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THE BEST BOUNDS IN GAUTSCHI–KERSHAW INEQUALITIES

FENG QI, BAI-NI GUO AND CHAO-PING CHEN

(communicated by A. Laforgia)

Abstract. By employing the convolution theorem of Laplace transforms, some asymptotic formu-
las and integral representations of the gamma, psi and polygamma functions, and other analytic
techniques, this note provides an alternative proof of a monotonicity and convexity property by
N. Elezović, C. Giordano and J. Pečarić in [4] to establish the best bounds in Gautschi-Kershaw in-
equalities. Moreover, some (logarithmically) complete monotonicity results on functions related
to Gautschi-Kershaw inequalities are remarked.

1. Introduction

Let Γ denote the classical Euler gamma function and ψ = Γ′
Γ , the logarithmic

derivative of Γ . The first and second Gautschi-Kershaw inequalities state that

(
x +

s
2

)1−s

<
Γ(x + 1)
Γ(x + s)

<

(
x − 1

2
+

√
s +

1
4

)1−s

(1)

and

exp
[
(1 − s)ψ

(
x +

√
s
)]

<
Γ(x + 1)
Γ(x + s)

< exp

[
(1 − s)ψ

(
x +

s + 1
2

)]
. (2)

For more information on the background and history of these two inequalities, please
refer to [3, 4, 11].

Let s and t be nonnegative numbers and α = min{s, t} . For x ∈ (−α,∞) ,
define

Ψs,t(x) =

⎧⎪⎨
⎪⎩
[
Γ(x + t)
Γ(x + s)

]1/(t−s)

, s �= t,

ψ(x + s), s = t,

(3)

and

zs,t(x) =

{
Ψs,t(x) − x, s �= t,

eψ(x+s) − x, s = t.
(4)
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In order to establish the best bounds inGautschi-Kershaw inequalities aboveN. Ele-
zović, C. Giordano and J. Pečarić proved in [4] the followingmonotonicity and convexity
property of zs,t(x) .

THEOREM 1. The function zs,t(x) is either convex and decreasing for |t − s| < 1
or concave and increasing for |t − s| > 1 .

The purpose of this note is to provide an alternative proof of Theorem 1 by
using the convolution theorem of Laplace transforms, some asymptotic formulas and
integral representations of the gamma, psi and polygamma functions, and other analytic
techniques. Moreover, some (logarithmically) completely monotonicity results related
to Ψs,t(x) and Gautschi-Kershaw inequalities (1) and (2) are remarked.

2. Lemmas

Define

ga,b(u) =

⎧⎨
⎩

bu − au

u
, u �= 0

ln b − ln a, u = 0
(5)

and

qs,t(u) =

⎧⎨
⎩

e−su − e−tu

1 − e−u
, u �= 0

t − s, u = 0

(6)

in u ∈ R for b > a > 0 and t > s � 0 .

REMARK 1. The positive function ga,b(u) has been researched in [18] and was
applied in [7, 10, 12, 17] to prove the logarithmic convexity or the Schur convexity of
the extended mean values. For more detailed information about ga,b(u) , please refer to
the expository paper [13] and the references therein.

LEMMA 1. If t − s > 1 , then the positive function qs,t(u) defined by (6) is
logarithmically convex in (0,∞) and logarithmically concave in (−∞, 0) . If 0 <
t−s < 1 , the function qs,t(u) is logarithmically concave in (0,∞) and logarithmically
convex in (−∞, 0) .

Proof. It is clear that qs,t(u) > 0 . A simple computation shows

ge−t,e−s(u) = e−suges−t ,1(u),

qs,t(u) =
e−suges−t ,1(u)

ge−1,1(u)
,

[ln qs,t(u)]′ =
g′

es−t ,1(u)

ges−t ,1(u)
−

g′
e−1,1(u)

ge−1,1(u)
− s,

[ln qs,t(u)]′′ =
(g′es−t,1(u)

ges−t,1(u)

)′
−
(g′e−1,1(u)

ge−1,1(u)

)′
.

(7)
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Define

G(x, u) =
∂

∂u

(
1

gx,1(u)
∂gx,1(u)

∂u

)
=

∂2[ln gx,1(u)]
∂u2

(8)

for 1 > x > 0 and u ∈ R . By taking partial derivative with respect to x and changing
the order of partial derivatives between x and u , we obtain

∂G(x, u)
∂x

=
∂3[ln gx,1(u)]

∂x∂u2

=
∂2

∂u2

(
∂[ln gx,1(u)]

∂x

)

=
∂2

∂u2

(
uxu−1

xu − 1

)

=
xu−1[2 − 2xu + u(1 + xu) ln x] ln x

(xu − 1)3

=
xu−1u(1 + xu) ln x

(xu − 1)3

[
2(1 − xu)
u(1 + xu)

+ ln x

]
�
=

xu−1u(1 + xu) ln x
(xu − 1)3

[Φ(u, x) + ln x],

∂Φ(u, x)
∂u

=
2(x2u − 2uxu ln x − 1)

u2(1 + xu)2

�
=

2h(u, x)
u2(1 + xu)2

,

∂h(u, x)
∂u

= 2xu(xu − u ln x − 1) ln x

�
= 2xu�(u, x) ln x,

∂�(u, x)
∂u

= (xu − 1) ln x.

In the case of u � 0 , we have ∂�(u,x)
∂u � 0 and the function �(u, x) is increasing

with u . Since �(0, x) = 0 , we have �(u, x) � 0 , and ∂h(u,x)
∂u < 0 , then h(u, x)

decreases with u and h(u, x) � 0 . Therefore, the function Φ(u, x) decreases with u ,
which is equivalent to ∂G(x,u)

∂x � 0 . Hence, the function G(x, u) is decreasing with
x ∈ (0, 1) for u � 0 .

In the case of u < 0 , it is clear that ∂�(u,x)
∂u � 0 , �(u, x) decreases, �(u, x) < 0 ,

and ∂h(u,x)
∂u > 0 , then h(u, x) increases with u and h(u, x) < 0 . This means that

Φ(u, x) decreases with u and ∂G(x,u)
∂x > 0 , and then G(x, u) increases with x ∈ (0, 1)

for u < 0 .
Combination of (7) and (8) reveals

[ln qs,t(u)]′′ = G
(
es−t, u

)− G
(
e−1, u

)
, (9)

where u ∈ R and t > s � 0 .
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When t− s > 1 , it is ready that es−t < e−1 < 1 . If u > 0 , we have G
(
es−t, u

)
>

G
(
e−1, u

)
, [ln qs,t(u)]′′ > 0 , and the function qs,t(u) is logarithmically convex. If

u < 0 , then G
(
es−t, u

)
< G

(
e−1, u

)
, [ln qs,t(u)]′′ > 0 , and the function qs,t(u) is

logarithmically concave.
When 0 < t − s < 1 , it is clear that 1 > es−t > e−1 . If u > 0 , it follows that

G
(
es−t, u

)
< G

(
e−1, u

)
, [ln qs,t(u)]′′ < 0 , and the function qs,t(u) is logarithmically

concave. If u < 0 , then G
(
es−t, u

)
> G

(
e−1, u

)
, [ln qs,t(u)]′′ > 0 , and the function

qs,t(u) is logarithmically convex. The proof is complete.

LEMMA 2. ([1, 20, 21] and [6, p. 16]) The psi or digamma function ψ(x) and the
polygamma functions ψ (n)(x) can be expressed for x > 0 and n ∈ N as

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1 − e−t
dt, (10)

ψ (n)(x) = (−1)n+1
∫ ∞

0

tn

1 − e−t
e−xtdt. (11)

LEMMA 3. ([22]) Let f i(t) for i = 1, 2 be piecewise continuous in arbitrary finite
intervals included in (0,∞) , suppose there exist some constants Mi > 0 and ci � 0
such that |f i(t)| � Miecit for i = 1, 2 . Then∫ ∞

0

[ ∫ t

0
f 1(u)f 2(t − u)du

]
e−stdt =

∫ ∞

0
f 1(u)e−sudu

∫ ∞

0
f 2(v)e−svdv. (12)

REMARK 2. Lemma 3 is the convolution theorem of Laplace transforms. It can
be looked up in standard textbooks of integral transforms.

LEMMA 4. ([1, p. 257 and p. 259] or [20, 21]) Let a and b be two constants. Then

xb−aΓ(x + a)
Γ(x + b)

= 1 +
(a − b)(a + b − 1)

2x
+ O

(
1
x2

)
(13)

and

ψ(x) = ln x − 1
2x

+ O

(
1
x2

)
(14)

hold as x → ∞ .

3. Proof of Theorem 1

Firstly, let us consider the case of t > s � 0 . Direct computing yields

z′s,t(x) =
[zs,t(x) + x][ψ(x + t) − ψ(x + s)]

t − s
− 1, (15)

z′′s,t(x) =
zs,t(x) + x

t − s

{
[ψ(x + t) − ψ(x + s)]2

t − s
+ [ψ ′(x + t) − ψ ′(x + s)]

}
. (16)
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By using (10) and (11) and simplifying, it follows that

z′′s,t(x) =
zs,t(x) + x

t − s

{
1

t − s

[ ∫ ∞

0

e−(x+s)u − e−(x+t)u

1 − e−u
du

]2

−
∫ ∞

0

u[e−(x+s)u − e−(x+t)u]
1 − e−u

du

}

=
zs,t(x) + x

t − s

{
1

t − s

[ ∫ ∞

0
qs,t(u)e−xudu

]2

−
∫ ∞

0
uqs,t(u)e−xudu

}
,

(17)

where qs,t(u) is defined by (6).
Applying Lemma 3, the convolution theorem for Laplace transforms, to the square

term in the final line of (17) gives

(t − s)z′′s,t(x)
zs,t(x) + x

=
1

t − s

∫ ∞

0

[∫ u

0
qs,t(r)qs,t(u − r)dr

]
e−xudu −

∫ ∞

0
uqs,t(u)e−xudu

�
=
∫ ∞

0
ps,t(u)e−xudu,

where

ps,t(u) =
1

t − s

∫ u

0
qs,t(r)qs,t(u − r)dr − uqs,t(u). (18)

Let r = u
2 (1 + v) in (18). Then

ps,t(u) =
u

2(t − s)

∫ 1

−1
qs,t

(
u(1 + v)

2

)
qs,t

(
u(1 − v)

2

)
dv − uqs,t(u)

=
u

t − s

∫ 1

0
qs,t

(
u(1 + v)

2

)
qs,t

(
u(1 − v)

2

)
dv − uqs,t(u)

�
=

u
t − s

∫ 1

0
φu;s,t(v)dv − uqs,t(u),

(19)

Straightforwardly calculating shows

2
uφu;s,t(v)

dφu;s,t(v)
dv

=
q′s,t
(
u(1 + v)/2

)
qs,t

(
u(1 + v)/2

) − q′s,t
(
u(1 − v)/2

)
qs,t

(
u(1 − v)/2

) . (20)

Lemma 1 tells that the function qs,t(u) is logarithmically convex in (0,∞) for
t − s > 1 and logarithmically concave in (0,∞) for 0 < t − s < 1 , therefore, the

function
q′s,t(u)
qs,t(u) is increasing in (0,∞) for t − s > 1 and decreasing in (0,∞) for

0 < t − s < 1 . For t − s > 1 , we obtain dφu;s,t(v)
dv � 0 , and φu;s,t(v) is increasing with

v , so
φu;s,t(v) � φu;s,t(1) = qs,t(u)qs,t(0) = (t − s)qs,t(u),

this implies ps,t(u) � 0 , z′′s,t(x) � 0 , and the function zs,t(x) is concave. For 0 <
t − s < 1 , by a similar argument, it is deduced that the function zs,t(x) is convex.
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By (15) and Lemma 4, we have

lim
x→∞ z′s,t(x) = lim

x→∞

[(
Γ(x + t)
Γ(x + s)

)1/(t−s)ψ(x + t) − ψ(x + s)
t − s

]
− 1

= lim
x→∞

[(
xs−t Γ(x + t)

Γ(x + s)

)1/(t−s) x[ψ(x + t) − ψ(x + s)]
t − s

]
− 1

=
[

lim
x→∞

(
xs−t Γ(x + t)

Γ(x + s)

)]1/(t−s) lim
x→∞{x[ψ(x + t) − ψ(x + s)]}

t − s
− 1

=
{

lim
x→∞

[
1 +

(t − s)(s + t − 1)
2x

+ O

(
1
x2

)]}1/(t−s)

×

× 1
t − s

lim
x→∞

{
x ln

x + t
x + s

+
(t − s)x

2(x + t)(x + s)

+ x

[
O

(
1

(x + t)2

)
+ O

(
1

(x + s)2

)]}
− 1

=
1

t − s
lim

x→∞

(
x ln

x + t
x + s

)
− 1

= 0.

For t − s > 1 , z′′s,t(x) � 0 implies z′s,t(x) is decreasing, thus z′s,t(x) > 0 and zs,t(x) is
increasing. For 0 < t−s < 1 , z′′s,t(x) � 0 implies z′s,t(x) is increasing, thus z′s,t(x) < 0
and zs,t(x) is decreasing.

Secondly, let us further consider the cases of s > t � 0 . For s − t > 1 , the
function zs,t(x) = zt,s(x) is concave and increasing. For 0 < s − t < 1 , the function
zs,t(x) = zt,s(x) is convex and decreasing.

Summing up, the function zs,t(x) is convex and decreasing for |t − s| < 1 and
concave and increasing for |t − s| > 1 . The proof is complete.

4. Some remarks

A function f is said to be completely monotonic on an interval I if f has
derivatives of all orders on I and

(−1)nf (n)(x) � 0 (21)

for x ∈ I and n � 0 .
A positive function f is said to be logarithmically completely monotonic on an

interval I if its logarithm ln f satisfies

(−1)k[ln f (x)](k) � 0 (22)

for k ∈ N on I .
The notion “logarithmically completely monotonic function” was introduced by

F. Qi, B.-N. Guo and Ch.-P. Chen in [14, 15, 16]. The following very useful, important
and key proposition was proved in [2, 14, 15, 16], which tells us that the class of
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logarithmically completely monotonic functions is a subclass of completely monotonic
functions and then it is meaningful to study it.

PROPOSITION 1. ([2, 14, 15, 16]) A logarithmically completely monotonic function
is also completely monotonic.

Since z′′s,t(x) = Ψ′′
s,t(x) , then from Theorem 1, the following is immediately

obtained.

PROPOSITION 2. The function Ψs,t(x) is either convex for |t − s| < 1 or concave
for |t − s| > 1 .

REMARK 3. In the article [11], using some monotonicity results and inequalities of
the generalizedweighted mean values with two parameters in [5, 8, 9, 19], it was verified

that the functions
[
Γ(s)

/
Γ(r)

]1/(s−r)
,
[
Γ(s, x)

/
Γ(r, x)

]1/(s−r)
and

[
γ (s, x)

/
γ (r, x)

]1/(s−r)

are increasing in r > 0 , s > 0 and x > 0 , where Γ(s) , Γ(s, x) and γ (s, x) denote
the gamma and incomplete gamma functions with usual notation. From this, some
monotonicity results of functions involving the gamma or incomplete gamma functions
and inequalities relating to Gautschi-Kershaw inequalities are deduced or extended.

PROPOSITION 3. The function 1
Ψs,t(x)

is logarithmically completely monotonic.

Proof. Taking logarithm of Ψs,t(x) reveals

lnΨs,t(x) =
lnΓ(x + t) − lnΓ(x + s)

t − s

=
1

t − s

∫ t

s
ψ(x + u)du

(23)

and

[lnΨs,t(x)](k) =
1

t − s

∫ t

s
ψ (k)(x + u)du =

∫ 1

0
ψ (k)(x + (1 − u)s + ut

)
du (24)

for k ∈ N . It is clear that (−1)k[lnΨs,t(x)](k) � 0 , so, the reciprocal of Ψs,t(x) is
logarithmically completely monotonic.

Let s and t be nonnegative numbers and α = min{s, t} . For x ∈ (−α,∞) ,
define

μs,t(x) =
exp

[
ψ
(
x + s+t

2

)]
Ψs,t(x)

(25)

and

Zs,t(x) =

⎧⎨
⎩

exp

[
ψ
(

x +
s + t

2

)]
−Ψs,t(x), s �= t,

0, s = t.

(26)

The function Zs,t(x) can be rewritten as

Zs,t(x) = Ψs,t(x)
[
μs,t(x) − 1

]
. (27)

Using the terminology “logarithmically completely monotonic function” defined
as above, Theorem 5 on page 250 in [4] can be restated as follows.
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PROPOSITION 4. ([4, Theorem5])The function μs,t(x) is logarithmically completely
monotonic. Consequently,

exp

[
ψ
(

x +
s + t

2

)]
>

[
Γ(x + t)
Γ(x + s)

]1/(t−s)

. (28)

Proof. The function ν(x) in [4, Theorem 5] can be rewritten as

ν(x) = ln

{
exp

[
ψ
(

x +
s + t

2

)]}
− lnΨs,t(x) = lnμs,t(x). (29)

Since ν(x) is completely monotonic, then by definition of completely monotonic func-
tion we have

(−1)k[ν(x)](k) = (−1)k
[
lnμs,t(x)

](k) � 0 (30)

for all nonnegative integer k . The case of k = 0 means the inequality (28), the right
hand side of inequality (21) in [4, p. 247] with β = s+t

2 ; the case of k � 1 shows by
definition of logarithmically completely monotonic function that the function lnμs,t(x)
is logarithmically completely monotonic.

There are two open problems in [4]. The first one states that the function Zs,t(x)
is convex and decreasing. Although an affirmative or positive answer is not founded at
present, but there are several hints and clues to strongly support us to pose the following
more profound conjecture.

Open problem 1 .The function Zs,t(x) is completely monotonic.

In [4], as a corollary of Theorem 1 the following inequality was proved:

Ψs,t(x) � t − s
ψ(x + t) − ψ(x + s)

(31)

holds for |t − s| < 1 and with reversed sign if |t − s| > 1 .
Let s and t be nonnegativenumbers and α = min{s, t} . Inequality (31) remainds

us to define

Ps,t(x) = Ψs,t(x)
ψ(x + t) − ψ(x + s)

t − s
(32)

and
Qs,t(x) =

t − s
ψ(x + t) − ψ(x + s)

−Ψs,t(x) (33)

for x ∈ (−α,∞) and to pose the following

Open problem 2 .The functions Ps,t(x) and Qs,t(x) are completely monotonic.
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