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Abstract. The following Bernstein inequality

max
|z|�1

|p′(z)| � n max
|z|�1

|p(z)|,

valid for all complex polynomials p of degree n , has been extended by Ruscheweyh to

max
|z|�1

|p′(z)| � n max
|z|�1

|p(z)| − 2n
n + 2

|p(0)|, n � 2.

We prove in this note that two other Bernstein inequalities, i.e.,

max
−1�x�1

∣∣∣√1 − x2p′(x)
∣∣∣ � n max

−1�x�1
|p(x)|

or
max

0�θ�2π
|t′(θ)| � n max

0�θ�2π
|t(θ)|,

where t(θ) is a complex trigonometric polynomial of degree n do not admit similar extensions.
In addition we obtain a new proof of Marcel Riesz interpolation formula.

1. Introduction

Let Pn denote the set of polynomials p(z) :=
∑n

k=0 ak(p)zk with complex coeffi-
cients endowed with the norm

|p|D := max
z∈∂D

|p(z)|,

where D := {z | |z| < 1} is the unit disc of the complex plane. Let Tn denote the
set of trigonometric polynomials t(θ) :=

∑n
k=−n ak(t)eikθ with complex coefficients

endowed with the norm
|t|R := max

θ∈R

|t(θ)|.
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We shall also consider the linear space P̃n of polynomials

p(z) :=
n∑

k=0

Ak(p)Tk(z)

(here Tk is the kth Chebyshev polynomial, i.e., Tk(cos θ) = cos kθ for all θ ∈ R )
equipped with the norm

|p|[−1,1] := max
x∈[−1,1]

|p(x)|.
The inequalities

(1) |p′|D � n|p|D, p ∈ Pn,

(2) |t′|R � n|t|R, t ∈ Tn,

(3)
∣∣√1 − x2p′(x)

∣∣
[−1,1] � n|p|[−1,1], p ∈ P̃n

are due to Bernstein and have played an important role in the early history of approxima-
tion theory in the twentieth century. We refer to the book by Rahman and Schmeisser [7]
and by Milovanović, Mitinović and Rassias [6] concerning deatils and historicl matters.
It is well known that equality holds in (1) only if p(z) := Kzn with K ∈ C . Equality
holds in (2) only if t(θ) := K1e−inθ + K2einθ ; finally equality holds in (3) only when
p is a multiple of the nth Chebyshev polynomial.

We shall be concerned in this paper by the following refinement of (1) .

THEOREM A. For any p ∈ Pn (n � 2) ,

|p′|D � n|p| − 2n
n + 2

|a0(p)|.

TheoremA is due to Ruscheweyh [8]. Variants of his result (involving |a1(p)| or |a2(p)|
or higher order coefficients) have appeared in [3, 4]. It has been shown recently [2] that
equality holds in Theorem A if and only if p is a monomial of degree n .

We shall prove

THEOREM 1. Let n � 1 and −n � j � n ; there exists no positive constant d > 0
such that

|t′|R � n|t|R − d|aj(t)|, t ∈ Tn.

This means that no immediate extension of Theorem A to the class Tn is possible.
Our proof of Theorem 1 relies on the notion of bound-preserving operators over Pn .
Let H(D) denote the class of functions analytic in D ; for two members f (z) :=∑∞

n=0 an(f )zn and g(z) :=
∑∞

n=0 an(g)zn of H(D) , the convolution f � g is defined as

f � g(z) :=
∞∑

n=0

an(f )an(g)zn.

Clearly f � g also belongs to H(D) . A function f ∈ H(D) is called bound-preserving
over Pn if

|f � p|D � |p|D, p ∈ Pn.

The following theorem gives a characterization of the class Bn of bound-preserving
functions over Pn .



ON AN IMPROVEMENT OF BERNSTEIN’S POLYNOMIAL INEQUALITIES 345

THEOREM B. f ∈ Bn if and only if

f (z) =
∫

∂D

1
1 − ξz

dμ(ξ) + o(zn), z ∈ D,

where μ is a complex Borel measure over ∂D with
∫

∂D
|dμ(ξ)| � 1 .

Here o(zn) means a function of the type zn+1g(z) where g ∈ H(D) . It follows in
particular that for f ∈ Bn with f (0) = 1 , the measure μ in Theorem B may be chosen
as a probability measure and the class {f ∈ Bn | f (0) = 1} is identical with the class

P1/2(n) =
{
f ∈ H(D) | f (0) = 1 and Re

(
f (z) + o(zn)

)
> 1

2 , z ∈ D
}
.

This is a consequence of the celebrated formula of Herglotz. Further facts concerning
Bn may be found in Ruscheweyh’s lecture notes [8] or in the more recent book by
Sheil–Small [9].

Proof of Theorem 1

Let t(θ) :=
∑n

k=−n ak(t)eikθ . It follows from Theorem A, when applied to

p(z) :=
∑2n

k=0 ak−n(t)zk ∈ P2n , that

|t′(θ) ± int(θ)| � 2n|t|R − 2n
n + 1

|a∓n(t)|, θ ∈ R.

This last inequality, together with (2) , seems to suggest that a statement of the type

|t′|R � n|t|R − d|a∓n(t)|
might be valid for some d > 0 . Our Theorem 1 shows that this is not the case.

For a given t ∈ Tn , the following inequalities are easily seen to be equivalent:

|t′|R + d|aj(t)| � n|t|R,∣∣∣∣ t′(θ)
n

+
d
n
aj(t)eijθeiψ

∣∣∣∣ � n|t|R, θ,ψ ∈ R,∣∣∣∣∣
n∑

k=−n

k
n
ak(t)ei(n+k)θ +

d
n
aj(t)ei(n+j)θeiψ

∣∣∣∣∣ � n|t|R, θ,ψ ∈ R,

∣∣∣∣∣
2n∑

k=0

ak−n(t)zk �

(
2n∑

k=0

n − k
n

zk + eiψ d
n
zj+n

)∣∣∣∣∣ � max
u∈D

∣∣∣∣∣
2n∑

k=0

ak−n(t)uk

∣∣∣∣∣
this last inequality being valid for all z ∈ D and ψ ∈ R . It follows in particular that
the statement of Theorem 1 amounts to the fact that for each d > 0 ,

Fd,ψ ,j(z) := 1 +
2n∑

k=1

n − k
n

zk + eiψ d
n
zj+n,

is not bound preserving for at least one real value ψ0 of ψ , i.e., Fd,ψ0,j does not belong
to B2n . By Theorem B, the Taylor coefficients of any function in B2n must belong to
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the closed unit disc; since a0(Fd,ψ ,−n) = 1 + eiψ d
n and a2n(Fd,ψ ,n) = −1 + eiψ d

n , we
only have to prove Theorem 1 for −n < j < n .

Let us now assume that Fd,ψ ,j ∈ B2n , for all ψ ∈ R and some d � 0 ; then
Fd,ψ ,j ∈ P1/2(2n) . We shall need the following lemma, whose proof can be found in
([5, Chapters 4 and 7]):

LEMMA A. Let F(z) := 1 +
∑2n

k=1 bk(F)zk ∈ P1/2(2n) . Then for 1 � k � 2n ,

−1 � Re
(
bk(F)

)
with equality for some k iff

F(z) =
k∑

m=1

�m

1 − ξmz
+ o(z2n)

where {ξm}k
m=1 is the set of distinct complex k -roots of −1 and �m � 0 , 1 � m � k .

Of course b2n(Fd,ψ ,j) = −1 and by Lemma A we obtain, for any real ψ ,

Fd,ψ ,j(z) = 1 +
2n∑

k=1

n − k
n

zk + eiψ d
n
zj+n =

2n∑
k=1

�k

1 − ξkz
+ o(z2n) (1)

with �k = �k(ψ) � 0 , 1 � k � 2n and W(z) :=
∏2n

k=1(z − ξk) = z2n + 1 . By
comparing coefficients in (1) we are led to the linear system

2n∑
k=1

�kξm
k =

n − m
n

+ δm,n+j
d
n
eiψ , m = 0, 1, . . . , 2n − 1, (2)

where δ is the Kronecker’s symbol. We wish to solve this system explicitly for
{�1, �2, . . . , �2n} . We write (2) as

VTL = C

where V is the 2n × 2n Vandermonde matrix associated with the set {ξk}2n
k=1 , L =

(�1, �2, . . . , �2n)T and C is the column-matrix formed with the constants to the right of
the equations in the system (2). Then of course

L = (VT)−1C = (V−1)TC

and if
W(z)

(z − ξk)W ′(ξk)
=

z2n + 1

−2nξ̄k(z − ξk)
:=

2n−1∑
m=0

Wm,kz
m, (3)

we obtain from a well known property of Vandermonde matrices ([1, p. 64])

�k = �k(ψ) =
2n−1∑
m=0

n − m
n

Wm,k + Wn+j,k
deiψ

n
, ψ ∈ R. (4)
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Now by comparing coefficients in (3) we obtain

Wm,k =
ξ−m−2

k

2n
, 0 � m � 2n − 1

and in particular Wm,k �= 0 for all admissible values of m . Since �k � 0 , we must now
deduce from (4) that d = 0 . This completes our proof of Theorem 1.

Further computations yield

2n∑
m=0

n − m
n

zm =
1

4n2

2n∑
k=1

csc2( (2k−1)π
4n )

1 − ξkz
+ o(z2n), z ∈ D, (5)

and convoluting both sides of (5) with q ∈ P2n we easily obtain

q(z) − zq′(z)
n

=
2n∑

k=1

λkq(ξkz), z ∈ C (6)

with λk :=
csc2
(

(2k−1)π
4n

)
4n2 > 0 ,

∑2n
k=1 λk = 1 and ξk = e(2k−1)iπ/2n . We also wish to

point out the following known consequence of (5). Our contribution here concerns the
case of equality.

COROLLARY 11. Let p ∈ P2n . Then∣∣∣∣p(z) − zp′(z)
n

∣∣∣∣
D

� |p|D

with equality iff p(z) ≡ A + Bz2n , A, B ∈ C .

The identity (5) has a wider scope; for example an application of (6) to q ∈ P2n

defined by
q(eiθ) = einθ t(θ)

where t ∈ Tn yields the well-known Marcel Riesz interpolation formula for trigono-
metric polynomials. Indeed, (6) is equivalent to the Riesz formula.

Conclusion

An argument rather similar to the previous one leads to the following result:

THEOREM 2. Let n � 1 and −n � j � n ; there exists no positive constant d > 0
such that ∣∣√1 − x2p′(x)

∣∣
[−1,1] � n|p|[−1,1] − d|Aj(p)|, p ∈ P̃n (7)

Indeed, it is possible to give a simple class of counterexample to (7). It is clearly enough
to assume that 0 � j < n . We consider p ∈ P̃n defined by

p(x) := Tn(x) + iεTj(x) (8)
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where ε is real. Then we have |p|[−1,1] =
√

1 + ε2 and

| sin(θ)p′(cos θ)| = n

√
1 + ε2 j2

n2
sin2(jθ)

if θ is chosen such that sin(nθ) = 1 . Assuming now that (7) holds we readily obtain

n

√
1 + ε

j2

n2 sin2(jθ) � n
√

1 + ε2 − d|ε|

i.e., d � n|ε|(1− j2

n2 sin2(jθ)
)

and the conclusion follows by letting ε → 0 . A similar
example related to Theorem 1 can be obtained by considering

t(θ) := cos(nθ) + iε cos(jθ) (9)

with ε real. The fact that the polynomials in (8) and (9) have imaginary coefficients is
irrelevant: the trigonometric polynomials

tn(θ) := −e−inθ + ε + einθ , ε > 0

may be also used instead of (9). An interesting problem is the following: does there
exist a constant d′

n > 0 such that

|t′|R � n|t|R − d′
n|A0(t)|

for all trigonometric polynomials t(θ) such that

t(θ) :=
n∑

k=−n

Ak(t)eikθ , A−k(t) = Āk(t), (0 � k � n)?

We are unable to decide this question which is equivalent to the following conjectural
variant of a famous inequality of Szëgo:∣∣Im(zp′(z))∣∣

D
� n

βp − αp

2
− d′

n

∣∣∣∣βp + αp

2
− Re

(
p(0)

)∣∣∣∣, (p ∈ Pn)

with
αp = min

z∈∂D

Re
(
p(z)

)
and βp = max

z∈∂D

Re
(
p(z)

)
.

Finally we have the following explanation concerning the sharp contrast between
the conclusion of Theorem A and Theorem 1: the “Fejer” polynomials

Fn(z) :=
n−1∑
k=0

n − k
n

zk

satisfy as well known
ReFn(z) > 1

2 , z ∈ D

but they in some sense do not live on the natural boundary of the function set P1/2(n) ,
i.e., we may perturb them to the point that

Fn(z) + εzj ∈ P1/2(n), 0 < j � n, |ε| < dn,j,
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for strictly positive constants dn,j . The known proofs of Theorem A and its gener-
alizations are based on that plain fact. The negative conclusion of Theorem 1 is a
consequence of the fact that

G2n(z) :=
2n∑

k=0

n − k
n

zk

belongs to the boundaryof P1/2(2n) (remark that a2n(G2n) = −1 and recall LemmaA )
and for that reason cannot be perturbed as above.
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