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Abstract. In this paper we relate the minimal annulus of a planar convex body K with the six
classic geometric measures associated with it. First, we obtain all the possible bounds (upper
and lower bounds) for the measures A, p, D,ω, RK and rK of a convex body K with given
minimal annulus. Then, we solve the problem of maximizing and minimizing the area and the
perimeter of convex bodies with given circumradius and minimal annulus. We prove the optimal
inequalities for each of those problems, determining also its corresponding extremal sets.

1. Introduction

Let K be a convex body (i.e., a compact convex set) in the Euclidean plane.
Associated with K are a number of well-known functionals: the area A = A(K) and
the perimeter p = p(K) ; the diameter D = D(K) and the minimal width ω = ω(K)
(respectively, the maximum and the minimum distance between two parallel support
hyperplanes of K ); among all balls containing K , there is exactly one with minimal
radius, the circumradius RK ; respectively, among all balls which are contained in K ,
those ones whose radii have maximal value give the inradius of the body, rK . Besides,
these special balls (named circumball and inballs) have very interesting properties;
some of them will be stated and used later.

For many years mathematicians have been interested in inequalities involving
these functionals, and moreover, in finding the convex sets for which the equality sign is
attained: the extremal sets. Thus, one of the most studied problems is to find the convex
sets which maximize or minimize a particular magnitude Z when other two measures,
say X and Y , are fixed. The solution of such a problem is always expressed by means
of extremal inequalities of the form Z≶ϕ(X, Y) (the bibliography is extremely wide;
let us mention, for instance, [3] or [10]). The question becomes more interesting when
the equality for a particular inequality is not attained for a single figure, but for a
continuous family of sets; in this case, that inequality (that we name optimal inequality)
says which is the maximum or minimum value of Z for each pair of possible values of
the magnitudes X and Y .
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But another interesting functional can be consider for a convex body K : the thick
of its minimal annulus. The minimal annulus of the body K is the annulus (the closed
set consisting of the points between two concentric balls) with minimal difference of
radii that contains the boundary of K . Of course, the minimal annulus is uniquely
determined (Bonnesen, [2], in R

2 and R
3 , and Bárány, [1], in higher dimension).

From now on, we are going to denote by A(c, r, R) the minimal annulus of the
planar convex body K , where c , r and R represent, respectively, its center, radius
of the inner circle, and radius of the outer circle. This object and its properties were
studied mainly by Bonnesen for planar convex sets (see [2] and [3]). More recently,
very interesting works have arisen, in which, the minimal annulus has been studied in a
more general way: for arbitrary dimension, replacing the ball by the boundary of a fixed
smooth strictly convex body, in Minkowski space... (see, for instance, [1, 6, 7, 8, 9, 12]).

Figure 1.

Bonnesen ([2]) studied some properties of theminimal an-
nulus (which will be stated later) in order to sharp the isoperi-
metric inequality in R

2 . He proved that the minimum of the
isoperimetric deficit p2/(4π) − A is attained for the convex
set shown in Figure 1.

About the opposite bound, according to Favard ([5]), the
isoperimetric deficit is maximized by a certain polygon which
is circumscribed about the inner circle of the minimal annulus,
and whose vertices, except at most one, lie on the boundary of
the outer circle.

In this paper we study some inequalities involving the above six classic geometric
measures and the minimal annulus. First, we show some nice properties of the minimal
annulus itself, as well as its relation with the inball and circumball of the set; these
properties will be very useful in the proofs of the remaining results. Then, we obtain all
the possible bounds (upper and lower bounds) for the measures A , p , D , ω , RK and
rK of a convex body K , when the minimal annulus of K is fixed. Finally, we solve
the problem of maximizing and minimizing the area and the perimeter of convex bodies
with given circumradius and minimal annulus. We prove the optimal inequalities for
each of those problems, determining also their corresponding extremal sets.

2. Some previous results

Before presenting the main results of the paper, let us state some properties of the
minimal annulus of a convex body K , which will play a crucial role in the proofs of the
results. For, let us denote by cr and CR , respectively, the inner and the outer circles
of the minimal annulus A(c, r, R) of K . As usual in the literature, ∂ will denote the
boundary of a set. The following four properties are well-known, and were obtained by
Bonnesen in [2]:

(P1) Each of the circumferences ∂cr and ∂CR touches the boundary ∂K of K
in, at least, two points.

(P2) The sets ∂cr ∩ ∂K and ∂CR ∩ ∂K can not be separated.
(Two sets A and B can be separated if there exists a line � such that A ⊂ �+ and
B ⊂ �− , where �+ , �− represent the halfplanes determined by � ).
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(P3) The minimal annulus of a convex body K is uniquely determined.
(P4) The minimal annulus of a convex body K is the only annulus that contains

∂K and verifies properties (P1) and (P2) .
With the following lemmas, we prove some properties of the minimal annulus of

a convex body itself, as well as its relation with the circumradius and the inradius of
the convex body. They will be very useful in the proofs of the results. Let us start with
some general properties of A(c, r, R) :

LEMMA 1. Let K be a convex body with minimal annulus A(c, r, R) . The
following properties hold:

(a) There exist two points P, Q ∈ ∂CR ∩ ∂K such that the angle α determined
by them with respect to c , this is, α = <)(Pc Q) , verifies

α � 2 arc cos
r
R

(from now on, we will name such an angle, the central angle of P and Q ).
(b) K contains a 2-cap-body generated by the convex hull of cr and two points

of ∂CR ∩ ∂K , whose minimal annulus is A(c, r, R) (a cap-body is the convex hull of
a ball and countable many points such that the line segment joining any pair of those
points intersects the ball).

(c) K is contained in a circular slice of the outer circle CR determined by two
support lines to cr , whose minimal annulus is A(c, r, R) (a circular slice is the part of a
circle bounded by two straight lines, whose intersection point, if it exists, is not interior
to it).

Proof. (a) is a consequence of property (P2) : let us notice that any support line
to cr intersects ∂CR in two points P and Q , being the central angle of those points,
precisely, 2 arc cos(r/R) (see Figure 2); if any two points of ∂CR ∩ ∂K determine
a central angle strictly less than 2 arc cos(r/R) , then a suitable straight line PQ will
separate cr and the intersection points ∂CR ∩ ∂K , contradicting property (P2) .

�

Figure 2. There are points P, Q ∈ ∂CR ∩ ∂K whose central angle α
is greater or equal than 2 arc cos(r/R) .

(b) is a consequence of item (a) , which assures that the convex hull conv{cr, P, Q}
is, indeed, a cap-body.

Finally, we prove (c) . By property (P1) , there exist, at least, two points C, D ∈
∂cr ∩ ∂K such that the support lines �C , �D to cr through those points intersect CR ,
determining a convex body K′ which contains K . If �C and �D are parallel or their
intersection point is not interior to CR , then K′ is a circular slice of CR , and the result
is proved. If the intersection point lies in the interior of CR , let us consider the circular
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arc
�
AB determined by the support lines �C and �D on ∂CR (see Figure 3 ). Now,

property (P1) assures the existence of two points S, T ∈ ∂CR ∩ ∂K which, by item
(a) , determine a central angle α � 2 arc cos(r/R) .

c

D

C

A

B

S

T

E

Figure 3. K is contained in a circular slice of CR .

Let us notice that the arcs
�
AB and

�

CD are separated; hence, by property (P2) ,
there exists a point E ∈ ∂cr ∩ ∂K lying on the portion of the arc determined by the
tangent lines to ∂cr through S and T . The support line to cr through E determines,
joined with �C (or �D ) the required circular slice.

The following lemma collects some properties relating the minimal annulus of a
convex body with its circumradius. From now on, we are going to denote by CK the
circumball of the body K , and by x0 its circumcenter.

LEMMA 2. Let K be a convex body with minimal annulus A(c, r, R) and circum-
ball CK . The following properties hold:

(i) RK � R .
(ii) cr ⊂ K ⊂ CR ∩ CK .
(iii) Either CR ≡ CK , or ∂CK∩∂CR has exactly two points, which will be denoted

by A and B .
(iv) If CK �≡ CR , then the points {A, B} = ∂CK ∩ ∂CR determine a central angle

α such that
α � 2 arc cos

r
R

. (1)

(v) The circular arc
�
AB of ∂CK which lies in CR can not be smaller than a

semi-circumference (of ∂CK ).
(vi) The tangent line to cr , which is parallel and closer to the segment AB ,

intersects ∂CR in two points A′ and B′ , such that there exists, at least, one point

P ∈ ∂K ∩ ∂CR lying on one of the arcs
�

AA′ ,
�

BB′ . Without loss of generality, let us

suppose that P ∈
�

AA′ . Then, there exists another point Q �= P lying on the arc
�
PB ,

such that the central angle determined by P and Q verifies (1) , see Figure 4.

0

c

A'
B'

x
A

B
P

Q

Figure 4. There are, at least, two points P, Q ∈ ∂K ∩ ∂CR .
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(vii) K contains the 2-cap-body Kc = conv{cr, P, Q} , where P and Q are the
points obtained in (vi) .

(viii) The 2-cap-body Kc of the above property (vii) determines on the boundary
of cr two circular arcs, each one having, at least, one point of ∂K .

(ix) K is contained in the intersection of CK with the circular slice of CR

determined by the support lines to cr through the two points of ∂K ∩ ∂cr given by
property (viii) .

Proof. Properties (i) and (ii) are trivial: they can be deduced from the definitions
of circumball andminimal annulus. In order to prove (iii) , let us suppose that CK �≡ CR .
Of course, CK �⊂ CR , because by property (P1) ∂K∩∂CR contains, at least, two points.
Then, we can assure that the intersection ∂CK ∩ ∂CR has, exactly, two points.

Let us see (iv) . Since K ⊂ CK ∩ CR , the set ∂K ∩ ∂CR (not empty) is contained
in the circular arc of ∂CR determined by A and B (the points obtained in the previous
item). Thus, if the central angle determined by them is less than 2 arc cos(r/R) , we
obtain a contradiction with property (a) of Lemma 1.

Item (v) is a consequence of the well-known property of the convex sets which
assures that the circumball CK contains either two diametrically opposite points of the
boundary of K , or three points of ∂K that form the vertices of an acute-angled triangle

(see, for instance, [3]); since it holds ∂K ∩ ∂CK ⊂ �
AB ⊂ ∂CK ⊂ CR , both cases imply

that the circular arc
�
AB is greater or equal than a semi-circumference of ∂CK .

Items (vi) and (vii) are direct consequences of (iv) and Lemma 1. Hence, we
have to see (viii) . By property (P1) there are, at least, two points in the intersection
∂cr ∩ ∂K ; and this set will be contained in the two circular arcs of ∂cr which form
the boundary of the cap-body Kc . Let us suppose first that the above intersection is
contained just in the circular arc of ∂cr ∩ ∂Kc that lies over the line segment AB ; then,
the straight line � , parallel to AB , through c , separates ∂cr ∩ ∂K from ∂CR ∩ ∂K , a
contradiction with property (P2) (see Figure 5 (a) ).

l

(a) (b)

0 0

c

x
A

B
P Q

c

x
A B
P Q

M'
N'

M N

Figure 5. There are points of ∂K on the circular arcs of ∂Kc .

Finally, we suppose that the set ∂cr ∩ ∂K is contained just in the circular arc of
∂cr ∩ ∂Kc that lies under the line segment AB ; let M, N be the extreme points of
the circular arc of ∂cr containing ∂cr ∩ ∂K (let us notice that M �= N since there
are, at least, two different points in ∂cr ∩ ∂K ). Then, K is contained in the part of
CK ∩ CR determined by the support lines to cr through M and N . We denote by M′

and N′ the intersection points of these support lines with ∂CR , respectively (see Figure
5 (b) ). The line segment MN lies under the segment M′N′ ; hence, the straight line
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M′N′ separates ∂CR ∩ ∂K from
�

MN , and thus, from ∂cr ∩ ∂K , again a contradiction.
Finally, item (ix) is obvious from property (viii) .

From this moment on, we will follow the notation of the above Lemma 2: A, B
will represent the intersection points of ∂CK and ∂CR ; besides, we will denote by A′

and B′ the intersection points of ∂CR with the parallel line to AB which is tangent to
∂cr (see Figure 4).

As in the circumradius case, the following lemma collects some properties relating
the minimal annulus of a convex body with its inradius. From now on, we are going to
denote by cK an inball of the body K , and by y0 one of its incenters.

LEMMA 3. Let K be a convex body with minimal annulus A(c, r, R) and inball
cK . The following properties hold:
(i) r � rK .
(ii) conv(cr ∪ cK) ⊂ K ⊂ CR .
(iii) cr can not be strictly contained in cK , being the possible relative positions between

them the following (see Figure 6) :
(a) cr ≡ cK .
(b) ∂cr ∩ ∂cK contains, exactly, two points.
(c) The boundaries ∂cr , ∂cK touch (from outside) in one point.
(d) There are no common points.

(iv) The boundary of the set conv(cr ∪ cK) is formed by two line segments PS and

QT , and the corresponding circular arcs
�

PQ ⊂ ∂cr and
�
ST ⊂ ∂cK . Then, each

of those arcs has, at least, one point of ∂K .

(v) The circular arc
�

PQ ⊂ ∂cr contains two points P′, Q′ ∈ ∂K (which can coincide
with P and Q ), determining a central angle α � 2 arc cos(r/R) .

0

0 0

(a) (b) (c) (d)

c

y

c

y

c

y

c

Figure 6. Some examples for the relative positions of cr and cK .

Proof. Properties (i) and (ii) are trivial. Let us see (iii) . Obviously, cr can not
be contained in cK , because property (P1) states that ∂cr ∩ ∂K contains, at least, two
points. It is easy to find examples of the different possibilities for the relative positions
between cr and cK (see Figure 6); just one remark: in order to obtain the cases (c)
and (d) , it is a necessary condition that R � 3r .

The circular arc
�

PQ is the only part of ∂cr lying outside conv(cr ∪ cK) ; hence,
the points of ∂cr ∩ ∂K (whose existence is assured by (P1)) must lie on that arc.

The same happens with the arc
�
ST with respect to the inball: we just have to use the

well-known property of the convex sets which assures that the incircle cK of K meets
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the boundary of K either in two diametrically opposite points, or in three points that
form the vertices of an acute-angled triangle (see [3]). This shows (iv) .

Finally, Lemma 1 (c) establishes that K is contained in a circular slice of CR

determined by support lines to cr through two points, say P′ and Q′ , of ∂cr ∩ ∂K ;

clearly, these two points P′, Q′ lie necessarily on the arc
�

PQ . Besides, these support
lines either intersect on the boundary ∂CR , or outside CR (they can be parallel): in the
first case, the central angle determined by P′ and Q′ is, precisely, 2 arc cos(r/R) ; in
the second case, the central angle will be strictly greater. It shows (v) .

3. The minimal annulus and the six classical geometric magnitudes

In this section we are going to state the relation between the minimal annulus and
the other six classic geometric magnitudes. More precisely, we are going to obtain the
best bounds (upper and lower bounds) for A, p, D, ω , RK and rK when we suppose
that the minimal annulus of the convex body is fixed, determining also the extremal sets
in each case. Let us say that the area and perimeter cases were studied and solved by
Favard in [4]. We are going to state them for completeness, but without proof.

The area and the perimeter

PROPOSITION 1. Let K be a convex body with minimal annulus A(c, r, R) . Then:

A � 2r
(√

R2 − r2 + r arc sin
r
R

)
, (2)

p � 4
(√

R2 − r2 + r arc sin
r
R

)
. (3)

The equality holds, in both inequalities, for any cap-body given by the convex hull of cr

and two points of ∂CR ∩ ∂K .

A � 2
(
r
√

R2 − r2 + R2 arc sin
r
R

)
, (4)

p � 4
(√

R2 − r2 + R arc sin
r
R

)
. (5)

The equality holds, in both inequalities, for the circular slices of CR determined by two
support lines to cr .

The diameter and the minimal width

Before stating the corresponding theorem for these magnitudes, let us establish
some notation: Lemma 1 (c) assures that K is contained in a circular slice of CR

determined by two support lines to cr ; then, following the notation of Figure 7,we
denote by C and D the contact points of these support lines with cr , by P , Q , S and
T the intersection points of these support lines with ∂CR , and by N the “north pole”
of CR .
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c

D

C

N

r
RP

S T

Q

Figure 7. Some notation for the circular slice of CR .

PROPOSITION 2. Let K be a convex body with minimal annulus A(c, r, R) . Then:

ω � 2r. (6)

The equality holds, for instance, for the circular symmetric slice of CR determined by
two parallel support lines to cr .

ω �

⎧⎨
⎩

R + r if R � 2r, (7.a)
4r
R2

(R2 − r2) if R � 2r. (7.b)
(7)

The equality holds, for instance, for the circular slices of CR determined by two
support lines to cr which intersect on the boundary of CR .

Proof. Inequality (6) is trivial, since cr ⊂ K . Hence, we prove inequality (7).
Since Lemma 1 (c) states that K is contained in a circular slice Ks of CR , which has
also minimal annulus A(c, r, R) , ω(K) � ω(Ks) , and we just have to maximize the
minimal width for this family of sets. Thus, let us consider the circular symmetric slice
of CR , and let us move the point C continuously on ∂cr in the counter-clockwise. In
this way, we obtain all the possible circular slices of CR (all of them with the same
minimal annulus) till the limit case when Q ≡ T , see Figure 8 (a) .

(a)

c

D

C

P

Q

TS

N

w
c

D

C

T=QS

N

(b)

P

w

c

D T=QS

P=N

(c)

C
w

c

D

C

T=QS

N

(b)

P

w

Figure 8. Convex sets with minimal annulus A(c, r, R) and maximum (minimal) width.

The minimal width is given by the distance from P to the segment ST if P does
not pass through N . In the opposite case, the minimal width will be the distance from
N to ST , i.e., R + r ; this is the case when ω attains the maximum possible value.
This change of situation depends on the relation between R and r : if R = 2r , then
P ≡ N (see Figure 8 (c) ); when R � 2r , P lies beyond N (see Figure 8 (b) ), being
the minimal width ω = R + r ; finally, if R � 2r , then P has not passed through N ,
(see Figure 8 (d) ), which gives ω = 4r(R2 − r2)/R2 .
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PROPOSITION 3. Let K be a convex body with minimal annulus A(c, r, R) . Then:

D � 2R. (8)

The equality holds for any set containing two diametrically opposite points of ∂CR .

D �
{

R + r if R � 5r/3, (9.a)

2
√

R2 − r2 if R � 5r/3. (9.b)
(9)

The equality holds, in both inequalities, for the 2-cap-bodies conv{cr, P, Q} .

Proof. Again, inequality (8) is trivial, since K ⊂ CR . In order to prove inequality
(9), we use property (b) of Lemma 1: K contains a 2-cap-body Kc = conv{cr, P, Q} ,
where P, Q ∈ ∂CR ∩ ∂K . It leads to D(K) � D(Kc) , and since the minimal annulus
of Kc is also A(c, r, R) , it is enough to prove the result for this particular family of
cap-bodies.

The diameter of a 2-cap-body is attained in the distance between, either the vertices
P and Q , or any of these two points, say P , and the tangent line to ∂cr which is
orthogonal to the line segment Qc ; it depends on the position of P and Q with respect
to cr , and hence, on the relation between R and r (see Figure 9).

Thus, let us consider the symmetric 2-cap-body Kc , in which the vertices P and Q
are symmetric with respect to c : in this case, since Kc has two diametrically opposite
points, the diameter attains its maximum possible value: 2R . Now, let us move the
point Q continuously on ∂CR in the counter-clockwise, till the limit case, when PQ
is tangent to ∂cr . This construction generates all the possible 2-cap-bodies (up to
congruences) with minimal annulus A(c, r, R) .

Of course, if PQ is tangent to ∂cr , the distance d(P, Q) between P and Q
will be the smallest one. Besides, this distance will be the diameter of the set if it is
greater than R + r ; if not, the value R + r will be the diameter. It is easy to see that
d(P, Q) = R + r if, and only if, R = 5r/3 . Therefore, when R � 5r/3 , the diameter
will be D = d(P, Q) = 2

√
R2 − r2 � R + r ; otherwise, D = R + r (see Figure 9).

(a)

D=d(P,Q)>R+r D=d(P,Q)=R+rR>5r/3; R=5r/3; R<5r/3; D=R+r

(b)
(c)

D
D

D D

c

P Q

cc

P
Q

P Q

Figure 9. Convex sets with minimal annulus A(c, r, R) and minimum diameter.
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The circumradius

The upper and lower bounds for the circumradius of a convex body K are stated
in the following result:

PROPOSITION 4. Let K be a convex body with minimal annulus A(c, r, R) . Then:

RK � R. (10)

The equality holds for any set containing two diametrically opposite points of ∂CR .

RK �

⎧⎪⎨
⎪⎩

R2 + 3r2

4r
if R �

√
5 r (11.a)

√
R2 − r2 if R �

√
5 r (11.b)

(11)

The equality holds when AB is tangent to ∂cr and: in inequality (11.a), for the part of
CK (whose boundary touches ∂cr ) determined by AB , see Figure 10 (a) ; in inequality
(11.b) , for the circular slice of CK determined by AB and the parallel line tangent to
∂cr , see Figure 10 (b) .

A B

(a)

r

R

R
K

c

x A BR
0K

(b)

r

R
c

x

Figure 10. Convex sets with minimal annulus A(c, r, R) and minimum circumradius.

Inequality (10) is trivial. The proof of inequality (11) will be made in two steps,
corresponding to the following propositions; then, inequality (11) will be a direct
consequence of them.

PROPOSITION 5. For a given annulus A(c, r, R) , let s ∈ [r, R] be the least real
number such that

(1) Cs is a circle with radius s containing cr , and
(2) ∂Cs intersects ∂CR in two points A and B such that the straight line

determined by them is tangent to ∂cr .
Then, it holds:

(a) If R �
√

5 r , then s =
R2 + 3r2

4r
.

(b) If R �
√

5 r , then s =
√

R2 − r2 .

Proof. Let us fix the points A and B , and first, let us consider Cs ≡ CR . If we
move the center x0 of Cs on the orthogonal line to AB which passes through c , since
the segment AB is a chord of Cs , the radius s will decrease till the limit case when the
distance d(A, B) = D(Cs) . But Cs must contain cr , which implies that the minimum
possible value for s will be attained when, either ∂Cs touches ∂cr , or the segment AB
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determines, precisely, a diameter of Cs (which depends on the relation between r and
R , see Figure 11).

R

s

R

s

R

s

0

0
0

(a) (b) (c)

c

A B

x

c

xA B

c

xA B

Figure 11. Cases (a) R �
√

5 r , (b) R =
√

5 r , (c) R �
√

5 r .

Some easy computations assure that these two possibilities correspond, respec-
tively, to the cases (a) and (b) in the proposition.

PROPOSITION 6. For a given annulus A(c, r, R) , it holds:
(a) If R �

√
5 r , then there exists a convex body K with minimal annulus A(c, r, R)

and circumradius RK = (R2 + 3r2)/(4r) .
(b) If R �

√
5 r , then there exists a convex body K with minimal annulus A(c, r, R)

and circumradius RK =
√

R2 − r2 .
Besides, in both cases, the corresponding value RK is the least value that can be

attained by the circumradius of a convex body K with minimal annulus A(c, r, R) .

Proof. If R �
√

5 r , let us consider the circle Cs with radius s = (R2 +3r2)/(4r)
obtained in the previous proposition (see Figure 11 (a) ). The part of Cs determined
by the line segment AB is a convex body with minimal annulus A(c, r, R) (by property
(P4) ), and circumradius s (its boundary contains two diametrically opposite points of
∂Cs ).

When R �
√

5 r , we get the case (b) of Proposition 5: if we consider the circle
Cs so obtained, then the circular slice of Cs determined by AB and the tangent line
to ∂cr which is parallel to this segment, verifies the required conditions (see Figures
11 (c) and 10).

The minimality of both values,
√

R2 − r2 and (R2 + 3r2)/(4r) , respectively in
each case, is again a consequence of Proposition 5. In fact, if R �

√
5 r , let us suppose

that K is a convex body with minimal annulus A(c, r, R) and circumradius RK <
(R2 + 3r2)/(4r) , and let x0 be its circumcenter. We consider the points A′, B′ ∈ ∂CR

as defined previously. Since CK ⊃ cr , Proposition 5 (for CK ) assures us that ∂CK

intersects the line segment A′B′ strictly in the interior of CR ; therefore, the central
angle determined by the intersection points {A, B} = ∂CK ∩ ∂CR is strictly less than
2 arc cos(r/R) , which contradicts Lemma 2, property (iv) .

The minimality for the value
√

R2 − r2 is analogous.

The inradius

The following result establishes the lower and upper bounds for the inradius of a
convex body K with given minimal annulus:
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PROPOSITION 7. Let K be a convex body with minimal annulus A(c, r, R) . Then:

rK � r. (12)

The equality holds, for instance, for the circular symmetric slice of CR determined by
two parallel support lines to cr .

rK � 2rR
R + r

. (13)

The equality holds for the circular slice of CR determined by two support lines to cr

which meet on the boundary ∂CR .

Proof. Inequality (12) is obvious, so, we have to prove the upper bound (13). By
Lemma 1 (c) , K is contained in a circular slice of CR determined by two support lines
to cr through points P, Q ∈ ∂cr∩∂K whose minimal annulus is also A(c, r, R) . Hence,
it is enough to maximize the inradius for this family of sets.

Let Ks be a circular slice of CR and �1 , �2 the support lines to cr which determine
it. Then, the inradius of Ks is the radius of the circle whose center lies on the angle
bisector determined by �1 and �2 , which is tangent to ∂CR (see Figure 12).
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l
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2
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2
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y y
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1

0
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c
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Figure 12. Convex sets with minimal annulus A(c, r, R) and maximum inradius.

Clearly, the inradius will increase with the angle, and therefore, the maximum
value for rK will be attained in the limit case, when �1∩ �2 ∈ ∂CR (let us recall that the
intersection point �1 ∩ �2 can not lie in the interior of CR ). It is an easy computation
to check that, for that precise situation, rK = 2Rr/(R + r) , which shows the result.

4. Fixing the minimal annulus and the circumradius

In this section we are going to state the relation between the minimal annulus, the
circumradius and both, the area and the perimeter of a convex body K . More precisely,
we are going to obtain the best bounds (upper and lower bounds) for A and p , when
we suppose that the minimal annulus of the convex body and its circumradius are fixed,
determining also the extremal sets in each case. The following theorem states when the
minimum area and perimeter are obtained:

THEOREM 1. Let K be a convex body with minimal annulus A(c, r, R) and
circumradius RK . Then:

A � 2r
(√

R2 − r2 + r arc sin
r
R

)
, (14)
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p � 4
(√

R2 − r2 + r arc sin
r
R

)
. (15)

The equality holds, in both inequalities, if and only if the set K is the 2-cap-body
Kc = conv{cr, A, B} , where as usual, {A, B} = ∂CK ∩ ∂CR .

Proof. Let us recall that, by Lemma 1 (b) , if A(c, r, R) is the minimal annulus of
K , then it contains a 2-cap-body Kc which is the convex hull of cr and two points of
∂CR . These sets have, all of them, the same area and perimeter (those given by the
right-hand side of inequalities (14) and (15), respectively); hence, we have

A � A(Kc) and p � p(Kc),

and in order to conclude the proof, we just have to show the following result:
“If A(c, r, R) is an annulus and s a positive real number satisfying that

(a) R � s � R2 + 3r2

4r
when R �

√
5 r , and

(b) R � s �
√

R2 − r2 when R �
√

5 r ,
then, there exists a 2-cap-body Kc = conv{cr, A, B} for suitable points A, B ∈

∂CR , whose minimal annulus is A(c, r, R) and whose circumradius is RK = s”.
In both cases, if s = R there is nothing to prove. First, let us suppose that

condition (a) holds, and let Cs be the circle with radius s containing cr , such that
∂Cs touches ∂cr in a certain point T . Then, as a consequence of Proposition 5, we
know that the intersection points {A, B} = ∂Cs ∩ ∂CR determine a central angle α
verifying α � 2 arc cos(r/R) . This allows to assure that the set Kc = conv{cr, A, B}
is a cap-body, which clearly has minimal annulus A(c, r, R) . But, what about the
circumradius?

If the distance between the centers of CK and CR verifies d(x0, c) � d(x0, AB) ,
then the triangle 
(ATB) is an isosceles and acute-angled triangle, and the circum-
ference ∂Cs circumscribes it; hence, s is its circumradius, and as a consequence, also
RKc = s (see Figure 13, left).

s

c

A' B'

x

T

A B

s

c

A' B'

x
A B

Figure 13. A 2-cap-body with given minimal annulus and circumradius.

However, it can also happen that d(x0, c) > d(x0, AB) ; in this case, we can move
the circle Cs , bringing x0 nearer c , till the corresponding line AB passes through the
circumcenter x0 . Thus, we obtain an isosceles right-angled triangle 
(ATB) which is
inscribed in Cs ; therefore, it has circumradius s , as well as Kc = conv{cr, A, B} (see
Figure 13, left).

Now, we suppose that condition (b) is satisfied. Then, we can choose Cs such
that the intersection points {A, B} = ∂Cs ∩ ∂CR determine a diameter of the circle Cs
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(see Proposition 6). Now, by Proposition 5, we know that this segment AB intersects
cr . Hence, the 2-cap-body Kc = conv{cr, A, B} has circumradius RKc = s (since
Kc contains diametrically opposite points of ∂Cs ) and minimal annulus A(c, r, R)
(property (P4) ), see Figure 13, right.

We conclude this work stating the upper bounds for the area and the perimeter of
a convex body with prescribed minimal annulus and circumradius. For, we define the
following particular convex body: given RK and A(c, r, R) , we take the circle CK with
radius RK such that

(i) ∂CK ∩ ∂CR = {A, B} and
(ii) the straight line AB is tangent to ∂cr ;

let � be the parallel line to AB also tangent to ∂cr ; we define the circular trapezium,
and we denote it by KT , as the intersection of the circle CK with the circular symmetric
slice of CR determined by the lines AB and � (see Figure 14).

l

x 0

c

Figure 14. The circular trapezium KT .

THEOREM 2. Amongst all convex bodies with circumradius RK and minimal
annulus A(c, r, R) , the set with maximum both, area and perimeter, is the circular
trapezium KT shown in Figure 14 . Or equivalently: if K is a convex body with
circumradius RK and minimal annulus A(c, r, R) , then

A � R2
K

(
arc sin

ρ
RK

+ arc sin
2r − ρ

RK

)
+ ρ

√
R2 − r2 + (2r − ρ)

√
R2

K − (2r − ρ)2,

(16)

p � 2RK

(
arc sin

ρ
RK

+ arc sin
2r − ρ

RK

)
+ 2

√
R2 − r2 + 2

√
R2

K − (2r − ρ)2, (17)

where ρ =
√

R2
K − R2 + r2 , with equality if, and only if, K = KT .

Proof. We know (Lemma 2, property (vii) ) that K contains a 2-cap-body Kc =
conv{cr, P, Q} , for suitable P, Q ∈ ∂CR . Besides, it determines on the boundary ∂cr

two circular arcs, each one having, at least, one point of ∂K (same Lemma, property
(viii) ). We denote by D and E such points. Then, K lies in a set K1 formed by
the intersection of CK with the circular slice of CR determined by the support lines
�D and �E to K through D and E , respectively (see Figure 15, left). Therefore,
A � A(K1) and p � p(K1) , and since K1 has also circumradius RK and minimal
annulus A(c, r, R) , it is enough to maximize the area and the perimeter for this type of
sets.
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Figure 15. Maximizing the area and the perimeter.

Let us fix the line �E (notice that it can not intersect ∂CR over the points A and
B ). If we consider the case when �D is orthogonal to the line cx0 (see Figure 15, right),
and we move the point D continuously on ∂cr in the counter-clockwise (the reasoning
is analogous for the opposite movement), all the possible sets K1 are obtained, till the
limit case when �D and �E intersect on the boundary ∂CR . For each fixed line �E ,
the area (resp., the perimeter) of the sets K1 will be greater, as the area (resp., the arc
length) of the part of the circle CK determined by �D is smaller; and it will happen
when the length of the chord �D ∩ CK is as small as possible. Since cr and CK are
not (necessarily) concentric circles, the minimum of the lengths l(�D ∩ CK) is attained
when the distance from D to ∂CK is minimal; this is, when �D is orthogonal to the
line cx0 joining both centers.

Thus, if we denote by K2 the sets of this type (i.e., sets K1 for which �D is
orthogonal to cx0 ), it holds A � A(K1) � A(K2) and p � p(K1) � p(K2) , and then,
we just have to consider this kind of sets. The above construction is feasible for any
position (of course, amongst all the possible ones) of the point E , and hence, of the
line �E . Let us also notice that, for any of such positions, all the possible sets K2 have
the same area and perimeter: indeed, since �D can not pass over the points A and B , it
always intersects ∂(CR ∩ CK) on the circumference ∂CR , which is concentric to ∂cr .
Hence, we can consider without loss of generality, as our body K2 , the one where both
lines �D and �E are orthogonal to cx0 (see Figure 16 (a) ).
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B=B'A=A' E

D

(a)
(b)
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B=B'A=A' E

D

xx

(c)

0
0

0

Figure 16. The maximum area and perimeter are attained when �D ⊥ �E and A ≡ A′ , B ≡ B′ .

Now then, for a fixed circumradius RK , the area of the body K2 depends on the
possible positions of the circumcenter x0 : (i) if R �

√
5 r , the limit positions for x0

are attained when ∂CK∩∂cr = {D} , and when A, B coincide with A′, B′ , respectively;
(ii) if R �

√
5 r , the limit positions for x0 are attained when the line segment AB

determines a diameter of CK , and again when A, B coincide with A′, B′ , respectively.
In both cases, A(K2) is the area of the intersection of CK with the circular

symmetric slice of CR determined by the lines �D and �E . Since RK � R , the area
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increases as the part of CK intersecting CR is greater; thus, the maximum will be
attained when the circumcenter x0 lies as closer as possible to the center c of the
minimal annulus. But the closest possible position of x0 to c is given if A, B coincide
with A′, B′ , respectively, this is, when K2 is the circular trapezium KT . Hence,
A � A(K2) � A(KT) . Analogously, it can be deduced that the body KT is also the set
with maximum perimeter (see Figure 16, cases (b) and (c) ). A tedious computation
leads to the formula of the area and the perimeter of the circular trapezium, which are
the ones given in inequalities (16) and (17). This concludes the proof.
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[5] J. FAVARD, Sur le déficit isopérimétrique maximum dans une couronne circulaire, Mat. Tidsskr. B
(1929), 62–68.

[6] C. PERI, On the minimal convex shell of a convex body. Canad. Math. Bull. 36 (4) (1993), 466–472.
[7] C. PERI, Minimal shells containing a convex surface in Minkowski space, Manuscripta Math. 90 (3)

(1996), 333–342.
[8] C. PERI, S. VASSALLO, Minimal properties for convex annuli of plane convex curves, Arch. Math.

(Basel) 64 (3) (1995), 254–263.
[9] C. PERI, A. ZUCCO, On the minimal convex annulus of a planar convex body, Monatsh. Math. 114

(2) (1992), 125–133.
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