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GENERALIZATION AND SHARPNESS OF

FINSLER–HADWIGER’S INEQUALITY AND ITS APPLICATIONS

SHANHE WU

(communicated by V. Volenec)

Abstract. In this paper, the following generalization and sharpness of Finsler-Hadwiger’s in-
equality is established∑

aλ � 2λ 31 − λ
4 F

λ
2 +

∑
|a − b|λ +

∑m

n=1

∑
|an − bn|λ .

As consequence, an exponential Finsler-Hadwiger type inequality for tetrahedron is derived.

1. Introduction and main results

In what follows, for a given triangle ABC , we denote by a , b , c the lengths of its
sides, F denotes the area of triangle ABC . We will customarily use the symbol of cyclic
sum such as

∑
f (a) = f (a) + f (b) + f (c) ,

∑
f (a, b) = f (a, b) + f (b, c) + f (c, a) .

In 1937, Finsler and Hadwiger presented an important geometric inequality related
to the sides and the area of a triangle (see [1]), as follows

∑
a2 � 4

√
3F +

∑
(a − b)2. (1)

Inequality (1) is known in the literature as Finsler-Hadwiger’s inequality. This
celebrated inequality has motivated a large number of research papers involving its new
proofs, various generalizations, analogues and applications etc.(see [2–4] and references
therein). The purpose of this paper is to establish a new generalization and sharpness of
Finsler-Hadwiger’s inequality. In Section 2, the obtained result will be used to establish
an exponential Finsler-Hadwiger type inequality for tetrahedron.

Our main result is stated in the following Theorem:

THEOREM 1. Let m be a natural number and let λ be a real number, and λ � 2 .
Then for any triangle ABC we have∑

aλ � 2λ31 − λ
4 F

λ
2 +

∑
|a − b|λ +

∑m

n=1

∑
|an − bn|λ , (2)
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where an, bn, cn are defined by a0 = a, b0 = b, c0 = c , satisfying

an =
√

an−1(bn−1 + cn−1 − an−1), bn =
√

bn−1(cn−1 + an−1 − bn−1),

cn =
√

cn−1(an−1 + bn−1 − cn−1), n = 1, 2, 3, · · · , m.

The equality holds in (2) if and only if the triangle is equilateral.

REMARK. The Lemma 3 below will reveals that an, bn, cn (n = 1, 2, 3, · · · , m)
are exactly the lengths of sides of a triangle.

LEMMA 1. (Power means inequality [5,pp. 26]) Let x1, x2, · · · , xn be nonnegative
numbers, and p � 1 . Then

n∑
i=1

xp
i � n1− p(

n∑
i=1

xi )p, (3)

with equality holding if and only if x1 = x2 = · · · = xn or p = 1.

(x1 + x2)p � xp
1 + xp

2, (4)

with equality holding if and only if x1 = 0 or x2 = 0 or p = 1 .

LEMMA 2. Let λ be real numbers, and λ � 2 . Then for any triangle ABC we
have ∑

aλ �
∑

|a − b|λ +
∑

[
√

a(b + c − a) ]λ , (5)

with equality holding if and only if the triangle is equilateral, or λ = 2.

Proof. Using Lemma 1, it follows that∑
aλ =

∑
[(b − c)2 + (c + a − b)(a + b − c)]

λ
2

�
∑

[|b − c|λ +(c + a − b)
λ
2 (a + b − c)

λ
2 ]

=
∑

|b − c|λ +
∑

(c + a − b)
λ
2 (a + b − c)

λ
2

=
∑

|b − c|λ +
1
2

∑
(b + c − a)

λ
2 [(c + a − b)

λ
2 + (a + b − c)

λ
2 ]

�
∑

|b − c|λ +2−
λ
2

∑
(b + c − a)

λ
2 (c + a − b + a + b − c)

λ
2

=
∑

|a − b|λ +
∑

[
√

a(b + c − a) ]λ .

Thus ∑
aλ �

∑
|a − b|λ +

∑
[
√

a(b + c − a) ]λ .

The condition of the equality in (5) follows immediately from inequalities (3) and
(4). The Lemma 2 is proved.

LEMMA 3. Let a , b , c be the lengths of sides of triangle ABC , and let

a1 =
√

a(b + c − a), b1 =
√

b(c + a − b), c1 =
√

c(a + b − c). (6)

Then there exists a triangle A1B1C1 with the lengths of sides a1, b1, c1 , and its
area F1 = F.
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Proof. From the assumption in (6), we have

(a1 + b1)2 = a(b + c − a) + b(c + a − b) + 2
√

ab(b + c − a)(c + a − b)
> a(b + c − a) + b(c + a − b)
= c(a + b − c) + (b + c − a)(c + a − b)

> c(a + b − c) = c2
1 .

This yields a1 + b1 > c1 . Similarly to the above, we can obtain b1 + c1 > a1 and
c1 + a1 > b1 . Consequently, there exists a triangle A1B1C1 with the sides a1, b1, c1 .
Now we calculate the area of the triangle A1B1C1 .

Utilizing the Heron’s formula for area of triangle, we get that

16F2
1 = 2

∑
a2

1b
2
1 −

∑
a4

1 = 2
∑

ab(b + c − a)(c + a − b) −
∑

[a(b + c − a)]2

= 2
∑

a2b2 −
∑

a4 = 16F2,

which leads to F1 = F . The proof of Lemma 3 is complete.

Proof of Theorem 1 . Define a sequence {an, bn, cn} by a , b , c , as follows

a0 = a, b0 = b, c0 = c,

an =
√

an−1(bn−1 + cn−1 − an−1), bn =
√

bn−1(cn−1 + an−1 − bn−1),

cn =
√

cn−1(an−1 + bn−1 − cn−1), n = 1, 2, 3, · · · , m + 1.

By Lemma 3, we find that there exists a sequence of triangle {�AnBnCn} (n =
1, 2, 3, · · · , m + 1) with the lengths of sides an, bn, cn (n = 1, 2, 3, · · · , m + 1) ,
and their areas satisfy that Fn = F for n = 1, 2, 3, · · · , m + 1 .

Applying Lemma 2 together with the above definition, we have∑
aλ �

∑
|a − b|λ +

∑
aλ1

�
∑

|a − b|λ +
∑

|a1 − b1|λ +
∑

aλ2

� · · · �
∑

|a − b|λ +
∑

|a1 − b1|λ + · · · +
∑

|am − bm|λ +
∑

aλm+1.

From Lemma 1 and the above inequality we obtain∑
aλ �

∑
|a − b|λ +

∑m

n=1

∑
|an − bn|

λ
+ 31 − λ

2 (
∑

a2
m+1)

λ
2 . (7)

On the other hand, in view of am+1, bm+1, cm+1 are the lengths of sides of triangle
Am+1Bm+1Cm+1 , it is known that the following Weitzenböeck’s inequality holds[1]:∑

a2
m+1 � 4

√
3Fm+1, (8)

with the equality if and only if the triangle is equilateral.
Combining inequalities (7), (8) and the relation Fm+1 = F , we deduce that∑

aλ �
∑

|a − b|λ +
∑m

n=1

∑
|an − bn|

λ
+ 2λ31 − λ

4 F
λ
2 . (9)
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The condition of equality in (2) follows immediately from (8) and Lemma 2. This
completes the proof of Theorem 1.

Putting m = 1 in Theorem 1, we obtain the following fresh inequality:

COROLLARY 1. Let λ be real numbers, and λ � 2 . Then for any triangle ABC
we have

∑
aλ � 2λ31 − λ

4 F
λ
2 +

∑
|a − b|λ +

∑∣∣∣√a(b + c − a) −
√

b(c + a − b)
∣∣∣λ .

(10)
In (10), the special case λ = 2 yields a remarkable sharpness of Finsler-

Hadwiger’s inequality, as follows

COROLLARY 2. For any triangle ABC , the following inequality holds∑
a2 � 4

√
3F +

∑
(a − b)2 +

∑
[
√

a(b + c − a) −
√

b(c + a − b) ]2. (11)

2. Application to the tetrahedron inequality

In this section we will establish an exponential Finsler-Hadwiger type inequality
for tetrahedron by using the above results.

For a tetrahedron A1A2A3A4 , we state that A1, A2, A3, A4 denote the vertexes of
tetrahedron, a1 , a2 , a3 , a4 , a5 , a6 denote the edge lengths of tetrahedron, V is the
volume of tetrahedron.

THEOREM 2. Let λ be real numbers, and λ � 2 , Then for any tetrahedron
A1A2A3A4 we have

6∑
i=1

aλi � 21 + λ
2 31 + λ

3 V
λ
3 + ( 2 + 6

λ
2 − 1 )− 1

∑
1 � i < j � 6

| ai − aj | λ , (12)

with equality holding if and only if the tetrahedron is regular.

Proof. In tetrahedron A1A2A3A4 , without loss of generality we may assume that
a1 = A1A2 , a2 = A1A3 , a3 = A1A4 , a4 = A3A4 , a5 = A2A4 , a6 = A2A3 , and
F1 , F2 , F3 , F4 denote respectively the areas of the faces A2A3A4 , A1A3A4 , A1A2A4 ,
A1A2A3 .

Applying Corollary 1 to triangle A2A3A4 , triangle A1A3A4 , triangle A1A2A4 and
triangle A1A2A3 respectively, we obtain

aλ4 + aλ5 + aλ6 � 2λ31− λ
4 F

λ
2
1 + |a4 − a5|λ + |a4 − a6|λ + |a5 − a6|λ ,

aλ2 + aλ3 + aλ4 � 2λ31− λ
4 F

λ
2
2 + |a2 − a3|λ + |a2 − a4|λ + |a3 − a4|λ ,

aλ1 + aλ3 + aλ5 � 2λ31− λ
4 F

λ
2
3 + |a1 − a3|λ + |a1 − a5|λ + |a3 − a5|λ ,

aλ1 + aλ2 + aλ6 � 2λ31− λ
4 F

λ
2
4 + |a1 − a2|λ + |a1 − a6|λ + |a2 − a6|λ .
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Summing both sides of the above inequalities respectively with a simple calculation,
we get

6∑
i=1

aλi � 2λ−131− λ
4

4∑
i=1

F
λ
2

i +
1
2

(− |a1−a4| λ − |a2−a5|λ − |a3−a6|λ +
∑

1�i <j�6

|ai−aj|λ ).

(13)
On the other hand, from Lemma 1 we have

|a4 − a5|λ + |a4 − a6|λ + |a5 − a6|λ + |a2 − a3|λ + |a2 − a4|λ + |a3 − a4|λ

+ |a1 − a3|λ + |a1 − a5|λ + |a3 − a5|λ + |a1 − a2|λ + |a1 − a6|λ + |a2 − a6|λ

� 121− λ
2 [(a4 − a5)2+ (a4 − a6)2+ (a5 − a6)2+ (a2 − a3)2+ (a2 − a4)2+ (a3 − a4)2

+ (a1 − a3)2 + (a1 − a5)2 + (a3 − a5)2 + (a1 − a2)2 + (a1 − a6)2 + (a2 − a6)2]
λ
2

= 121− λ
2 [2(a1 − a4)2 + 2(a2 − a5)2 + 2(a3 − a6)2

+ (a1 + a4 − a2 − a5)2 + (a1 + a4 − a3 − a6)2 + (a2 + a5 − a3 − a6)2]
λ
2

� 121− λ
2 2

λ
2 [(a1 − a4)2 + (a2 − a5)2 + (a3 − a6)2]

λ
2

� 121− λ
2 2

λ
2

(
|a1 − a4|λ + |a2 − a5|λ + |a3 − a6|λ

)
.

Further, the above inequality can be rewritten as∑
1�i<j�6

|ai − aj|λ � ( 1 + 121 − λ
2 2

λ
2 ) ( |a1 − a4| λ + |a2 − a5|λ + |a3 − a6|λ ) ,

that is

|a1 − a4|λ + |a2 − a5|λ + |a3 − a6|λ � ( 1 + 121 − λ
2 2

λ
2 )−1

∑
1�i<j�6

|ai − aj|λ .

(14)
We deduce from inequalities (13) and (14) that

6∑
i=1

aλi � 2λ − 131− λ
4

4∑
i=1

F
λ
2

i + ( 2 + 6
λ
2 − 1 )−1

∑
1�i<j�6

|ai − aj|λ . (15)

In addition, by the arithmetic-geometric mean inequality and the known inequality
for tetrahedron [6]:

4∏
i=1

Fi � 81 3√9
16

V
8
3 , (16)

with the equality if and only if the tetrahedron is regular.
We obtain that

4∑
i=1

F
λ
2
i �4

(
4∏

i=1

Fi

) λ
8

� 22 − λ
2 3

7λ
12 V

λ
3 . (17)
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Combining inequalities (15) and (17) leads to inequality (12) immediately. More-
over, Corollary 1 and inequality (16) show that the equality holds in (12) if and only if
the tetrahedron is regular. The proof of Theorem 2 is complete.

In particular, putting λ = 2 in Theorem 2, an interesting Finsler-Hadwiger type
inequality for tetrahedron is derived as follows

COROLLARY 3. For any tetrahedron A1A2A3A4 we have

6∑
i=1

a2
i � 12 3√9V

2
3 +

1
3

∑
1�i<j�6

(ai − aj)2. (18)
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