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WEIGHTED INEQUALITIES FOR HARMONIC MEANS

P. ORTEGA SALVADOR AND C. RAMÍREZ TORREBLANCA

(communicated by L. Pick)

Abstract. Wecharacterize the weighted weak and strong type (p, q) inequalities for the harmonic
averaging operator

Tf (x) =
x∫ x

0
1
f

in the cases 0 < p � q < ∞ and 0 < q < p < ∞ .

1. Introduction

The heart of the theory of Hardy’s inequalities is the characterization of the pairs
of weights (w, v) such that

(∫ ∞

0

(
1
x

∫ x

0
f

)q

w(x)dx

) 1
q

� C

(∫ ∞

0
f pv

) 1
p

(1.1)

holds for all f � 0 .
This problem was solved by Bradley ([3]) in the case 1 � p � q < ∞ , by

Maz’ja ([14]) in the case 1 � q < p < ∞ and by Sinnamon ([20]) in the case
0 < q < 1, p > 1 .

Inequality (1.1) is the weighted strong type (p, q) inequality for the (arithmetic)
averaging operator Pf (x) = 1

x

∫ x
0 f .

The theory of Hardy’s inequalities has developed following many directions (see
[8] and [16]). Among all of them, we will fix our attention to the study of weighted
inequalities for other kind of means different from the arithmetic one. In this sense,
Heinig, Kerman and Krbec ([7]), Opic and Gurka ([15]) and Pick and Opic ([17]) have
characterized the weighted strong type (p, q) inequalities for the geometric averag-
ing operator Gf (x) = exp

(
1
x

∫ x
0 log f

)
. More recently, Jain, Persson and Wedestig

([9]) have studied weighted inequalities for power means Pα f (x) =
(

1
x

∫ x
0 f α

) 1
α with

positive α .
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This paper deals with harmonic means. If f is a positive function defined on
(0, A) (A � ∞) , the harmonic mean of f in the interval (0, x) is the number

Hf (x) =
x∫ x
0

1
f

.

Extensive information about harmonic means and their relationships with arith-
metic and geometric means can be found in the books [4] and [5].

We will characterize the pairs of weights (w, v) such that

(∫ A

0
Hf (x)qw(x)dx

) 1
q

� C

(∫ A

0
f pv

) 1
p

(1.2)

holds for all positive functions f in the cases 0 < p � q < ∞ and 0 < q < p < ∞ .
We will also work with weighted weak type (p, q) inequalities, i.e., inequalities

of the form

(w({x ∈ (0, A) : Hf (x) > λ})) 1
q � C

λ

(∫ A

0
f pv

) 1
p

, (1.3)

which were studied for Hardy-type operators in [1], [11] and [12].
The techniques we are going to apply have worked successfully in the study of

Hardy type inequalities ([11], [12]) and in weighted inequalities for other one-sided
operators ([10], [13]). We will also use some ideas from Cruz-Uribe’s, Neugebauer’s
and Olesen’s paper about the one-sided minimal operator ([6]). In fact, this minimal
operator is very closely related to the maximal operator of harmonic means.

The paper is organized as follows. Section 2 is devoted to the weak type inequal-
ities. In section 3, we prove the theorems about the strong type inequalities. A final
remark about power means Pα with negative exponents is also included.

All along the paper, the letter C will design a positive constant, not necessarily
the same at each occurrence, and w , v will design positive measurable functions on
(0, A) . Finally, we will assume the conventions 1

∞ = 0 and 1
0 = ∞ .

2. Weak type inequalities

The weighted weak type inequality (1.3) is equivalent to

(
w({x ∈ (0, A) :

1
x

∫ x

0
f <

1
λ
})
) 1

q

� C
λ

(∫ A

0

v
f p

) 1
p

.

In fact, we will work in a more general context. We will consider a positive function g
and characterize the inequality

(
w({x ∈ (0, A) : g(x)

∫ x

0
f <

1
λ
})
) 1

q

� C
λ

(∫ A

0

v
f p

) 1
p

. (2.1)
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In the statements of the theorems, we refer to the spaces Ls,∞(w) and their norms. By
Ls,∞(w) we denote the set of the functions f such that ‖f ‖s,∞;w < ∞ , where

‖f ‖s,∞;w = sup
λ>0

λ

(∫
{x∈(0,A):|f (x)|>λ}

w

) 1
s

.

Our first theorem deals with the case 0 < p � q < ∞ .

THEOREM 1. Let 0 < p � q < ∞ and let g be a positive function. Then there
exists C > 0 such that (2.1) holds for all positive functions f on (0, A) if and only if

D = sup
0<b<A

‖1
g
χ(0,b)‖q,∞;w

(∫ b

0
v

1
p+1

)− p+1
p

< ∞. (2.2)

Proof. Suppose that condition (2.2) holds. Let f be a positive function, λ > 0
and Oλ = {x ∈ (0, A) : g(x)

∫ x
0 f < 1

λ } . If
∫ A

0
v
f p = ∞ , there is nothing to

prove. Suppose, therefore, that
∫ A

0
v
f p < ∞ . Suppose also that

∫ A
0 v

1
p+1 < ∞ . Let

us consider the sequence {xi} defined by x0 = A and
∫ xi+1

0 v
1

p+1 =
∫ xi

xi+1
v

1
p+1 . Let

Ei = (xi+1, xi) ∩ Oλ . Then, if x ∈ Ei we have

1
λ

> g(x)
∫ x

0
f > g(x)

∫ xi+1

0
f > g(x)

∫ xi+1

xi+2

f .

Therefore, 1
λ � (supz∈Ei

g(z))
∫ xi+1

xi+2
f . Now, Hölder inequality with exponents p + 1

and p+1
p gives

1
λ

� (sup
z∈Ei

g(z))
(∫ xi+1

xi+2

v
1

p+1

) p+1
p
(∫ xi+1

xi+2

v
f p

)−1
p

,

or equivalently,

1 � 1
λ

( inf
z∈Ei

1
g(z)

)
(∫ xi+1

xi+2

v
1

p+1

)− p+1
p
(∫ xi+1

xi+2

v
f p

) 1
p

.

Multiplying both sides of the above inequality by
(∫

Ei
w
) 1

q
and taking into account the

definition of the sequence {xi} , we obtain

(∫
Ei

w

) 1
q

� 1
λ

( inf
z∈Ei

1
g(z)

)
(∫

Ei

w

) 1
q
(∫ xi+1

xi+2

v
1

p+1

)− p+1
p
(∫ xi+1

xi+2

v
f p

) 1
p

� 1
λ
‖1
g
χ(xi+1,xi)‖q,∞;w

(∫ xi+1

xi+2

v
1

p+1

)− p+1
p
(∫ xi+1

xi+2

v
f p

) 1
p

� C
λ
‖1
g
χ(0,xi)‖q,∞;w

(∫ xi

0
v

1
p+1

)− p+1
p
(∫ xi+1

xi+2

v
f p

) 1
p

.
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Applying condition (2.2) and raising to the q -th power, we have

∫
Ei

w � C
λ q

‖1
g
χ(0,xi)‖q

q,∞;w

(∫ xi

0
v

1
p+1

)− (p+1)q
p
(∫ xi+1

xi+2

v
f p

) q
p

� C
λ q

(∫ xi+1

xi+2

v
f p

) q
p

.

Summing up in i and taking into account that p � q , we obtain the weak type inequality.

Let us suppose now that
∫ A

0 v
1

p+1 = ∞ . If
∫ x

0 v
1

p+1 = ∞ for all x ∈ (0, A) , then∫ x
0 f = ∞ for all x , since

∫ x
0 v

1
p+1 �

(∫ x
0

v
f p

) 1
p+1 (∫ x

0 f
) p

p+1 . This implies that Oλ = ∅
for all λ > 0 and the weak type inequality is trivial.

If
∫ x0

0 v
1

p+1 < ∞ for some x0 ∈ (0, A) , then there exists A0 ∈ (0, A] such that∫ x
0 v

1
p+1 < ∞ for all x ∈ (0, A0) and

∫ x
0 v

1
p+1 = ∞ for all x > A0 . Then

∫ x
0 f = ∞ if

x > A0 and

{x ∈ (0, A) : g(x)
∫ x

0
f <

1
λ
} = {x ∈ (0, A0) : g(x)

∫ x

0
f <

1
λ
}.

Let {an} be a strictly increasing sequence with limit A0 . Since condition (2.2) holds

in (0, an) for all n and
∫ an

0 v
1

p+1 < ∞ , we have

(
w({x ∈ (0, an) : g(x)

∫ x

0
f <

1
λ
})
) 1

q

� C
λ

(∫ an

0

v
f p

) 1
p

for all n . Then the monotone convergence theorem gives us the weak type inequality
(2.1).

Conversely, suppose that the weak type inequality (2.1) holds. Let b with 0 <

b < A , f = v
1

p+1

χ(0,b)
and α > 0 . If z ∈ (0, b) and 1

g(z) > α , then

g(z)
∫ z

0
f � g(z)

∫ b

0
f = g(z)

∫ b

0
v

1
p+1 <

1
α

∫ b

0
v

1
p+1 .

This shows that

{z ∈ (0, b) :
1

g(z)
> α} ⊂ {z ∈ (0, A) : g(z)

∫ z

0
f <

1
α

∫ b

0
v

1
p+1 }.

Then, by the weak type inequality,

(∫
{z∈(0,b): 1

g(z) >α}
w

) 1
q

�
(∫

{z∈(0,A):g(z)
∫ z

0
f < 1

α
∫ b

0
v

1
p+1 }

w

) 1
q

� C
α

(∫ b

0
v

1
p+1

) p+1
p

.
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Since this inequality holds for all positive α , we have

‖1
g
χ(0,b)‖q,∞;w � C

(∫ b

0
v

1
p+1

) p+1
p

,

and we are done.

The next theorem characterizes (2.1) in the case 0 < q < p < ∞ . In this case we
will suppose that g is monotone.

THEOREM 2. Let 0 < q < p < ∞ and 1
r = 1

q − 1
p . Let g be a positive monotone

function. Then, there exists C > 0 such that inequality (2.1) holds for all positive
functions f on (0, A) if and only if the function Φ defined on (0, A) by

Φ(x) = sup
0<a<x<b<A

1
sup

y∈(a,b)
g(y)

(∫ b

a
w

) 1
p
(∫ b

0
v

1
p+1

)− p+1
p

belongs to Lr,∞(w) .

Proof. First let suppose that inequality (2.1) holds. We have to show that

sup
λ>0

λ

(∫
{x∈(0,A):Φ(x)>λ}

w

) 1
r

< ∞.

Let λ > 0 and Sλ = {x ∈ (0, A) : Φ(x) > λ} . If z ∈ Sλ , then there exist az , bz with
0 < az < z < bz < A such that

1
sup

y∈(az,bz)
g(y)

(∫ bz

az

w

) 1
p
(∫ bz

0
v

1
p+1

)− p+1
p

> λ . (2 .3)

Let K be a compact subset of Sλ . Then there exist (az1 , bz1) , (az2 , bz2) ,..., (azn , bzn)
which cover K . We may suppose

∑
χ(azj ,bzj )

� 2χ∪(azj ,bzj )
. Let f be the function

defined by

f (x) =

⎛
⎝ n∑

j=1

χ(0,bzj )
(x)( sup

y∈(azj ,bzj )
g(y))p

(∫ bzj

0
v

1
p+1

)p

v−
p

p+1 (x)

⎞
⎠

−1
p

.

If z ∈ (azj , bzj) , then

g(z)
∫ z

0
f � g(z)

∫ bzj

0
f � g(z)( sup

y∈(azj ,bzj )
g(y))−1

(∫ bzj

0
v

1
p+1

)−1 ∫ bzj

0
v

1
p+1 � 1.
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This shows that ∪(azj , bzj) ⊂ {x ∈ (0, A) : g(x)
∫ x

0 f � 1} . Then, (2.1) gives

∫
∪n

j=1
(azj ,bzj )

w � C

(∫ A

0

v
f p

) q
p

= C

⎛
⎝ n∑

j=1

( sup
y∈(azj ,bzj )

g(y))p

(∫ bzj

0
v

1
p+1

)p+1
⎞
⎠

q
p

. (2.4)

Now, since (2.3) holds, (2.4) is less than

C

⎛
⎝ n∑

j=1

1
λ p

∫ bzj

azj

w

⎞
⎠

q
p

=
C
λ q

⎛
⎝ n∑

j=1

∫ bzj

azj

w

⎞
⎠

q
p

� C
λ q

(∫
∪n

j=1
(azj ,bzj )

w

) q
p

.

We have proved ∫
∪n

j=1
(azj ,bzj )

w � C
λ q

(∫
∪n

j=1
(azj ,bzj )

w

) q
p

,

which is equivalent to

λ

(∫
∪n

j=1
(azj ,bzj )

w

) 1
r

� C.

Since K ⊂ ∪n
j=1(azj , bzj) , we have

λ
(∫

K
w

) 1
r

� C.

This inequality holds for all compact subsets K of Sλ and all λ > 0 . Then

sup
λ>0

λ

(∫
Sλ

w

) 1
r

� C,

which means that Φ ∈ Lr,∞(w) .
Conversely, let us suppose that Φ ∈ Lr,∞(w) . Let f > 0 such that

∫ A
0

v
f p = 1 ,

let λ > 0 and Oλ = {x ∈ (0, A) : g(x)
∫ x

0 f < 1
λ } . Then∫

Oλ

w =
∫

Oλ∩{x∈(0,A):Φ(x)>λ
q
r }

w +
∫

Oλ∩{x∈(0,A):Φ(x)�λ
q
r }

w. (2.5)

The first summand in (2.5) is, by the definition of ‖.‖r,∞;w , less than
‖Φ‖r

r,∞;w
λq . In

order to estimate the second summand in (2.5), we may suppose that
∫ A

0 v
1

p+1 < ∞ .

Let us consider the sequence {xi} defined by x0 = A and
∫ xi+1

0 v
1

p+1 =
∫ xi

xi+1
v

1
p+1 . Let

Ei = (xi+1, xi) ∩ Oλ ∩ {x ∈ (0, A) : Φ(x) � λ
q
r } , αi = inf Ei and βi = supEi .

Suppose that
∫

Ei
w > 0 . Then, if x ∈ Ei we have

1
λ

> g(x)
∫ x

0
f > g(x)

∫ xi+1

0
f > g(x)

∫ xi+1

xi+2

f .
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Therefore, 1
λ � (supz∈Ei

g(z))
∫ xi+1

xi+2
f , and this inequality implies, by the monotonicity

of g , that
1
λ

� ( sup
z∈(αi,βi)

g(z))
∫ xi+1

xi+2

f . (2.6)

Then, (2.6), Hölder inequality with exponents p + 1 and p+1
p and the choice of the

sequence {xi} yield

1
λ

� ( sup
z∈(αi,βi)

g(z))
(∫ xi+1

xi+2

v
f p

)−1
p
(∫ xi+1

xi+2

v
1

p+1

) p+1
p

=
1

4
p+1
p

( sup
z∈(αi,βi)

g(z))
(∫ xi+1

xi+2

v
f p

)−1
p
(∫ xi

0
v

1
p+1

) p+1
p

,

which is equivalent to

1 � C
λ

1
sup

z∈(αi,βi)
g(z)

(∫ xi

0
v

1
p+1

)− p+1
p
(∫ xi+1

xi+2

v
f p

) 1
p

.

Multiplying both sides of the above inequality by
(∫ βi

αi
w
) 1

p
and taking into account

that βi � xi , we obtain

(∫ βi

αi

w

) 1
p

� C
λ sup

z∈(αi,βi)
g(z)

(∫ βi
αi

w
) 1

p

(∫ βi
0 v

1
p+1

) p+1
p

(∫ xi+1

xi+2

v
f p

) 1
p

. (2.7)

Now, we observe that

1
sup

z∈(αi,βi)
g(z)

(∫ βi

αi

w

) 1
p
(∫ βi

0
v

1
p+1

)− p+1
p

� Φ(y)

for almost every y ∈ Ei , and since Φ(y) � λ
q
r for all y ∈ Ei , we have

1
sup

z∈(αi,βi)
g(z)

(∫ βi

αi

w

) 1
p
(∫ βi

0
v

1
p+1

)− p+1
p

� λ
q
r .

Therefore, from (2.7) we obtain that∫ βi

αi

w � C
λ q

∫ xi+1

xi+2

v
f p

.

Since Ei ⊂ (αi, βi) and
∫ A

0
v
f p = 1 , we have∫

Ei

w � C
λ q

.
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It is clear that this inequality also holds if
∫

Ei
w = 0 . Then, summing up in i we obtain∫

Oλ∩{x∈(0,A):Ψ(x)�λ
q
r }

w � C
λ q

and we are done.

3. Strong type inequalities

The strong type inequality (1.2) is equivalent to

(∫ A

0

(
x∫ x
0 f

)q

w(x)dx

) 1
q

� C

(∫ A

0

v
f p

) 1
p

. (3.1)

The following theorem characterizes (3.1) in the case 0 < p � q < ∞ .

THEOREM 3. Let 0 < p � q < ∞ . Then there exists C > 0 such that (3.1) holds
for all positive functions f on (0, A) if and only if

B = sup
0<b<A

(∫ b

0
xqw(x)dx

) 1
q
(∫ b

0
v

1
p+1

)− p+1
p

< ∞. (3.2)

Proof. Let us suppose that condition (3.2) holds. Let f be a positive function.

As we have seen in theorems 1 and 2, we may suppose that
∫ A

0 v
1

p+1 < ∞ . Let {xi}
be the decreasing sequence defined by x0 = A and

∫ xi+1

0 v
1

p+1 =
∫ xi

xi+1
v

1
p+1 . Then, by

Hölder inequality with exponents p + 1 and p+1
p , the choice of the sequence {xi} and

condition (3.2), we have

∫ A

0

(
x∫ x
0 f

)q

w(x)dx =
∞∑
i=0

∫ xi

xi+1

(
x∫ x
0 f

)q

w(x)dx

�
∞∑
i=0

∫ xi

xi+1

(
x∫ xi+1

0 f

)q

w(x)dx �
∞∑
i=0

(∫ xi

0
xqw(x)dx

)(
1∫ xi+1

xi+2
f

)q

�
∞∑
i=0

(∫ xi

0
xqw(x)dx

)(∫ xi+1

xi+2

v
1

p+1

)− (p+1)q
p
(∫ xi+1

xi+2

v
f p

) q
p

= 4
(p+1)q

p

∞∑
i=0

(∫ xi

0
xqw(x)dx

)(∫ xi

0
v

1
p+1

)− (p+1)q
p
(∫ xi+1

xi+2

v
f p

) q
p

� CBq
∞∑
i=0

(∫ xi+1

xi+2

v
f p

) q
p

� C

(∫ A

0

v
f p

) q
p

.
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Conversely, let us suppose that inequality (3.1) holds. Let b be a positive number with

0 < b < A and let f = v
1

p+1

χ(0,b)
. On one hand we have

(∫ A

0

(
x∫ x
0 f

)q

w(x)dx

) 1
q

�
(∫ b

0

(
x∫ x
0 f

)q

w(x)dx

) 1
q

�
(∫ b

0

(
x∫ b

0 v
1

p+1

)q

w(x)dx

) 1
q

=

(∫ b
0 xqw(x)dx

) 1
q

∫ b
0 v

1
p+1

.

(3.3)

On the other hand, (∫ A

0

v
f p

) 1
p

=

(∫ b

0
v

1
p+1

) 1
p

. (3.4)

Finally, inequality (3.1) together with (3.3) and (3.4) give(∫ b

0
xqw(x)dx

) 1
q

� C

(∫ b

0
v

1
p+1

) p+1
p

,

which is condition (3.2).

Now we will deal with the case 0 < q < p < ∞ . We will give three conditions,
each one equivalent to (3.1). The first one is a Sawyer type condition ([19]), the second
one is a Maz’ja type condition ([14]) and the third one is a new type of condition which
has been recently studied by A. L. Bernardis, F. J. Martin-Reyes and P. Ortega [2] in
relation to the Hardy operator with weights. We get the connection between some of
the conditions by mean of an argument inspired in the paper [18] by Qinsheng Lai. The
result is the following one:

THEOREM 4. Let p , q , r ∈ R with 0 < q < p < ∞ and 1
r = 1

q − 1
p . The

following statements are equivalent:
(i) There exists C > 0 such that (3.1) holds for all positive functions f on

(0, A) .
(ii) There exists a positive constant C such that

∞∑
i=0

(∫ xi

xi+1

xqw(x)dx

) r
q
(∫ xi

0
v

1
p+1

)− (p+1)r
p

� C

for all decreasing sequences {xi} such that x0 = A and limi→∞ xi = 0 .
(iii) The function Θ defined on (0, A) by

Θ(x) =
(∫ x

0
tqw(t)dt

) 1
p
(∫ x

0
v

1
p+1

)− p+1
p
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belongs to Lr(xqw(x)) .
(iv) The function Ψ defined on (0, A) by

Ψ(x) = sup
0<x<b�A

(∫ b

0
tqw(t)dt

) 1
p
(∫ b

0
v

1
p+1

)− p+1
p

belongs to Lr(xqw(x)) .

Proof.
(i) ⇒ (ii)
Let us suppose that inequality (3.1) holds. Let {xi} be a decreasing sequence with

x0 = A and limi→∞ xi = 0 and let {ai} be a sequence of positive numbers. Let f be
the function defined by

f (x) = (
∞∑
i=0

χ(0,xi)a
p
i v

− p
p+1 )

−1
p .

Then, by (3.1),( ∞∑
i=0

ap
i

∫ xi

0
v

1
p+1

) 1
p

=
(∫ A

0

v
f p

) 1
p

� C

(∫ A

0

(
x∫ x
0 f

)q

w(x)dx

) 1
q

= C

( ∞∑
i=0

∫ xi

xi+1

(
x∫ x
0 f

)q

w(x)dx

) 1
q

� C

( ∞∑
i=0

(∫ xi

xi+1

xqw(x)dx

)
1(∫ xi

0 f
)q
) 1

q

� C

( ∞∑
i=0

aq
i

(∫ xi

xi+1

xqw(x)dx

)(∫ xi

0
v

1
p+1

)−q
) 1

q

= C

⎛
⎝ ∞∑

i=0

[
aq

i

(∫ xi

0
v

1
p+1

) q
p
](∫ xi

xi+1

xqw(x)dx

)(∫ xi

0
v

1
p+1

)−(p+1)q
p

⎞
⎠

1
q

.

Since this inequality holds for all sequences of positive numbers {ai} , we have that the
sequence ⎧⎨

⎩
(∫ xi

xi+1

xqw(x)dx

)(∫ xi

0
v

1
p+1

)−(p+1)q
p

⎫⎬
⎭

belongs to l
r
q with norm bounded by C , the constant of the strong type inequality. This

proves (ii) .
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(ii) ⇒ (iii)
We may suppose, without loss of generality, that

∫ A
0 xqw(x)dx < ∞ . Let {xi} be

the sequence defined by x0 = A and∫ xi+1

0
tqw(t)dt =

∫ xi

xi+1

tqw(t)dt.

It is clear that {xi} decreases and limi→∞ xi = 0 . Then, the definition of the sequence
{xi} and condition (ii) give us

‖Θ‖r
r;xqw(x) =

∫ A

0

(∫ x

0
tqw(t)dt

) r
p
(∫ x

0
v

1
p+1

)− (p+1)r
p

xqw(x)dx

=
∞∑
i=0

∫ xi

xi+1

(∫ x

0
tqw(t)dt

) r
p
(∫ x

0
v

1
p+1

)− (p+1)r
p

xqw(x)dx

�
∞∑
i=0

(∫ xi+1

0
v

1
p+1

)− (p+1)r
p
∫ xi

xi+1

(∫ x

0
tqw(t)dt

) r
p

xqw(x)dx

�
∞∑
i=0

(∫ xi+1

0
v

1
p+1

)− (p+1)r
p
(∫ xi

0
tqw(t)dt

) r
q

= 4
r
q

∞∑
i=0

(∫ xi+1

0
v

1
p+1

)− (p+1)r
p
(∫ xi+1

xi+2

tqw(t)dt

) r
q

� C.

(iii) ⇒ (iv)
It is clear that Ψ(x) � Θ(x) + Ψ̃(x) , where

Ψ̃(x) = sup
0<x<b�A

(∫ b

x
tqw(t)dt

) 1
p
(∫ b

0
v

1
p+1

)− p+1
p

.

Then, by (iii) , it will suffice to show that Ψ̃ ∈ Lr(xqw(x)) . In order to do this, we will
see that ∫

{y∈(0,A):Ψ̃(y)>λ}
xqw(x)dx � 2

∫
{y∈(0,A):Θ(y)>λ}

xqw(x)dx

for all positive λ .
Since

{y : Ψ̃(y) > λ} ⊂ {y : Θ(y) > λ} ∪ {y : Ψ̃(y) > λ � Θ(y)},
we have∫

{y:Ψ̃(y)>λ}
xqw(x)dx �

∫
{y:Θ(y)>λ}

xqw(x)dx +
∫
{y:Ψ̃(y)>λ�Θ(y)}

xqw(x)dx.

Therefore, again by (iii) , it suffices to show that if E = {y : Ψ̃(y) > λ � Θ(y)} , then∫
E

xqw(x)dx �
∫
{y:Θ(y)>λ}

xqw(x)dx. (3.5)
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Let z ∈ E . There exists b ∈ (z, A] such that

(∫ z
0 xqw(x)dx

) 1
p

(∫ z
0 v

1
p+1

) p+1
p

� λ <

(∫ b
z xqw(x)dx

) 1
p

(∫ b
0 v

1
p+1

) p+1
p

.

These inequalities imply ∫ z

0
xqw(x)dx �

∫ b

z
xqw(x)dx.

If (z, b) ⊂ {y : Θ(y) > λ} , then∫ z

0
xqw(x)dx �

∫
{y:Θ(y)>λ}

xqw(x)dx.

If F = {y ∈ (z, b) : Θ(y) � λ} is nonempty and y ∈ F , we have

(∫ y
0 xqw(x)dx

) 1
p

(∫ y
0 v

1
p+1

) p+1
p

� λ <

(∫ b
z xqw(x)dx

) 1
p

(∫ b
0 v

1
p+1

) p+1
p

,

which implies ∫ y

0
xqw(x)dx �

∫ b

z
xqw(x)dx.

It follows that ∫ z

0
xqw(x)dx �

∫ b

y
xqw(x)dx.

Since the above inequality holds for all y ∈ F , calling β = supF , we obtain∫ z

0
xqw(x)dx �

∫ b

β
xqw(x)dx �

∫
{y:Θ(y)>λ}

xqw(x)dx.

Anyway, we have shown∫ z

0
xqw(x)dx �

∫
{y:Θ(y)>λ}

xqw(x)dx.

Since this inequality holds for all z ∈ E , we get (3.5).
(iv) ⇒ (i)
Let f be a positive function and let {xi} be the sequence defined as in the previous

theorems. Then, working as above∫ A

0

(
x∫ x
0 f

)q

w(x)dx =
∞∑
i=0

∫ xi

xi+1

(
x∫ x
0 f

)q

w(x)dx

= 4
(p+1)q

p

∞∑
i=0

(∫ xi

xi+1

xqw(x)dx

)(∫ xi

0
v

1
p+1

)− (p+1)q
p
(∫ xi+1

xi+2

v
f p

) q
p

.
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If we apply now Hölder inequality for sums with exponents
r
q and p

q and then condition (iv) , the last term is less than

C

⎛
⎝ ∞∑

i=0

(∫ xi

xi+1

xqw(x)dx

) r
q
(∫ xi

0
v

1
p+1

)− (p+1)r
p

⎞
⎠

q
r ( ∞∑

i=0

∫ xi+1

xi+2

v
f p

) q
p

= C

⎛
⎝ ∞∑

i=0

∫ xi

xi+1

(∫ xi

0
tqw(t)dt

) r
p
(∫ xi

0
v

1
p+1

)− (p+1)r
p

xqw(x)dx

⎞
⎠

q
r (∫ A

0

v
f p

) q
p

� C

( ∞∑
i=0

∫ xi

xi+1

Ψ(x)rxqw(x)dx

) q
r (∫ A

0

v
f p

) q
p

= C‖Ψ‖q
r;xqw(x)

(∫ A

0

v
f p

) q
p

.

FINAL REMARK. It is clear that if α < 0 and Pα f (x) =
(

1
x

∫ x
0 f α

) 1
α , then

Pα f (x) = (H(f |α|)(x))
1

|α| , and, therefore, the characterizations of the weighted weak
and strong type inequalities for Pα reduce easily to those of H .
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