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GEOMETRIC MEANS OF TWO POSITIVE NUMBERS

RAGHIB M. ABU-SARIS AND MOWAFFAQ HAJJA

(communicated by P. S. Bullen)

Abstract. We introduce three families of means that encompass several classical means that arise
naturally in geometric contexts. Within these families, we discuss dominance relations, closure
under Gauss’ compounding, behavior under equal increments, and other related issues.

1. Introduction

In the context of elementary geometry, it is natural to think of two given positive
numbers x and y as representing a rectangle R[x, y] with sides x and y , and to think
of their mean z as the side of the square which shares a certain natural feature with that
rectangle. Taking this common features to be the perimeter, area and the diagonal, one
obtains the arithmetic mean, the geometric mean and what is known as the root-mean
square, respectively. These are the classical means defined by

x + y
2

,
√

xy ,

√
x2 + y2

2

and known since the Pythagoreans [16, page 75]. A less natural feature of the rectangle
R[x, y] is the total length 2(x+y+

√
x2 + y2) of the complete network that connects its

vertices. The side z of the square that shares this feature is the solution of the equation
2(x + y +

√
x2 + y2) = 2(2z +

√
2z2), i.e., the mean defined by

1

2
√

2

(
x + y +

√
x2 + y2

)
.

If one fixes an angle θ with ( sin θ/2 = s , say) and replaces rectangles and squares
above by parallelograms and rhombi having vertex angle θ , one obtains the families of
means given by

αs(x, y) =
x + y +

√
(x − y)2 + 4xys2

2(1 + s)
, βs(x, y) =

√
(x − y)2 + 4xys2

2s
(1)
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Another natural way of defining a mean of x and y is to take any trapezoid
Z = Z[x, y] whose parallel bases have lengths x and y and to think of their mean as
the base length of a rectangle having the same height and area as Z [7, page 38]. This
approach gives rise to the arithmetic mean again, since the area of a trapezoid with
parallel sides x and y and height h is given by

A(x, y) =
x + y

2
h. (2)

However, if one repeats this procedure in the three-dimensional space by consid-
ering a frustum whose parallel bases have areas x and y and thinking of their mean as
the base area of a parallelepiped having the same height and volume, one gets what is
referred to in the literature as the Heronian mean, i.e., the mean given by

H(x, y) =
x +

√
xy + y

3
.

This is equivalent to saying that the volume of the frustum whose parallel bases
have areas x and y and whose height h is given by

V(x, y) =
x +

√
xy + y

3
h,

a fact amazingly known to the Ancient Egyptians nearly 4000 years ago. It is expressed
(through a numerical example as was usual) in Problem 14 of the Moscow Papyrus
discovered in 1893, a problem that so strongly impressed Eric Temple Bell that he
called it “the greatest Egyptian Pyramid” [15, Lecture 2]. It is worth mentioning that
the false formula V(x, y) = (x + y)h/2 inspired by (2) is the one that the Babylonians
used for the volume of a frustum [15, page 12].

Going back to the trapezoid Z = Z[x, y] whose parallel bases have lengths x and y
one considers the family Ω of all the line segments parallel to the bases and intercepted
by the sides, and then takes the mean t of x and y to be the length of the segment S in
Ω that satisfies a certain natural condition. If S is required to divide Z into trapezoids
Z1 and Z2 of the same height, then the length of S is the arithmetic mean of x and
y . If one requires Z1 and Z2 to be similar, then one gets the geometric mean. If one
requires them to have the same area, then one gets the root-mean square. If S is to
pass through the point of intersection of the diagonals of Z , then one gets the harmonic
mean defined by

2xy
x + y

,

and if S is to pass through the centroid of the region enclosed in the trapezoid, then one
gets the centroidal mean defined by

2(x2 + xy + y2)
3(x + y)

;

see [16, page 168] and [17].
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Figure 1. Archimedes Arbelos Figure 2. The Incircle of the Arbelos

The arbelos (or shoemaker’s knife) of Archimedes, as shown in Figure 1, gives rise
to other families of means. Starting with any positive numbers x and y one draws a line
APB where AP and PB have lengths 2x and 2y , respectively, and three semicircles
S(AP), S(PB), S(AB) on the same side of AB and having AP , PB and AB as diameters.
The (x, y) -arbelos is the figure bounded by these three semicircles [14, page 27], [16,
page 156], [6, page 148], and [9, page 228]. Its area can be easily seen to be πab . Its
inradius is the radius of its incircle, i.e., the circle tangent to the three semicircles (see
Figure 2), and it is given by

xy(x + y)
x2 + xy + y2

;

see [26, pages 61-72] for this and the other formulas that are used below. If Q is the point
on the semicircle S(AB) such that PQ is perpendicular to AB , then PQ divides the
arbelos into two regions whose incircles turn out to be equal of radius xy/(x + y) each.
This fact is attributed to Archimedes and is referred to in the literature as Archimedes’
theorem, and the two circles may be called the Archimedean circles. It also turns out
that if the incircle of the arbelos touches the semicircles S(AP) and S(PB) at X and
Y , then the circle through P , X and Y has the same radius as the Archimedean circles.
So does the incircle of the triangle CO1O2 , where C is the center of the incircle of
the arbelos and O1 and O2 are the centers of the semicircles C(AP) and C(PB) . The
semi-perimeter and area of the triangle CO1O2 are given by

(x + y)3

x2 + xy + y2
,

xy(x + y)2

x2 + xy + y2
,

respectively. One can now define the mean of x and y to be the number z such that the
(z, z) -arbelos has a certain natural feature in common with the (x, y) -arbelos. If this
common feature is taken to be the area of the arbelos or the radius of the Archimedean
circle, we obtain the geometric mean and the harmonic means, respectively. If it is taken
to be the radius of the incircle, the semi-perimeter or the area of the triangle CO1O2 ,
then we obtain the three means given by

3xy(x + y)
2(x2 + xy + y2)

,
3(x + y)3

8(x2 + xy + y2)
,

√
xy(x + y)2

x2 + xy + y2
, (3)

respectively.
Of course, there is no end to this line of thinking. There are, beside the rectangle,

the θ -parallelograms, the trapezoid, the frustum, the arbelos, and many other geometric
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objects can be described by two positive numbers. Considering ellipses and lemniscates,
for example, would lead to the means that involve non-elementary elliptic integrals and
that are beyond this note.

We also remark that most of examples above conform to what is sometimes referred
to in the literature as Chisini’s definition of means. According to Chisini, x is said to
be the mean of n numbers x1, · · · , xn , with respect to a problem in which a function of
them f (x1, · · · , xn) is of interest, if the function assumes the same value when all the
xh are replaced by the mean value x : f (x1, · · · , xn) = f (x, · · · , x) ; see [19, page 56]
and [22]. Other possible viewpoints of means are reflected in [11], [23] and [24].

In the next sections, we will introduce families of means that encompass almost all
the examples encountered above, and we will try to answer the questions that are most
commonly asked about any family of means. These include questions of comparability,
Gauss’ compounding, behavior under equal increments of the variables and similar
questions.

2. Conditions for internality

With the exception of the last mean in (3), each of the means μ(x, y) encountered
above is of one of the forms

L(x, y) ±
√

Q(x, y),
Q(x, y)
L(x, y)

,
C(x, y)
Q(x, y)

(4)

where L(x, y), Q(x, y) , and C(x, y) are symmetric forms of degrees 1, 2 and 3 (respec-
tively). However, for μ(x, y) to qualify as a mean, it is essential that μ(x, y) is internal
in the sense that

min{x, y} � μ(x, y) � max{x, y}
for all x, y > 0 . (In fact, the literature on means seems to agree that internality is
the only essential requirement for a function to be a mean; see [5, page 230].) The
restrictions that internality places on the coefficients of L , Q , and C are the subject of
Theorem 1 below. Once internality is satisfied, our resulting means will also have the
desirable properties of symmetry, continuity and 1-homogeneity.

We start with a few simple observations that we will freely use. It is easy to see
that linear, quadratic and cubic symmetric forms in two variables are of the forms

L(x, y) = a(x + y), Q(x, y) = b(x− y)2 + cxy, C(x, y) = (x + y)(b(x− y)2 + cxy).

By considering the pairs (x, y) = (1, 0) and (1, 1) , one sees that Q(x, y) � 0 for all
x, y � 0 if and only if b, c � 0 .

From these observations and making use of the property μ(1, 1) = 1 that is
implied by internality, we see that the first type in (4) takes the form

Ma,b(x, y) = (1 + a)
x + y

2
− sgn(a)

√
b2

(
x − y

2

)2

+ a2xy
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where sgn (a) stands for the sign of a if a �= 0 and is allowed to take the two values
±1 if a = 0 . If we agree that a and b have opposite signs, then Ma,b would take the
form

Ma,b(x, y) = (1 + a)
x + y

2
− sgn(a − b)

√
b2

(
x − y

2

)2

+ a2xy (5)

where it doesn’t now matter what sgn(0 ) is. The second type in (4) takes the form

Gb(x, y) =
b(x − y)2 + 2xy

x + y
, b � 0. (6)

Finally, the third type in (4) is given by

μ(x, y) =
(x + y) Q1(x, y)

Q2(x, y)
,

where
Q1(x, y) = b1(x − y)2 + c1xy, Q2(x, y) = b2(x − y)2 + c2xy.

If Q1(x, y) and Q2(x, y) vanish at a common point (x0, y0), x0, y0 > 0 , then one is
a multiple of the other. This is seen by considering the cases x0 = y0 and x0 �= y0 .
Thus, if μ is to define a mean, it must be either the arithmetic mean or both Q1 and
Q2 are positive for positive x and y . Further, if b2 = 0 , then the behavior of μ near
the point (1, 0) would imply b1 = 0 and that μ is again the arithmetic mean. Thus
one may assume that b2 = 1 . Therefore, μ takes the form (x + y)Q1(x, y)/2Q2(x, y) ,
with b2 = 1, c1, c2 � 0 and b1 � 0 . The condition μ(1, 1) = 1 forces c1 = c2 . We
find it more convenient to write this in the equivalent form

Nb,c(x, y) =
x + y

2
(1 + b)(x − y)2 + 2cxy

(x − y)2 + 2cxy
, b � −1, c � 0 (7)

The arithmetic mean is not excluded as it corresponds to b = 0 .

THEOREM 1. Let Ma,b , Gb and Nb,c be as given in (5) , (6) and (7) above,
and let

DM = {(a, b) : ab � 0, −1 � a + b � 1} (8)
DG = [0, 1] (9)

DN = {(b, c) : −1 � b � 1, c � 1} ∪ {(b, c) : b2 + (c − 1)2 � 1} (10)

(i) Ma,b is internal if and only if (a, b) ∈ DM .
(ii) Gb is internal if and only if b ∈ DG .
(iii) Nb,c is internal if and only if (b, c) ∈ DN .
(iv) With the exception of

M0,1(a, b) = max{a, b} and M0,−1(a, b) = min{a, b},
all the means μ above are strict in the sense that

min{a, b} < μ(a, b) < max{a, b} ∀ a, b > 0 with a �= b.
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Proof.
(i) We first note that if Ma,b is internal, then by multiplying

min{x, y} � Ma,b(x, y) � max{x, y}
by −1 and adding x + y , we obtain

max{x, y} � x + y −Ma,b(x, y) � min{x, y}.
Since x+ y−Ma,b(x, y) is nothing but M−a,b , it follows that M−a,b is internal. Also,
if Ma,b is internal for all a �= 0 , then internality for a = 0 would follow by taking
limits since the pointwise limit of a sequence of internal functions is clearly internal.
Therefore, it is enough to establish internality for a < 0 .

Thus assume a < 0 . The internality of Ma,b at the pair (1, 0) is equivalent to the
condition 0 � (1 + a + b)/2 � 1 , which simplifies into the desired condition

− 1 � a + b � 1 (11)

Conversely, suppose that (11) holds. Then

− 1 − a � b � 1 − a (and a < 0, b � 0) (12)

From homogeneity and symmetry of Ma,b , it is enough to establish internality for
x = 1 and y � 1 . Thus we are to show that

y − a − ay − 1 �
√

b2(y − 1)2 + 4a2y ∀ y � 1 (13)

1 − a − ay − y �
√

b2(y − 1)2 + 4a2y ∀ y � 1 (14)

From a < 0 , we know that y− a− ay− 1 = −a(y+ 1)+ (y− 1) > 0. Therefore

(13) ⇐⇒ (y − a − ay − 1)2 − b2(y − 1)2 − 4a2y � 0 ∀ y � 1

⇐⇒ (y − 1)
(
(1 − a)2 − s2)y + (b2 − (a + 1)2

)
� 0 ∀ y � 1

⇐⇒ f (y) := ((1 − a)2 − b2)y + (b2 − (a + 1)2) � 0 ∀ y � 1.

But the last statement follows from (12) since f (1) = −4a and f ′(1) = (1− a)2 − b2

are both non-negative.
To prove (14), it is enough to restrict ourselves to the values of y for which

1 − a − ay − y � 0 . This happens if (a � −1) or (a > −1 and y � (1 − a)/(1 + a).
Under these assumptions,

(14) ⇐⇒ b2(y − 1)2 + 4a2y − (1 − a − ay− y)2 � 0 ∀ y � 1

⇐⇒ (y − 1)((b2 − (1 + a)2)y − (b2 − (1 − a)2)) � 0 ∀ y � 1

⇐⇒ g(y) := (b2 − (1 + a)2)y + ((1 − a)2 − b2) � 0 ∀ y � 1.

If a � −1 , then it follows from (12) that both b2 − (a + 1)2 and (1 − a)2 − b2 are
non-negative and the last statement follows. It remains to prove the last statement when

0 > a > −1 and 1 � y � 1 − a
1 + a

.
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In this case, 1 − a2 and hence b2 + 1 − a2 are both non-negative, as well as 1 + a .
Thus

g(1) = −4a � 0 and g

(
1 − a
1 + a

)
=

−2a(b2 + 1 − a2)
1 + a

� 0,

and it follows that g(y) � 0 for all y such that 1 � y � (1 − a)/(1 + a) , as desired.
This establishes the internality of Ma,b for a < 0 , and hence for all a .

(ii) The internality of Gb at (1, 0) implies that 0 � b � 1. Conversely, suppose
that 0 � b � 1 . Since Gb increases with b , and since G0 and G1 are internal, being
nothing but the well-known harmonic and Gini means, it follows that Gb is internal for
all b ∈ [0, 1] .

(iii) By symmetry and homogeneity, the internality of Nb,c is equivalent to the
condition that 1 � Nb,c(1, y) � y ∀ y � 1. This simplifies into the conditions

F(y) := (1 − b)y2 + 2(c − 1)y + (1 + b) � 0 ∀ y � 1 (15)

G(y) := (1 + b)y2 + 2(c − 1)y + (1 − b) � 0 ∀ y � 1 (16)

Clearly (15) and (16) imply that

−1 � b � 1.

Also, if Δ denotes the discriminant, then Δ(F) = Δ(G) = 4(b2 + (c − 1)2 − 1)
and both (15) and (16) vacuously hold if (b, c) lies inside the circle b2 + (c− 1)2 � 1
of the (b, c) -plane. Thus we assume that b2 + (c − 1)2 > 1 . Then (15) is equivalent
to saying that the larger root of F is � 1 , i.e.,√

b2 + (c − 1)2 − 1 � c − b.

This in turn is equivalent to (c − b � 0 and (1 − b)c � 0) and hence simply to the
condition

c − b � 0.

Similarly, (16) is equivalent to the condition

c + b � 0.

Therefore Nb,c is internal if and only if (b, c) lies in the strip −1 � b � 1 and above
the lower half of the circle b2 + (c − 1)2 = 1 , as desired.

(iv) This easily follows by examining the proofs above. �
Note that the means βs and αs that we have introduced in (1) are nothing but

M−1,1/s and M−s/(1+s),1/(1+s) . Using Theorem1 (i) above, one sees that βs is internal
if and only if s � 1/2 (i.e., θ � 60◦ ), while αs is internal for all θ .

3. Questions of comparability

In the family G = {Gb : 0 � b � 1} , comparability is trivial since Gb increases
with b . In Theorems 2 and 3, we answer the questions of comparability in the families
M = {Ma,b : (a, b) ∈ DM} and N = {Nb,c : (b, c) ∈ DN} , where DM and DN
are the domains of internality of these families, as given in (8) and (10). We will refer to
means in M , G and N as root-quadratic, rational-quadratic and rational-cubic means
(respectively).
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We start with comparability within M . For (a, b), (A, B) ∈ DM , we set

d =
a2 − b2

a2
if a �= 0; D =

A2 − B2

A2
if A �= 0. (17)

We will study conditions on (a, b), (A, B) ∈ DM under which MA,B = Ma,b and
conditions underwhich MA,B � Ma,b for all x, y � 0 . Under the harmless assumptions

x + y
2

= 1,
x − y

2
= t, −1 � t � 1 ,

the mean Ma,b defined in (5) can be re-written in the form

ga,b(t) = 1 + a − sgn(a − c)
√

a2 + (b2 − a2)t2

=

{
1 + b | t | if a = 0

1 + a − a
√

1 − dt2 if a �= 0.

Its MacLaurin series is given by

ga,b(t) = 1 +
1
2
adt2 +

1
8
ad2t4 + O(t6) , if a �= 0. (18)

We first note that ga,b is linear on t ∈ [0, 1] if and only if a = 0 or a + b = 0 ,
and that ga,b = 1 for all t (i.e., Ma,b is the arithmetic mean) if and only if a + b = 0 .

Suppose now that ga,b = gA,B . We neglect the trivial case when a + b = 0 .
Also, if a = 0 , then ga,b is linear (for t ∈ [0, 1] ) and hence gA,B is linear and A = 0
and b = B . Otherwise, using the MacLaurin’s series (18), we see that ad = AD and
ad2 = AD2 and therefore a = A and d = D (and hence b = B ). Thus we conclude
that ga,b = gA,B if and only if (a, b) = (A, B) or a + b = A + B = 0 in which case we
have the arithmetic mean.

Next, taking the three cases (a = A = 0) , (a = 0, A �= 0) and (a �= 0, A �= 0) , it
is easy to see that ga,b(t) and gA,B(t) intersect on [0, 1] at t = 0 and at most one other
point given by

t2 =

{
4aA(A − a)(AD − ad)/(DA2 − da2)2 if a = 0, A �= 0

(2bA)2/(b2 + DA2)2 if a �= 0, A �= 0.

Thus if gA,B �= ga,b , then

gA,B(t) � ga,b(t)∀ t ∈ [−1, 1] ⇐⇒ gA,B(t) � ga,b(t) ∀ t ∈ [0, 1]

⇐⇒ gA,B(0+) > ga,b(0+) and gA,B(1) � ga,b(1).

This settles the question of dominance in the family of root-quadratic means. We
summarize the above in the following theorem.

THEOREM 2. Let (a, b), (A, B) ∈ DM .
(i) Ma,b is the arithmetic mean if and only if a + b = 0 .
(ii) If a + b �= 0 and if Ma,b = MA,B , then (a, b) = (A, B) .
(iii) If MA,B �= Ma,b , then MA,B � Ma,b if and only if the following two

conditions holds:

(1) gA,B(1) � ga,b(1) (2) gA,B(0+) > ga,b(0+).
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Note that gA,B(1) � ga,b(1) if and only if

A + B � a + b

and that gA,B(0+) > ga,b(0+) if and only if any of the following conditions hold :
(i) A = 0, B � 0 and A + B > a + b
(ii) a = 0, b � 0 and A + B > a + b
(iii) (AD > ad) or (AD = ad and AD2 > ad2) , where d and D are as defined

in (17).

THEOREM 3. Let (b, c) ∈ DN.
(i) Nb,c is the arithmetic mean if and only if b = 0 .
(ii) If b �= 0 , then NB,C = Nb,c if and only if B = b and C = c .
(iii) NB,C � Nb,c if and only if B � b and B − b + Bc − bC � 0 .

Proof.
(i) is trivial. To prove (ii) and (iii) , it is direct to check that

NB,C(1, y) −Nb,c(1, y) =
(y + 1)(y − 1)2

2
H(y),

where H(y) = (B − b)y2 + 2(Bc − bC)y + (B − b). Thus NB,C � Nb,c if and only
if H(y) � 0 for all y � 1. That this is equivalent to the given conditions follows
from considering the leading coefficient of H and from the fact that H(1) = H′(1) =
2(B − b + Bc − bC). �

4. Gauss’ compounding of root-quadratic and rational-quadratic means

Referring to the family M described in (5), we note that

M−1,0 = G, the geometric mean,

M0,0 = A, the arithmetic mean,

M1,0 = H, the Heronian mean,

M0,−1 = min, the minimum mean,

M0,1 = max, the maximum mean.

We describe below the arithmetic-geometricmean of Gauss obtained by iterating A and
G and we will consider iterations of other pairs [7, pages 359–367], [13], [12].

Starting with any positive numbers x0 = x and y0 = y , (with x � y , say), one
considers the iteration given by

xn+1 = G(xn, yn) , yn+1 = A(xn, yn).

It is clear that the sequence xn is increasing and that yn is decreasing and that

0 � yn+1 − xn+1 � 1
2
(yn − xn).
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Therefore they converge to the same limit. This common limit is denoted by (A ⊗
G)(x, y) and is referred to in the literature as the Gauss arithmetic-geometric mean (or
the Gauss compound of A and G ). It was discovered by Lagrange but it was Gauss
who discovered its relation with certain elliptic integrals (and in particular with the
length of the lemniscate) [13]. Since (A ⊗ G)(a, b) is transcendental whenever a and
b are distinct positive algebraic numbers (e.g. when (a, b) = (1,

√
2) ) [12], it follows

that A ⊗ G does not belong to the family M described above. Thus the question
whether the compound of two elements in M belongs to M (when it exists) may turn
out to be hard to answer. However, certain subfamilies of M can easily be seen to be
closed under compounding. For example, compounds in the subfamily of M obtained
by taking a = 0 can be easily computed using the theory of elementary difference
equations. However, we shall make use of the following very useful theorem, which is
a result of combining Theorems 8.2 and Theorem 8.3 of [5, pages 244-245], attention
being made to the sentence that preceded Theorem 8.2.

THEOREM 4. If μ and ν are symmetric means and if at least one of them is strict,
then μ ⊗ ν exists and it is the unique mean Φ satisfying

Φ(μ(x, y), ν(x, y)) = Φ(x, y) ∀ x, y > 0.

THEOREM 5. Suppose that −1 � b, c � 1 , and suppose that (b, c) is neither of
the trivial pairs (−1, 1) and (1,−1) . Then M0,b ⊗M0,c = M0,p, where

p =
b + c

2− | b − c | .
In particular,

M0,b ⊗M0,−b = M0,0, the arithmetic mean.

Proof. Recalling that

M0,b(x, y) =
x + y

2
+

b | x − y |
2

,

it is routine to check that

M0,r(M0,c,M0,d) = M0,p, where p = M0,r(c, d) =
c + d

2
+ r

| c − d |
2

(19)

Solving r = p and using Theorem 4, we get the desired result. �
Note that (19) above is nothing but [5, Exercise 3(b), page 253]. Also, the last

statement in Theorem 5 above says that if a = 0 then Ma,b⊗M−a,−b is the arithmetic
mean. This is indeed true for all a as the next theorem shows.

THEOREM 6. If (a, b) ∈ DM − {(0, 1), (0,−1)} , then

Ma,b ⊗M−a,−b = M0,0, the arithmetic mean.
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Proof. This follows again from Theorem 4 and the easily proved fact that

M0,0(Ma,b(x, y),M−a,−b(x, y)) = M0,0(x, y)

�

THEOREM 7. The only solutions of the functional equation

M−1,u(M−1,a,M−1,b) = M−1,v

are

(a = b = v) and (u, v) =

(√
2,

√
a2 + b2

2

)
.

Consequently, M−1,a ⊗M−1,b = M−1,v if and only if v =
√

2 and a2 + b2 = 4 .

Proof. Let A = a2, B = b2, U = u2, V = v2 . If

Q(x, y) = (M−1,u(M−1,a(x, y),M−1,b(x, y))2 − (M−1,v(x, y))2,

then direct calculations show that 16Q(x, y) = Q1 − Q2, where

Q1 = (AU + BU − 4V)(x2 + y2) − (2AU + 2BU − 8U − 8V + 16)xy

Q2 = 2(U − 2)
√

(A(x − y)2 + 4xy)(B(x − y)2 + 4xy)

and that
Q2

1 − Q2
2 = (x − y)2(c2(y2 + x2) + c1xy)

where

c2 = U2(A − B)2 − 8U(AV + BV − 2AB) + 16(V2 − AB)
c1 = 32(U − 2)(A + B − 2V) − 2c2

If Q = 0 , then c1 = c2 = 0 and either U = 2 or V = (A + B)/2 . Substituting
U = 2 in c2 results in 4(A + B− 2V)2 , and substituting V = (A + B)/2 in c2 results
in (U − 2)2(A − B)2 . Thus discarding the trivial case A = B , we see that Q = 0 if
and only if U = 2 and V = (A + B)/2 , as claimed. The last statement follows from
solving U = V . �

Note that the special case (a, b, v) = (0, 2,
√

2) of M−1,a ⊗ M−1,b = M−1,v is
nothing but [5, Exercise 4(d), pages 253-254].

We now turn to compounding within G . It follows from Theorem 4 above that the
compound of the arithmetic and harmonic means is the geometric mean, i.e.,

x + y
2

⊗ 2xy
x + y

=
√

xy (20)

This simple fact is an elegant illustration of [5, Exercise 6, page 278] which we adapt
as Theorem 8 for ease of reference.

THEOREM 8. Let μ and ν be homogeneous symmetric rational means. If μ ⊗ ν
is algebraic, then (μ ⊗ ν)j is a rational function for some integer j .
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As an illustration to Theorem 8, the following two theorems explore the conditions
on μ, ν ∈ G under which μ ⊗ ν ∈ G ∪M .

THEOREM 9. The only solutions of the functional equation Ga(Gb, Gc) = Gt are

(b = c = t) and

(
b + c = 2t and a =

1
2

)
.

Consequently, Gb ⊗ Gc = Ga if and only if b + c = 2a = 1.

Proof. If Q(x, y) = Ga(Gb(x, y), Gc(x, y))−Gt(x, y) , then direct calculations show
that

(x + y)((b + c)(x − y)2 + 4xy)Q(x, y)
(x − y)2

= c1x
2 + c2xy + c1y

2

where
c1 = a(b − c)2 + 2bc− t(b + c) , c2 = 2(b + c − 2t) − 2c1.

Therefore c1 = c2 = 0 if and only if b + c = 2t and (2a − 1)(b − c)2 = 0 . Thus
either (b = c = t ) or (a = 1/2 and t = (b + c)/2 ), as claimed. The last statement
follows from solving a = t . �

Note that the special case (b, c, a) = (1/4, 3/4, 1/2) of Gb ⊗ Gc = Ga is nothing
but [5, Exercise 4(e), pages 253-254].

THEOREM 10. The only solutions of the functional equation

M−1,u(Gb, Gc) = M−1,v

are

u2 =
−(2b − 1)(2c − 1)

(c − b)2
and v2 = 2b + 2c − 1.

Consequently, Gb ⊗ Gc = M−1,u if and only if

2b2 + 2c2 + b + c − 4bc = 1 and u2 = 2b + 2c − 1.

Proof. If Q(x, y) = (M−1,u(Gb, Gc))2 − (M−1,v)2 , then direct calculations show
that

Q(x, y) =
(x − y)2

4(x + y)2
(c2y

2 + 2c1xy + c2x
2),

where
c2 = u2(b − c)2 + 4bc− v2, c1 = 4b + 4c − 2 − 2v2 − c2.

Therefore c1 = c2 = 0 if and only if u and v are as given above. The last statement
follows from solving u = v . �

The last statements of Theorems 10 and 9 can be viewed as sources of examples
that illustrate Theorem 8. We restate them as follows. Let P be the part of the parabola
defined by 2b2+2c2+b+c−4bc = 1 (or equivalently by (b+c)+2(b−c)2 = 1 ) that
lies in the first quadrant of the (b, c) -plane. This parabola has its vertex at (1/2, 1/2) , its
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axis on the line b = c and it intercepts the b− and c− axes at (1/2, 0) and (0, 1/2) .
Let L be the part of its tangent line at the vertex (1/2, 1/2) that lies in the first
quadrant; i.e., L is given by a + b = 1, 0 � a, b � 1 . Then Gb ⊗ Gc = M−1,

√
2b+2c−1

if (b, c) ∈ P and is the arithmetic mean G1/2 if (b, c) ∈ L . In detail, we have

b(x − y)2 + 2xy
x + y

⊗ c(x − y)2 + 2xy
x + y

=

{ √
(2b + 2c − 1)((x − y)/2)2 + xy if (b, c) ∈ P,

(x + y)/2 if (b, c) ∈ L,

(21)

ofwhich (20) is the special case (b, c) = (1/2, 0) . One wonderswhether (21) (together
with the trivial case b = c ) covers all the algebraic means that are compounds of
elements in G .

We will not discuss compoundability in N , as this may unduly increase the length
of this article and as we expect this issue to be computationally more involved.

5. Behavior under equal increments of the variables

Given a mean μ , the family {μt : t � 0} of means defined by

μt(x, y) = μ(x + t, y + t) − t

was introduced in [21] and was further investigated in [8], [2] and [3] where it was shown
that

lim
t−→∞μt(x, y) =

x + y
2

(22)

under very mild conditions on μ . Our family {M0,b : −1 � b � 1} of root-quadratic
means supplies examples of means that do not have the pleasant property (22). In fact,
if μ = M0,b , then it is obvious that

μt(x, y) =
x + y

2
+

b | x − y |
2

∀ t (23)

On the other hand, if μ = Ma,b and a �= 0 , then μ(x, y) is differentiable at (x, y) =
(1, 1) and it follows from [2, Proposition 4] or [3, Proposition 2] that (22) holds. In this
case, it is direct to see that μt increases or decreases, as a function of t , according as
a + b is less or greater than 0.

If μ = Gb, b ∈ [0, 1] , then it is again easy to see that (22) holds and that μt

increases or decreases according as b is less or greater than 0.
If μ = Nb,c , then although (22) again holds, the convergence in (22) is not

necessarily monotone. In fact, direct calculations show that

(μt − μs)(1, y) =
−b(t − s)(y − 1)2

((y − 1)2 + 2c(1 + t)(y + t))((y − 1)2 + 2c(1 + s)(y + s))
H

where
H = (c − 1)y2 + (2 + ct + cs)y + (c + ct + cs + 2cst − 1).
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If c � 1 , then H � 0 for all y � 0 and μt increases or decreases with t according as
b is less or greater than 0. However, if c < 1 , then the sum of the roots of H is positive
and therefore at least one of the roots is positive. Also, H cannot have a multiple root
since its discriminant is 0 if and only if

c =
−8(t + 1)(s + 1)

(t − s)2 − 4(t + 1)(s + 1)
.

The assumption c > 0 implies that (t − s)2 − 4(t + 1)(s + 1) < 0 and the assumption
that c < 1 would then lead to the contradiction (t − s)2 + 4(t + 1)(s + 1) < 0 . Thus
H has two distinct roots of which at least one is positive. Therefore (μt − μs)(1, y)
changes sign as y crosses that positive root, and μs and μt are not comparable.

We summarize all of this in the following theorem, in which the subscripts of G ,
M and N are understood to take values in the respective domains.

THEOREM 11.
(i) If μ = Gb , then (22) holds and the convergence is monotone increasing or

decreasing according as b < 0 or b > 0 .
(ii) If μ = M0,b , then (22) does not hold, and (23) holds instead. If

μ = Ma,b, a �= 0 , then (22) holds and the convergence is monotone increasing
or decreasing according as a + b < 0 or a + b > 0 .

(iii) If μ = Nb,c , then (22) holds. If c � 1 , then the convergence in (22) is
monotone increasing or decreasing according as b < 0 or b > 0 . If c < 1 and
b �= 0 , then no two elements in the family {μt : t � 0} are comparable.

6. Concluding remarks

It is worth remarking that for root-quadratic and rational-quadratic means, inter-
nality at the two test pairs (1, 1) and (1, 0) was sufficient to ensure internality at
all (x, y) with x, y � 0 . This is not so for rational-cubic means where it is easy
to see that if C(x, y) and Q(x, y) are symmetric forms of degrees 3 and 2, then
μ(x, y) := C(x, y)/Q(x, y) is internal at the test pairs (1, 1) and (1, 0) if and only if
μ(x, y) has the form

x + y
2

(1 + b)(x − y)2 + 2cxy
(x − y)2 + 2cxy

with −1 � b � 1 and c � 0 . However, Theorem 1 says that the extra condition that
(b, c) do not lie below the circle b2 + (c − 1)2 = 1 is needed to guarantee internality
of μ(x, y) for all x, y � 0 . It would be interesting to develop methods by which a
minimal number of test pairs can be generated for each given family. In this regard,
we mention a similar situation in the theory of positive semi-definite symmetric forms,
where a cubic such form C(x1, · · · , xn) is known to take non-negative values for all
xi � 0 if and only if it does so on the test tuples whose coordinates consist of 0’s and
1’s [10], while the same does not hold for quartics even when the number of variables is
3; see [25] for a symmetric quartic in three variables that is positive at each of the points
(1, 1, 1) , (1, 1, 0) , (1, 0, 0) and (1, 3, 5) but negative at (1, 1, 3) .
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We also remark that according to Theorem 8, the compound μ⊗ ν of two rational
means (if it exists) is either transcendental or else a j -th root of a rational function for
some j . Although Theorems 9 and 10 (as exhibited in (21)) provide an illustration of
this fact, (21) does not claim to give all algebraic means that arise as compounds of
rational-quadratic means. For this to be achieved, it seems natural to first find an upper
bound on the number j for which (μ ⊗ ν)j is rational in terms of the degrees of μ and
ν .

Regarding (22), the means discussed in the literature all seem to have the property
that convergence in (22) is monotone; see [2], [3], [8], [18] and [21]. On the other
hand, the means μ = Nb,c, c < 1, provide opposite extreme examples where no two
elements of {μt : t � 0} are comparable. It would be interesting to explore necessary
and sufficient conditions on a given mean μ under which μt is monotone (with t ), and
conditions under which no two elements of the family {μt : t � 0} are comparable.

Finally, we mention that the questions raised in this article with regards to means
of two positive numbers have their natural analogues for multi-dimensional means.
Answering these questions for several variables involves more technicalities and gives
rise to subtle challenges that are currently being taken up by the authors. In particular,
a generalization of Theorem 1 (i) to all dimensions has already appeared in [1].
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