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ON THE INTERMEDIATE POINT IN

CAUCHY’S MEAN–VALUE THEOREM

DOREL I. DUCA AND OVIDIU POP

(communicated by P. Bullen)

Abstract. If the functions f , g : I → R are differentiable on the interval I ⊆ R , then for each
x, a ∈ I there exists a real number θ ∈]0, 1[ such that

(f (x) − f (a)) g(1) (a + θ(x − a)) = (g (x) − g (a)) f (1) (a + θ(x − a)) .

In this paper we study the behaviour of the number θ ∈]0, 1[, when x approaches a .

The mean value theorem is a cornerstone of the differential calculus. Cauchy’s
theorem is one of the generalizations of the mean value theorem.

The purpose of this note is to extend the results by D. I. Duca [5] concerning the
mean value theorem to Cauchy’s theorem.

Cauchy’s theorem is usually presented in the following form:

THEOREM 1. (A. L. Cauchy ) Let a and b be real numbers with a < b and
f , g : [a, b] → R . If

(i) the functions f and g are continuous on [a, b],
(ii) the functions f and g are differentiable on ]a, b[,
then there exists a point c ∈]a, b[ such that

[f (b) − f (a)] g(1) (c) = [g (b) − g (a)] f (1)(c). (1)

If, in addition,
(iii) g(1) (x) �= 0, for all x ∈]a, b[,
then g (b) �= g (a) and

f (b) − f (a)
g (b) − g (a)

=
f (1) (c)
g(1) (c)

. (2)

EXAMPLE 1. For the functions f , g : [−1, 1] → R , defined by f (x) = x2,
g (x) = x , for all x ∈ [−1, 1], there is a unique point c ∈]− 1, 1[ , namely c = 0, such
that (1 ) holds.
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EXAMPLE 2. For the functions f , g : [−1, 1] → R , defined by f (x) = x3,

g (x) = x, for all x ∈ [−1, 1], there exist two points c ∈]−1, 1[ , namely c1 = −√
3/3

and c2 =
√

3/3, such that (1 ) holds.

EXAMPLE 3. If n � 1 is an integer number, then for the functions f , g :
[−nπ, nπ] → R , defined by f (x) = cos x, g (x) = ex, for all x ∈ [−nπ, nπ], there
exist 2n − 1 points c ∈] − nπ, nπ[, namely

ck = kπ, k ∈] − n, n[∩Z,

such that (1 ) holds.

The following theoremgives a sufficient condition for the unicity of the real number
c ∈]a, b[ from Theorem 1.

THEOREM 2. Let a and b be real numbers with a < b and f , g : [a, b] → R such
that:

(i) the functions f and g are continuous on [a, b],
(ii) the functions f and g are differentiable on ]a, b[,
(iii) g(1) (x) �= 0, for all x ∈]a, b[.
If the function f (1)/g(1) is injective on ]a, b[, then there exists a unique point

c ∈]a, b[ such that (2) holds.

Proof. By contradiction, we suppose that there exist two points c1, c2 ∈]a, b[,
c1 �= c2 such that

f (b) − f (a)
g (b) − g (a)

=
f (1)(c1)
g(1)(c1)

and
f (b) − f (a)
g (b) − g (a)

=
f (1)(c2)
g(1)(c2)

.

From this it follows that
f (1)

g(1) (c1) =
f (1)

g(1) (c2).

Since f (1)/g(1) is injective, we deduce that c1 = c2, which contradicts c1 �= c2.

REMARK 1. If g = 1[a,b], then Theorem 2 becomes Theorem 5 from [5] .

Let now I ⊆ R be an interval, a ∈ I and f , g : I → R be two differentiable
functions on I such that g(1) (x) �= 0, for all x ∈ I \ {a}. Then, by Theorem 1, for
each x ∈ I \ {a}, there exists a point cx from the interval with the extremities x and
a, such that

f (x) − f (a)
g (x) − g (a)

=
f (1)(cx)
g(1)(cx)

. (3)

In view of Theorem 2, if f (1)/g(1) is injective on I , then for each x ∈ I \ {a}
there exists a unique point cx from the interval with the extremities x and a, such that
(3) holds. In this case, we can define the function c : I \ {a} → I \ {a} by

c(x) = cx, for all x ∈ I \ {a}. (4)
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The function c has the property that

f (x) − f (a)
g (x) − g (a)

=
f (1)(c (x))
g(1)(c (x))

, for all x ∈ I \ {a}. (5)

If the function f (1)/g(1) is not injective, then, for some x ∈ I \ {a}, there exist
several points cx from the interval with the extremities x and a such that (3) is true.
If for each x ∈ I \ {a} we choose one cx from the interval with the extremities x and
a which satisfies (3), then we can also define the function c : I \ {a} → I \ {a} by
formula (4). This function c satisfies (5), too.

Consequently, the following statement is true.

THEOREM 3. Let I be an interval in R , a be a point of I and f , g : I → R be
two functions . If the functions f and g are differentiable on I and g(1) (x) �= 0, for
all x ∈ I \ {a}, then there exists a function c : I \ {a} → I \ {a} such that (5) is true.

Furthermore, if, in addition, the function f (1)/g(1) is injective, then the function c
is unique.

If x ∈ I \ {a} tends to a, because |c (x) − a| � |x − a| , we have

lim
x→a

c (x) = a.

Then the function c : I → I defined by

c (x) =
{

c (x) , if x ∈ I \ {a}
a, if x = a

(6)

is continuous at x = a.
The purpose of this paper is to establish under which circumstances the function

c is differentiable at the point x = a and to compute its derivative c(1) (a) . Does the
derivative c(1) (a) of the function c at the point x = a depend upon the functions
f and g? Under which circumstances is the function c unique; if there exist several
functions c which satisfy (5), does the derivative of the function c at x = a depend
upon the function c we choose?

Since for x ∈ I \ {a},
c (x) − c (a)

x − a
=

c (x) − a
x − a

,

if we denote by

θ (x) =
c (x) − a

x − a
,

then θ (x) ∈]0, 1[ and c (x) = a + (x − a)θ (x) and hence

[f (x) − f (a)] g(1) (a + (x − a)θ (x)) = [g (x) − g (a)] f (1)(a + (x − a)θ (x)).

Consequently, the following statement is true.
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THEOREM 4. Let I be an interval in R , a be a point of I and f , g : I → R be
two functions . If the functions f and g are differentiable on I and g(1) (x) �= 0, for
all x ∈ I \ {a}, then there exists a function θ : I \ {a} →]0, 1[ such that

f (x) − f (a)
g (x) − g (a)

=
f (1)(a + (x − a)θ (x))
g(1)(a + (x − a)θ (x))

, for all x ∈ I \ {a}. (7)

Furthermore, if, in addition, the function f (1)/g(1) is injective, then the function
θ is unique.

REMARK 2. If g = 1I, then Theorem 4 becomes Theorem 7 from [5] .

Obviously, the function c : I → I, defined by (6) is differentiable at x = a if and
only if the function θ : I \ {a} →]0, 1[ defined by

θ (x) =
c (x) − c (a)

x − a
=

c (x) − a
x − a

, for all x ∈ I \ {a}

has limit at the point x = a . Moreover, if the function c is differentiable at x = a,
then

c(1) (a) = lim
x→a

θ(x).

The following statement is true.

THEOREM 5. Let I be an interval in R and a be an interior point of I. Let
f , g : I → R be two functions which satisfy the following conditions:

(i) the functions f and g are twice differentiable on I,
(ii) the functions f (2) and g(2) are continuous on I,
(iii) g(1) (x) �= 0, for all x ∈ int I,
(iv) f (1) (a) g(2) (a) �= f (2) (a) g(1) (a) .
Then the following statements are true:
1◦ There exists a real number δ > 0 such that ]a − δ, a + δ [⊆ I,

f (1) (x) g(2) (x) �= f (2) (x) g(1) (x) , for all x ∈]a − δ, a + δ [

and f (1)/g(1) is injective on ]a − δ, a + δ [.
2◦ There exists a unique function c :]a− δ, a+ δ [\{a}→]a− δ, a+ δ [\{a} such

that
f (x) − f (a)
g (x) − g (a)

=
f (1)(c(x))
g(1)(c(x))

, for all x ∈]a − δ, a + δ [\{a}. (8)

3◦ The function θ :]a − δ, a + δ [\{a} →]0, 1[ defined by

θ (x) =
c (x) − a

x − a
, for all x ∈]a − δ, a + δ [\{a} (9)

has the following properties:
a) For all x ∈]a − δ, a + δ [\{a}, we have

f (x) − f (a)
g (x) − g (a)

=
f (1)(a + (x − a)θ (x))
g(1)(a + (x − a)θ (x))

.
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b) There exists the limit

lim
x→a

θ(x) =
1
2
.

4◦ The function c :]a − δ, a + δ [→]a − δ, a + δ [ defined by

c (x) =
{

c(x), if x ∈]a − δ, a + δ [\{a}
a, if x = a

is differentiable at x = a and

c(1) (a) =
1
2
.

Proof. 1◦ Suppose that f (1) (a) g(2) (a) < f (2) (a) g(1) (a) . Then, by the hypoth-
esis ( ii ) and a ∈ int I , we deduce that there exists a real number δ > 0 such that
]a − δ, a + δ [⊆ I and

f (1) (x) g(2) (x) < f (2) (x) g(1) (x) , for all x ∈]a − δ, a + δ [.

It follows that(
f (1)

g(1)

)(1)

(x) =
f (2) (x) g(1) (x) − f (1) (x) g(2) (x)(

g(1) (x)
)2 > 0, for all x ∈]a − δ, a + δ [

and hence f (1)/g(1) is strictly increasing on ]a− δ, a + δ [. Consequently, the function
f (1)/g(1) is injective on ]a − δ, a + δ [.

If f (1) (a) g(2) (a) > f (2) (a) g(1) (a) , the proof is analogously.
2◦ It follows from statement 1◦ above and Theorem 3.
3◦ a) This follows immediately from (8) and (9) .

b) By Taylor’s formula, for each x ∈]a−δ, a+δ [\{a}, there are two real numbers
θ̂f (x) , θ̂g (x) ∈]0, 1[ such that

f (x) = f (a) + f (1)(a)(x − a) +
1
2
f (2)(a + (x − a)θ̂f (x))(x − a)2 (10)

and

g(x) = g(a) + g(1)(a)(x − a) +
1
2
g(2)(a + (x − a)θ̂g (x))(x − a)2. (11)

Now, by the mean value theorem applied to the functions f (1) and g(1) , for each
x ∈]a − δ, a + δ [\{a}, there exist two real numbers θ̃f (x) , θ̃g (x) ∈]0, 1[ such that

f (1) (c (x)) = f (1)(a + (x − a)θ(x))

= f (1)(a) + f (2)(a + (x − a)θ(x)θ̃f (x))(x − a)θ(x)
(12)

and
g(1) (c (x)) = g(1)(a + (x − a)θ(x))

= g(1)(a) + g(2)(a + (x − a)θ(x)θ̃g (x))(x − a)θ(x).
(13)
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Substituting (10)-(13) in (8), we obtain that, for each x ∈]a − δ, a + δ [\{a},

f (1)(a)(x − a) + 1
2 f (2)(a + (x − a)θ̂f (x))(x − a)2

g(1)(a)(x − a) + 1
2g(2)(a + (x − a)θ̂g (x))(x − a)2

=
f (1)(a) + f (2)(a + (x − a)θ(x)θ̃f (x))(x − a)θ(x)

g(1)(a) + g(2)(a+(x − a)θ(x)θ̃g (x))(x − a)θ(x)
,

or, equivalent,

θ (x)
{

f (1)(a)g(2)(a+(x−a)θ(x)θ̃g (x)) −f (2)(a+(x−a)θ(x)θ̃f (x))g(1)(a)

+
1
2

[
f (2)(a + (x − a)θ̂f (x))g(2)(a + (x − a)θ(x)θ̃g (x))

− f (2)(a + (x − a)θ(x)θ̃f (x))g(2)(a + (x − a)θ̂g (x))
]
(x − a)

}
=

1
2
[f (1)(a)g(2)(a + (x − a)θ̂g (x)) − f (2)(a + (x − a)θ̂f (x))g(1)(a)].

(14)

Since for all x ∈]a − δ, a + δ [\{a}, we have that θ(x), θ̃f (x) , θ̃g (x) , θ̂f (x) ,

θ̂g (x) belong to ]0, 1[, we deduce that∣∣∣(x − a)θ̂f (x)
∣∣∣ � |x − a| and

∣∣∣(x − a)θ(x)θ̃f (x)
∣∣∣ � |x − a| ,∣∣∣(x − a)θ̂g (x)

∣∣∣ � |x − a| and
∣∣∣(x − a)θ(x)θ̃g (x)

∣∣∣ � |x − a| ,

for all x ∈]a − δ, a + δ [\{a}. The functions f (1), f (2), g(1), g(2) being continuous
on I, from (14) it results that there exists

lim
x→a

θ(x) =
1
2
.

4◦ Statement 4◦ follows from statement 3◦ above.
The theorem is proved.

REMARK 3. If g = 1I, then Theorem 5 becomes Theorem 8 from [5] .

REMARK 4. Theorem 5 remains true if the point a is an extremity of the interval
I. The following statement is true.

THEOREM 6. Let I be an interval in R and a ∈ I be the left extremity of I. Let
f , g : I → R be two functions which satisfy the following conditions:

(i) the functions f and g are twice differentiable on I,
(ii) the functions f (2) and g(2) are continuous on I,
(iii) g(1) (x) �= 0, for all x ∈ int I,
(iv) f (1) (a) g(2) (a) �= f (2) (a) g(1) (a) .
Then the following statements are true:
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1◦ There exists a real number δ > 0 such that ]a, a + δ [⊆ I,

f (1) (x) g(2) (x) �= f (2) (x) g(1) (x) , for all x ∈]a, a + δ [

and f (1)/g(1) is injective on ]a, a + δ [.
2◦ There exists a unique function c :]a, a + δ [→]a, a + δ [ such that

f (x) − f (a)
g (x) − g (a)

=
f (1)(c(x))
g(1)(c(x))

,

for all x ∈]a, a + δ [.
3◦ The function θ :]a, a + δ [→]0, 1[ defined by

θ (x) =
c (x) − a

x − a
, for all x ∈]a, a + δ [

has the following properties:
a) For all x ∈]a, a + δ [, we have

f (x) − f (a)
g (x) − g (a)

=
f (1)(a + (x − a)θ (x))
g(1)(a + (x − a)θ (x))

.

b) There exists the limit:

lim
x↘a

θ(x) =
1
2
.

4◦ The function c : [a, a + δ [→ R defined by

c (x) =
{

c(x), if x ∈]a, a + δ [
a, if x = a

is differentiable at x = a and

c(1) (a) =
1
2
.

REMARK 5. If g = 1I, then Theorem 6 becomes Theorem 9 from [5] .

One can give a similar theorem if a is the right extremity of the interval I.

REMARK 6. If f (1) (a) g(2) (a) = f (2) (a) g(1) (a) , then statement 3◦ of Theorem
5 might not be true.

Indeed, for the functions f , g : R → R defined by

f (x) = x3, g (x) = exp (x) , for all x ∈ R

we have f (1)(x) = 3x2, f (2)(x) = 6x, g(1) (x) = g(2) (x) = exp (x) , for all x ∈ R and
hence f (1) (0) g(2)(0) = f (2) (0) g(1) (0) . Obviously, f (1)/g(1) is injective on ]−∞, 0[.
Then, by Theorem 3, there exists a unique function c1 :] −∞, 0[→] −∞, 0[ such that

f (x) − f (0)
g (x) − g (0)

=
f (1)(c1(x))
g(1)(c1(x))

, for all x ∈] −∞, 0[.
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Similarly, since f (1)/g(1) is injective on ]0, 2[, by Theorem 3, there exists a unique
function c2 :]0, 2[→]0, 2[ such that

f (x) − f (0)
g (x) − g (0)

=
f (1)(c2(x))
g(1)(c2(x))

, for all x ∈]0, 2[.

Then the function c :] −∞, 2[\{0} →] −∞, 2[\{0} defined by

c(x) =
{

c1(x), if x ∈] −∞, 0[
c2(x), if x ∈]0, 2[

satisfies the equality

f (x) − f (0)
g (x) − g (0)

=
f (1)(c(x))
g(1)(c(x))

, for all x ∈] −∞, 2[\{0},

i.e.
x3

exp (x) − 1
=

3 (c (x))2

exp (c (x))
, for all x ∈] −∞, 2[\{0},

or, equivalently

x
exp (x) − 1

=
3 (θ(x))2

exp (xθ (x))
, for all x ∈] −∞, 2[\{0},

where c (x) = xθ (x) , for all x ∈] −∞, 2[\{0}. Hence, if there exists lim
x→0

θ(x) ∈ R ,
then

1 = 3lim
x→0

(θ(x))2 .

It follows that, if there exists c(1) (0) = lim
x→0

θ(x) ∈ R, then

c(1) (0) = lim
x→0

θ(x) =
1√
3
�= 1

2
.

One asks: If f (1) (a) g(2) (a) = f (2) (a) g(1) (a) , then c(1) (a) = lim
x→a

θ(x) = 1√
3
?

A partial answer is given by the following theorem:

THEOREM 7. Let I be an interval in R and a be an interior point of I. Let
f , g : I → R be two functions which satisfy the following conditions:

(i) the functions f and g are three times differentiable on I,
(ii) the functions f (3) and g(3) are continuous on I,
(iii) g(1) (x) �= 0, for all x ∈ int I,
(iv) f (1) (a) g(2) (a) = f (2) (a) g(1) (a) , f (1) (a) g(3) (a) �= f (3) (a) g(1) (a) .
Then the following statements are true:
1◦ There exists a real number δ > 0 such that ]a − δ, a + δ [⊆ I and

f (1) (x) g(2) (x) �= f (2) (x) g(1) (x) , for all x ∈]a − δ, a + δ [\{a}.
2◦ The function f (1)/g(1) is injective on each of the intervals ]a − δ, a[ and

]a, a + δ [.
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3◦ There exist a unique function c1 :]a − δ, a[→]a − δ, a[ and a unique function
c2 :]a, a+δ [→]a, a+δ [ such that the function c :]a−δ, a+δ [\{a} →]a−δ, a+δ [\{a}
defined by

c (x) =
{

c1 (x) , if x ∈]a − δ, a[
c2 (x) , if x ∈]a, a + δ [

satisfies the equality
f (x) − f (a)
g (x) − g (a)

=
f (1)(c(x))
g(1)(c(x))

, (15)

for all x ∈]a − δ, a + δ [\{a}.
4◦ The function θ :]a − δ, a + δ [\{a} →]0, 1[ defined by

θ (x) =
c (x) − a

x − a
, for all x ∈]a − δ, a + δ [\{a}, (16)

has the following properties:
a) For all x ∈]a − δ, a + δ [\{a}, we have

f (x) − f (a)
g (x) − g (a)

=
f (1)(a + (x − a)θ(x))
g(1)(a + (x − a)θ(x))

.

b) There exists the limit

lim
x→a

θ(x) =
1√
3
.

5◦ The function c :]a − δ, a + δ [→]a − δ, a + δ [ defined by

c (x) =
{

c(x), if x ∈]a − δ, a + δ [\{a}
a, if x = a

is differentiable at x = a and

c(1) (a) =
1√
3
.

Proof. 1◦ − 2◦ Suppose that f (1)(a)g(3) (a) < f (3) (a) g(1) (a) . From (ii) and
a ∈ int I, it follows that there exists a real number δ > 0 such that ]a − δ, a + δ [⊆ I
and

f (1) (x) g(3) (x) < f (3) (x) g(1) (x) , for all x ∈]a − δ, a + δ [.

It follows that(
f (2)g(1) − f (1)g(2)

)(1)
(x) = f (3) (x) g(1) (x) − f (1) (x) g(3) (x) > 0,

for all x ∈]a− δ, a+ δ [ and hence the function f (2)g(1) − f (1)g(2) is strictly increasing
on ]a − δ, a + δ [. Since f (1) (a) g(2) (a) = f (2) (a) g(1) (a) , we deduce that

f (2) (x) g(1) (x) − f (1) (x) g(2) (x) < 0, for all x ∈]a − δ, a[

and
f (2) (x) g(1) (x) − f (1) (x) g(2) (x) > 0, for all x ∈]a, a + δ [.
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Then(
f (1)

g(1)

)(1)

(x) =
f (2) (x) g(1) (x) − f (1) (x) g(2) (x)(

g(1) (x)
)2 < 0, for all x ∈]a − δ, a[

and (
f (1)

g(1)

)(1)

(x) =
f (2) (x) g(1) (x) − f (1) (x) g(2) (x)(

g(1) (x)
)2 > 0, for all x ∈]a, a + δ [.

It follows that the function f (1)/g(1) is strictly decreasing on ]a − δ, a[ and strictly
increasing on ]a, a + δ [ . Consequently f (1)/g(1) is injective on each of the intervals
]a − δ, a[ and ]a, a + δ [.

If f (1)(a)g(3) (a) > f (3) (a) g(1) (a) , the proof is analogously.
3◦ From Theorem 3 and statement 2◦ above , it follows that there exists a unique

function c1 :]a − δ, a[→]a − δ, a[ such that

f (x) − f (a)
g (x) − g (a)

=
f (1)(c1(x))
g(1) (c1(x))

, for all x ∈]a − δ, a[

and a unique function c2 :]a, a + δ [→]a, a + δ [ such that

f (x) − f (a)
g (x) − g (a)

=
f (1)(c2(x))
g(1) (c2(x))

, for all x ∈]a, a + δ [.

Then the function c :]a − δ, a + δ [\{a} →]a − δ, a + δ [\{a} defined by

c(x) =
{

c1(x), if x ∈]a − δ, a[
c2(x), if x ∈]a, a + δ [

satisfies equality (15).
4◦ a) Statement a) follows from (15) and (16) .
b) By Taylor’s formula, for each x ∈]a − δ, a + δ [\{a} there exist two real

numbers θ̂f (x) , θ̂g (x) ∈]0, 1[ such that

f (x)−f (a) = f (1)(a)(x−a)+
1
2!

f (2) (a) (x−a)2 +
f (3)(a+(x−a)θ̂f (x))

3!
(x−a)3, (17)

and

g(x)−g(a)=g(1)(a)(x−a)+
1
2!

g(2) (a) (x−a)2 +
g(3)(a+(x−a)θ̂g (x))

3!
(x−a)3. (18)

On the other hand, by Taylor’s formula applied to the functions f (1) and g(1), for
each x ∈]a − δ, a + δ [\{a}, there exists two real numbers θ̃f (x) , θ̃g (x) ∈]0, 1[ such
that

f (1)(a + (x − a)θ(x)) = f (1)(c(x))

= f (1)(a)+f (2) (a) (x−a) θ (x)+
f (3)(a+(x−a)θ(x)θ̃f (x))

2
(x−a)2(θ(x))2

(19)
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and

g(1)(a + (x − a)θ(x)) = g(1)(c (x))

= g(1)(a)+g(2) (a) (x−a)θ (x) +
g(3)(a+(x−a)θ(x)θ̃g (x))

2
(x − a)2(θ(x))2.

(20)

Substituting (19)− (20) in (15 ) , we obtain that, for each x ∈]a−δ, a+δ [\{a},

f (x)−f (a)
g (x)−g (a)

=
f (1)(a)+f (2) (a) (x−a)θ (x)+ f (3)(a+(x−a)θ(x)θ̃f (x))

2 (x−a)2(θ(x))2

g(1)(a)+g(2) (a) (x−a) θ (x)+ g(3)(a+(x−a)θ(x)θ̃g(x))
2 (x−a)2(θ(x))2

.

From this and (17) − (20) , we obtain that, for each x ∈]a − δ, a + δ [\{a},
1
2

(
f (1) (a) g(3)

(
a + (x − a)θ (x) θ̃g (x)

)
− f (3)

(
a + (x − a) θ (x) θ̃f (x)

)
g(1) (a)

)
(θ (x))2

+
1
4

(
f (2) (a) g(3)

(
a + (x − a) θ (x) θ̃g (x)

)
−f (3)

(
a + (x − a) θ (x) θ̃f (x)

)
g(2) (a)

)
(x − a)2 (θ (x))2

+
1
6

(
f (3)

(
a + (x − a) θ̂f (x)

)
g(1) (a) − f (1) (a) g(3)

(
a + (x − a) θ̂g (x)

))
+

1
6

(
f (3)

(
a+(x−a) θ̂f (x)

)
g(2) (a)−f (2) (a) g(3)

(
a+(x−a) θ̂g (x)

))
(x−a)θ (x)

+
1
12

(
f (3)

(
a + (x − a) θ̂f (x)

)
g(3)

(
a + (x − a)θ (x) θ̃g (x)

)
− f (3)

(
a + (x − a) θ (x) θ̃f (x)

)
g(3)

(
a + (x − a) θ̂g (x)

))
(x − a)2 (θ (x))2 = 0.

Now, since for each x ∈]a − δ, a + δ [\{a}, we have that θ(x) , θ̃f (x) , θ̃g (x) ,
θ̂f (x) , θ̂g (x) belong to ]0, 1[, we deduce that∣∣∣(x − a)θ̂f (x)

∣∣∣ � |x − a| ,
∣∣∣(x − a)θ̂g (x)

∣∣∣ � |x − a| ,∣∣∣(x − a)θ (x) θ̃f (x)
∣∣∣ � |x − a| and

∣∣∣(x − a)θ (x) θ̃g (x)
∣∣∣ � |x − a| ,

for all x ∈]a − δ, a + δ [\{a}.
Now, from (ii) , it results that there exists

lim
x→a

(θ(x))2 =
f (1) (a) g(3) (a) − f (3) (a) g(1) (a)

3
(
f (1) (a) g(3) (a) − f (3) (a) g(1) (a)

) =
1
3
.

5◦ Statement 5◦ follows from statement 4◦ above.
The theorem is proved.

REMARK 7. If g = 1I, then Theorem 7 becomes Theorem 11 from [5] .
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REMARK 8. Theorem 7 remains true if the point a is an extremity of the interval
I .

The following theorem answers the question: which is the limit of the function θ
at the point x = a, when f (1)(a)g(k)(a) = f (k)(a)g(1)(a), for all k ∈ {2, ..., n − 1},
and f (1)(a)g(n)(a) �= f (n)(a)g(1)(a)?

THEOREM 8. Let I be an interval in R and a be a point of I. Let f , g : I → R

be functions which satisfy the following conditions:
(i) the functions f and g are n � 2 times differentiable on I ,
(ii) the functions f (n) and g(n) are continuous on I ,
(iii) f (1)(a)g(k)(a) = f (k)(a)g(1)(a), for all k ∈ {2, ..., n − 1} ,
(iv) f (1)(a)g(n)(a) �= f (n)(a)g(1)(a) .
Let θ : I \ {a} →]0, 1[ be a function such that

(f (x) − f (a)) g(1)(a + (x − a)θ(x)) = (g(x) − g(a)) f (1)(a + (x − a)θ(x)), (21)

for all x ∈ I \ {a}.
Then there exists the limit:

lim
x→a

θ(x) =
1

n−1√n
. (22)

Proof. By Taylor’s formula, for each x ∈ I \ {a} there exist θ1(x), θ2(x), θ3(x),
θ4(x) ∈]0, 1[ such that

f (x) = f (a) +
n−1∑
k=1

(x − a)k

k!
f (k)(a) +

(x − a)n

n!
f (n)(a + (x − a)θ1(x)), (23)

g(x) = g(a) +
n−1∑
k=1

(x − a)k

k!
g(k)(a) +

(x − a)n

n!
g(n)(a + (x − a)θ2(x)), (24)

f (1)(a + (x − a)θ(x))

=
n−1∑
i=1

((x−a)θ(x))i−1

(i−1)!
f (i)(a)+

((x−a)θ(x))n−1

(n−1)!
f (n)(a+(x − a)θ(x)θ3(x)),

(25)

g(1)(a + (x − a)θ(x))

=
n−1∑
i=1

((x−a)θ(x))i−1

(i−1)!
g(i)(a)+

((x − a)θ(x))n−1

(n − 1)!
g(n)(a + (x − a)θ(x)θ4(x)).

(26)
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Substituting (23) − (26) in (21), we obtain(
n−1∑
k=1

(x − a)k

k!
f (k)(a) +

(x − a)n

n!
f (n)(a + (x − a)θ1(x))

)
×

×
(

n−1∑
i=1

((x − a)θ(x))i−1

(i − 1)!
g(i)(a) +

((x − a)θ(x))n−1

(n − 1)!
g(n)(a + (x − a)θ(x)θ4(x))

)

=

(
n−1∑
k=1

(x − a)k

k!
g(k)(a) +

(x − a)n

n!
g(n)(a + (x − a)θ2(x))

)
×

×
(

n−1∑
i=1

((x − a)θ(x))i−1

(i − 1)!
f (i)(a) +

((x − a)θ(x))n−1

(n − 1)!
f (n)(a + (x − a)θ(x)θ3(x))

)
,

or equivalent

n−1∑
k=1

n−1∑
i=1

(x − a)k+i−1

k!(i − 1)!
(θ(x))i−1

(
f (k)(a)g(i)(a) − f (i)(a)g(k)(a)

)
+

(x − a)n−1(θ(x))n−1

(n − 1)!

n−1∑
k=1

(x − a)k

k!

(
f (k)(a)g(n)(a + (x − a)θ(x)θ4(x))

−f (n)(a + (x − a)θ(x)θ3(x))g(k)(a)
)

+
(x − a)n

n!

n−1∑
i=1

(x − a)i−1(θ(x))i−1

(i − 1)!

(
f (n)(a + (x − a)θ1(x))g(i)(a)

−f (i)(a)g(n)(a + (x − a)θ2(x))
)

+
(x − a)2n−1(θ(x))n−1

(n − 1)!n!

(
f (n)(a + (x − a)θ1(x))g(n)(a + (x − a)θ(x)θ4(x))

−f (n)(a + (x − a)θ(x)θ3(x))g(n)(a + (x − a)θ2(x))
)

= 0.

From this and (iii) we deduce that

(θ(x))n−1
n−1∑
k=1

(x − a)k−1

k!

(
f (k)(a)g(n)(a + (x − a)θ(x)θ4(x))

−f (n)(a + (x − a)θ(x)θ3(x))g(k)(a)
)

+
1
n

n−1∑
i=1

(x − a)i−1(θ(x))i−1

(i − 1)!
×

×
(
f (n)(a + (x − a)θ1(x))g(i)(a) −f (i)(a)g(n)(a + (x − a)θ2(x))

)
+

(x − a)n−1(θ(x))n−1

n!

(
f (n)(a + (x − a)θ1(x))g(n)(a + (x − a)θ(x)θ4(x))

−f (n)(a + (x − a)θ(x)θ3(x))g(n)(a + (x − a)θ2(x))
)

= 0,
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for all x ∈ I \ {a}.
Now, since

|(x − a)θ1 (x)| � |x − a| , |(x − a)θ2 (x)| � |x − a| ,

|(x − a)θ (x) θ3 (x)| � |x − a| and |(x − a)θ (x) θ4 (x)| � |x − a| ,

for all x ∈ I \ {a}, from (ii) , it results that there exists

lim
x→a

(θ(x))n−1 =
1
n

f (1)(a)g(n)(a) − f (n)(a)g(1)(a)
f (1)(a)g(n)(a) − f (n)(a)g(1)(a)

=
1
n
.

The theorem is proved.

REMARK 9. If g = 1I, then Theorem 8 becomes Theorem 12 from [5] .

THEOREM 9. Let I be an interval in R and a be an interior point of I. Let
f , g : I → R be functions which satisfy the following conditions:

( i ) the functions f and g are n � 2 times differentiable on I ,
( ii ) the functions f (n) and g(n) are continuous on I ,
( iii ) g(k)(a) �= 0, for all k ∈ {1, ...n},
( iv )

f (1)(a)
g(1)(a)

=
f (2)(a)
g(2)(a)

= ... =
f (n−1)(a)
g(n−1)(a)

,

( v )
f (1)(a)
g(1)(a)

�= f (n)(a)
g(n)(a)

,

( vi )

g(1)(x) �= 0, for all x ∈ I.

Let θ : I \ {a} →]0, 1[ be a function such that

f (x) − f (a)
g(x) − g(a)

=
f (1)(a + (x − a)θ(x))
g(1)(a + (x − a)θ(x))

, for all x ∈ I \ {a}.

Then there exists the limit:

lim
x→a

θ(x) =
1

n−1√n
.

Proof. Apply Theorem 8 above.

REMARK 10. If g = 1I, then Theorem 9 becomes Theorem 12 from [5] .
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