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ON AN IMPROVEMENT OF BERNSTEIN’S
POLYNOMIAL INEQUALITIES

DIMITER DRYANOV AND RICHARD FOURNIER

(communicated by Th. M. Rassias)

Abstract. The following Bernstein inequality

/
max |p’(z)| < n max |p(z)],
ERS NFS

valid for all complex polynomials p of degree n, has been extended by Ruscheweyh to

2n
max [p/ ()] < n max |p(2)| -

0)], >2.
lel<1 lel<1 2 PO >

We prove in this note that two other Bernstein inequalities, i.e.,
max ’\/ 1 7x2p'(x)‘ <n max_ [p(x)|
—1<x<1 —1<x<1

or

/
max ['(0) <n max [¢(0)],
0<6<M| (0)] < 0<6<2n| s

where #(60) is a complex trigonometric polynomial of degree n do not admit similar extensions.
In addition we obtain a new proof of Marcel Riesz interpolation formula.

1. Introduction

Let P, denote the set of polynomials p(z) := > ;_, ax(p)z* with complex coeffi-
cients endowed with the norm

plp == max p(2)],

where D := {z | |z] < 1} is the unit disc of the complex plane. Let 7, denote the
set of trigonometric polynomials #(0) := >/ ax(t)e*® with complex coefficients
endowed with the norm

g = 1(0)|.
1|z := max[(6)]
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We shall also consider the linear space P, of polynomials
P(2) =Y Ap)Ti(z)
k=0

(here Ty is the kth Chebyshev polynomial, i.e., Tx(cos8) = coskf for all 8 € R)
equipped with the norm

pli—11 == max_|p(x)].
xe[—1,1]

The inequalities

(1) Pl <nlplp,  p € Pa,

2) 'lr < nltle, 1€,

(3) [VI=2p'@)|_,, <nlpli-vys pEPy
are due to Bernstein and have played an important role in the early history of approxima-
tion theory in the twentieth century. We refer to the book by Rahman and Schmeisser [7]
and by Milovanovi¢, Mitinovi¢ and Rassias [6] concerning deatils and historicl matters.
It is well known that equality holds in (1) only if p(z) := Kz" with K € C. Equality
holds in (2) only if #(6) := Kje~ "% + K¢™? ; finally equality holds in (3) only when
p is a multiple of the nth Chebyshev polynomial.

We shall be concerned in this paper by the following refinement of (1).

THEOREM A. Forany p € P, (n >2),

2n
= Jao(p)l.

Theorem A is due to Ruscheweyh [8]. Variants of his result (involving |a;(p)| or |ax(p)|
or higher order coefficients) have appeared in [3, 4]. It has been shown recently [2] that
equality holds in Theorem A if and only if p is a monomial of degree n.

We shall prove

P'Ip < nlp| -

THEOREM 1. Let n > 1 and —n < j < n; there exists no positive constant d > 0

such that
7' [e < nltle —dlai(r)], 1 € T
This means that no immediate extension of Theorem A to the class 7, is possible.
Our proof of Theorem 1 relies on the notion of bound-preserving operators over P, .
Let H(ID) denote the class of functions analytic in D; for two members f(z) :=
Yoo an(f)Z" and g(z) == > 7 an(g)z" of H(D), the convolution f g is defined as
o0

fx8(@) =) auf)an(g)2"
n=0

Clearly f * g also belongs to H(D). A function f € H(D) is called bound-preserving
over P, if

If xplp < Iplp, P € P
The following theorem gives a characterization of the class B, of bound-preserving
functions over P, .
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THEOREM B. f € B, if and only if
1 n
10 = [ (g au®+o@), zeD,
op L — 62
where L is a complex Borel measure over 0D with [, |du (&) < 1.

Here o(z") means a function of the type z"!g(z) where g € H(D). It follows in
particular that for f € B, with f(0) = 1, the measure u in Theorem B may be chosen
as a probability measure and the class {f € B, | f(0) = 1} is identical with the class

Pija(n) = {f € H(D) | £(0) = Land Re(f (z) + o(z")) > 4,z € D}.

This is a consequence of the celebrated formula of Herglotz. Further facts concerning
B, may be found in Ruscheweyh’s lecture notes [8] or in the more recent book by
Sheil-Small [9].

Proof of Theorem 1

Let #(0) := >/, ax(t)e*®. Tt follows from Theorem A, when applied to
p(2) = " a_n(1)? € Py, that

17(0) + int(0)] < 2nltlg — 0, 6cR.

2n |
= lax,
n+1 7T
This last inequality, together with (2) , seems to suggest that a statement of the type
'l < nltle — dlaza(7)]

might be valid for some d > 0. Our Theorem 1 shows that this is not the case.
For a given ¢ € 7,, the following inequalities are easily seen to be equivalent:

|t'|r + da;(1)| < nltlg,

7(0) d 0
r(6) + —a;(1)e"eV | < nltlr, 0,y €R,
n n
"k d o
Z ;ak(t) z(n+k) + a]( ) z(n+j)061ql < nMRa 0,y € R,
k=—n
2n 2n 2n
—k d .
> a0 (Z F+ e"";z’*") < max > a0
k=0 k=0 k=0

this last inequality being valid for all z € D and y € R. It follows in particular that
the statement of Theorem 1 amounts to the fact that for each d > 0,

2n

n—
Foyjz) =1+ Z

k=1

ka + eiqléZjJrn7
n

is not bound preserving for at least one real value yo of v, i.e., Fg,,; doesnot belong
to By,. By Theorem B, the Taylor coefficients of any function in 5,, must belong to
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the closed unit disc; since ag(Fyy.—n) = 1 + e“”% and az,(Fayn) = —1+ e“”% , we
only have to prove Theorem 1 for —n <j < n.

Let us now assume that Fgy; € Ba,, forall w € R and some d > 0; then
Fyyj € Pyj>(2n). We shall need the following lemma, whose proof can be found in
([5, Chapters 4 and 7]):

LEMMA A. Let F(z) := 1+ Y 0" bi(F)Z* € Py/,(2n). Then for 1 < k < 2n,
—1 < Re(bi(F))

with equality for some k iff

k

Zf

where {&,} _, is the set of distinct complex k-roots of —1 and {,, >0, 1 <m < k.

2n)

ﬂ'l Z

Of course by, (Fay j) = —1 and by Lemma A we obtain, for any real y,
2n n—k d 2n /
Foyj(z) =1+ eV —FgMm = —t 4o 1
i) =1+ 3" =Y g e

with 4 = G(y) >0, 1 <k <2nand W(2) == [[",(z— &) = 2" + 1. By
comparing coefficients in (1) we are led to the linear system

2n
Sugr="
k=1

where 6 is the Kronecker’s symbol. We wish to solve this system explicitly for
{1,0,...,02,}. We write (2) as

d .
m,n+j;elwa m = Oa 17 EERE) 2n — 17 (2)

ViL=cC
where V is the 2n x 2n Vandermonde matrix associated with the set {&1}?",, L =
(01,02, ...,0,)" and C is the column-matrix formed with the constants to the right of

the equations in the system (2). Then of course
L=VhH~lc=(vhHc

and if
2n—1

W(Z) Z2n +1 B
- GW(E)  —mEG-&) mZOkaz : (3)

we obtain from a well known property of Vandermonde matrices ([1, p. 64])

2n—1 P
n—m de'V
b = fk(l[/) = E " Wk + Wnﬂ',kT, v € R. (4)

m=0
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Now by comparing coefficients in (3) we obtain

g—m—Z
2k

Wk =
k 2n

, 0<m<2n—1

and in particular W, ; # O for all admissible values of m. Since ¢, > 0, we must now
deduce from (4) that d = 0. This completes our proof of Theorem 1.
Further computations yield

2n n—m csc ((Zk )7 ) X
—_— - " D 5
Z n & 4nZZ lfékz Tol@"), z€D, ®)

and convoluting both sides of (5) with g € P,, we easily obtain

2n
q(z) - = a(&z), zeC (6)
k=1

2k—1)1m

with A 1= -~ (4n2 ) >0, Z Ak =1 and & = ek=Dim/2n - We also wish to
point out the following known consequence of (5). Our contribution here concerns the
case of equality.

COROLLARY 11. Let p € P»,. Then

with equality iff p(z) = A + Bz*", A,B € C.

The identity (5) has a wider scope; for example an application of (6) to ¢ € Py,
defined by

q(ei(-)) — ein(-)t(e)
where t € 7, yields the well-known Marcel Riesz interpolation formula for trigono-
metric polynomials. Indeed, (6) is equivalent to the Riesz formula.

Conclusion

An argument rather similar to the previous one leads to the following result:

THEOREM 2. Let n > 1 and —n < j < n; there exists no positive constant d > 0
such that

| 1 _x2p |[ < n|p‘[—l,l] - d‘AJ(p)‘7 JAS 7Bn (7)

Indeed, it is possible to give a s1mple class of counterexample to (7). Itis clearly enough
to assume that 0 < j < n. We consider p € P, defined by

p(x) = Ty(x) + ieTj(x) (8)
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where ¢ is real. Then we have |p|_;; = V1 + &> and

)
sin(0)p’(cos B)| = n 1+ &2l sin2(jo
2

if O is chosen such that sin(n6) = 1. Assuming now that (7) holds we readily obtain

\/1+8—sm2(]9 nV1+ e —dlg|

ie., d<nle|(1— fl—Zz sin?(j6)) and the conclusion follows by letting € — 0. A similar
example related to Theorem 1 can be obtained by considering

1(0) := cos(nB) + i€ cos(j0) 9)

with € real. The fact that the polynomials in (8) and (9) have imaginary coefficients is
irrelevant: the trigonometric polynomials

2.(0) == —e ™ +e+e" £>0
may be also used instead of (9). An interesting problem is the following: does there
exist a constant d;, > 0 such that
||z < nltle — d,|Ao(7)]

for all trigonometric polynomials #(0) such that

Z AcD)e® . A (1) = Ar),  (0<k<n)?
k=—n

We are unable to decide this question which is equivalent to the following conjectural
variant of a famous inequality of Sz&go:

By + o

Bp_ap !
—d
2

2

Im(zp'(2)) [, <n —Re(p(0))|, (peP)

with
G = min Re(p(z)) and B, = max Re(p(z)).

Finally we have the following explanation concerning the sharp contrast between
the conclusion of Theorem A and Theorem 1: the “Fejer” polynomials

Fn(Z) = Z ﬂzk

satisfy as well known

ReF,(z) > %, z€D

but they in some sense do not live on the natural boundary of the function set P;(n),
i.e., we may perturb them to the point that

Fu(z) + €2 € Pip(n), 0<j<n, |e] <dyy,
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for strictly positive constants d,;. The known proofs of Theorem A and its gener-
alizations are based on that plain fact. The negative conclusion of Theorem 1 is a
consequence of the fact that

n—k
GZn(Z) = Z Zk

belongs to the boundary of P, /,(2n) (remark that a,(G2,) = —1 andrecall Lemma A )
and for that reason cannot be perturbed as above.
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