt)(x) + (u ∗ δt)(−x)| � 2ε, x ∈ R
n. (3.10)

On the other hand, if we put y = z = 0 , t = tn → 0+ so that (u ∗ δtn)(x) → f (x) and
r = rn → 0+ so that (u ∗ δrn)(0) → f (0) in (3.8) then we have

|−(u ∗ δs)(x) + (u ∗ δs)(−x) + 4(u ∗ δs)(x) − 4f (x) − 4(u ∗ δs)(0) − 4f (0)| � ε,

and from (3.10), we get the inequality

|(u ∗ δs)(x) − f (x) − (u ∗ δs)(0)| � 3
4
ε + |f (0)| � 7

8
ε, (3.11)

for x ∈ Rn and s > 0 . We also have

|(u ∗ δs)(x + y + z) + (u ∗ δs)(x − y + z) + (u ∗ δs)(x + y − z)
+(u ∗ δs)(−x + y + z) − 4f (x) − 4(u ∗ δs)(y) − 4f (z)| � ε,

(3.12)

for x, y, z ∈ Rn and s > 0 , if we put t = tn → 0+ so that (u ∗ δtn)(x) → f (x) and
r = rn → 0+ so that (u ∗ δrn)(z) → f (z) in (3.8).

From the inequality (3.11), (3.12) and the triangle inequality we have

|f (x+y+z)+ f (x−y+z)+ f (x+y−z)+ f (−x+y+z)−4f (x)−4f (y)−4f (z)| � 8ε

for all x, y, z ∈ R
n .

In view of the Corollary 2.6 in [7], there exists a unique function q : Rn → C

satisfying

q(x+y+z)+q(x−y+z)+q(x+y−z)+q(−x+y+z)−4q(x)−4q(y)−4q(z)=0, (3.13)

for all x, y, z ∈ Rn such that
|f (x) − q(x)| � ε (3.14)

for all x ∈ Rn .
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From (3.11) and (3.14) we have

|(u ∗ δs)(x) − q(x) − (u ∗ δs)(0)| � 15
8
ε, (3.15)

for all x ∈ Rn and s > 0 . Putting s = sn → 0+ so that (u ∗ δsn)(0) → f (0) in (3.15)
we have

‖u − q(x)‖ � 2ε. (3.16)

On the other hand, as we see the proof of Theorem 2.1 in [7], the function q inherits its
measurability from f and it follows from Lemma 3.1 that every measurable solution of
the equation (3.13) has the form

q(x) =
∑

1�i�j�n

aij xixj, x = (x1, · · · , xn).

Thus it follows from (3.16) that h(x) := u − q(x) belongs to (L1)′ = L∞ and
u = q(x) + h(x) ∈ S ′(Rn) . �

The following lemma is necessary to prove the main theorem.

LEMMA 3.3. Let f : Rn × (0,∞) → C be a continuous function satisfying

f (x+y+z, t+s+r)+f (x−y+z, t+s+r)+f (x+y−z, t+s+r)
+f (−x+y+z, t+s+r)−4f (x, t)−4f (y, s)−4f (z, r) = 0.

(3.17)

for all x, y, z ∈ Rn and t, s, r > 0. Then there exist aij and b in C such that

f (x, t) =
∑

1�i�j�n

aijxixj + bt,

for x = (x1, · · · , xn) ∈ R
n , t > 0 .

Proof. Let h(x, t) := f (x, t) − f (0, t) . Then h satisfies

h(x+y+z, t+s+r)+h(x−y+z, t+s+r)+h(x+y − z, t + s + r)
+h(−x + y + z, t + s + r) − 4h(x, t) − 4h(y, s) − 4h(z, r) = 0

(3.18)

for all x, y, z ∈ Rn and t, s, r > 0 , and

h(0, t) = 0, t > 0. (3.19)

Put y = z = 0 and s = r → 0+ in (3.18). Then from (3.19), we have

h(x, t) = h(−x, t), x ∈ R
n, t > 0. (3.20)

If we take y = z = 0 in (3.18), then by virtue of (3.19) and (3.20), we have

h(x, t + s + r) = h(x, t),

which implies that h(x, t) is independent of t > 0 . Thus by the Lemma 3.1, there exist
aij ∈ C , 1 � i � j � n such that

h(x, t) =
∑

1�i�j�n

aijxixj, x = (x1, · · · , xn).



332 YUN-SUNG CHUNG, JONG-HO KIM AND SOON-YEONG CHUNG

On the other hand, putting x = y = z = 0 and r → 0+ in (3.17), we have

f (0, t + s) = f (0, t) + f (0, s), t, s > 0,

for it is easy to see that limr→0+ f (0, r) = 0 , by putting x = y = z = 0 and s = r in
(3.17). Then, since f (x, t) = h(x, t) + f (0, t) , we have the result. �

Now we are ready to state and prove the main theorem of this paper.

THEOREM 3.4. Let u ∈ D ′(Rn) satisfy the inequality (1.5) . Then there exists a
unique quadratic function

q(x) =
∑

1�i�j�n

aij xixj, x = (x1, · · · , xn)

such that

‖u − q(x)‖ � 3
8
ε. (3.21)

Proof. From Theorem 3.2, without loss of generality, we may assume that u
belongs to S ′(Rn) . Now we employ the n -dimensional heat kernel Et(x), t > 0 .
Convolving Et(x)Es(y)Es(z) in the left-hand side of (1.5) we get the stability of the
functional equation of type

|Gu(x+y+z, t+s+r)+Gu(x−y+z, t+s+r)+Gu(x+y−z, t+s+r)
+Gu(−x+y+z, t+s+r)−4Gu(x, t)−4Gu(y, s)−4Gu(z, r)| � ε

(3.22)

for x, y, z ∈ R
n and t, s, r > 0 , where Gu is the Gauss transform of u given by

Gu(x, t) = 〈 uξ , Et(x − ξ)〉 .

Putting x = y = z = 0 and s = t in (3.22), we have∣∣∣∣12Gu(0, 2t + r) − Gu(0, t) − Gu(0, r)
∣∣∣∣ � ε

8
, t, r > 0. (3.23)

From (3.23), it is easy to see that lim supt→0+ Gu(0, t) exists. Then, since Gu is
continuous on Rn × (0,∞) , for any r > 0 we have,∣∣∣∣lim sup

t→0+
Gu(0, t)

∣∣∣∣=
∣∣∣∣lim sup

t→0+

(
1
2
Gu(0, 2t+r)−1

2
Gu(0, r)−Gu(0, t)

)∣∣∣∣ � ε
8
. (3.24)

On the other hand, putting x = y = z = 0, r = s and t = tn → 0+ so that Gu(0, tn)
converges to lim supt→0+ Gu(0, t) as n → ∞ in (3.22) and dividing the result by 8, we
have ∣∣∣∣12Gu(0, tn + 2s) − 1

2
Gu(0, tn) − Gu(0, s)

∣∣∣∣ � ε
8
.

for all n ∈ N and s > 0 .Then it follow from (3.24) that∣∣∣∣12Gu(0, 2s) − Gu(0, s)
∣∣∣∣ � ε

8
+

ε
16

=
3
16

ε,
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for all s > 0 . By the induction argument we have∣∣∣∣ 1
2n

Gu(0, 2ns) − Gu(0, s)
∣∣∣∣ � 3

8
ε (3.25)

for all n ∈ N, s > 0 . Now let h : (0,∞) → C be defined by

h(s) = lim
m→∞

1
2m

Gu(0, 2ms). (3.26)

Then from (3.25), it can be seen that the righthand side of (3.26) converges uniformly
and h is the unique function satisfying

|Gu(0, t) − h(t)| � ε
2
, t > 0. (3.27)

Moreover, if we put x = y = z = 0 and r = tn in (3.22), then by the inequality (3.24)
we have

h(t + s) = h(t) + h(s), (3.28)

for all t, s > 0 .
Now, putting y = x, z = 0, t = tn and s = r in (3.22), we have

|2Gu(2x, tn + 2s) + 2Gu(0, tn + 2s) − 8Gu(x, s) − 4Gu(0, tn)| � ε,

for all n ∈ N and s > 0 , and so, from (3.24), it is seen that

|2Gu(2x, 2t) + 2Gu(0, 2t)− 8Gu(0, t)| � ε +
ε
2

=
3
2
ε, (3.29)

for all x ∈ Rn and t > 0 . Dividing (3.29) by 8 and using the induction argument, we
have ∣∣∣∣∣ 1

4n
Gu(2nx, 2nt) − Gu(x, t)

n∑
k=1

1
4
Gu(0, 2kt)

∣∣∣∣∣ � ε
4
, (3.30)

for all n ∈ N , x ∈ Rn and t > 0 . It follows from (3.27) and (3.28) that∣∣∣∣∣
n∑

k=1

1
4k

Gu(0, 2kt) − (1 − 1
2n

)h(t)

∣∣∣∣∣ � ε
8
. (3.31)

for all n ∈ N , t > 0 . From (3.30) and (3.31), letting F(x, t) := Gu(x, t) − h(t) we
have ∣∣∣∣F(x, t) − 1

4n
F(2nx, 2nt)

∣∣∣∣ � ε
8

+
ε
4

=
3ε
8

, (3.32)

for all x ∈ R
n and t > 0 . Using similar method we have done, it can be seen that the

function g : Rn × (0,∞) → C defined by

g(x, t) = lim
m→∞

1
4m

F(2mx, 2mt)

is the unique function satisfying

|F(x, t) − g(x, t)| � 3ε
8

(3.33)
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and

g(x+y+z, t+s+r)+g(x−y+z, t+s+r)+g(x+y−z, t+s+r)
+g(−x+y+z, t+s+r)−4g(x, t)−4g(y, s)−4g(z, r) = 0,

(3.34)

for all x, y, z ∈ Rn and t, s, r > 0 .
Let q(x, t) := g(x, t) + h(t) . Then q(x, t) is a continuous function satisfying the
equation(3.34) and, by the lemma 3.3, has the form

q(x, t) =
∑

1�i�j�n

aij xixj + bt,

for x = (x1, · · · xn) ∈ Rn , t > 0 . Thus in view of the equation (3.33) we have

|Gu(x, t) −
∑

1�i�j�n

aij xixj − bt| � 3
8
ε. (3.35)

for x = (x1, · · · xn) ∈ Rn , t > 0 . Letting t → 0+ in (3.35) we get (3.21). This
completes the proof. �
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