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EXISTENCE OF TRIPLE POSITIVE SOLUTIONS FOR A

THIRD ORDER GENERALIZED RIGHT FOCAL PROBLEM

ZHANBING BAI AND XIANGLI FEI

(communicated by A. M. Fink)

Abstract. We obtain sufficient conditions for the existence of at least three positive solutions for
the third-order three-point generalized right focal boundary value problem

x′′′ = q(t)f (t, x, x′, x′′), t1 � t � t3,

x(t1) = x′(t2) = 0, ηx(t3) + δx′′(t3) = 0,

where f : [t1, t3] × [0,∞) × R2 → [0,∞), q : (t1, t3) → [0, +∞) are nonnegative continuous
functions, δ > 0, η � 0 are constants. This is an application of a new fixed-point theorem
introduced by Avery and Peterson [6].

1. Introduction

Recently, the existence and multiplicity of positive solutions for nonlinear ordi-
nary differential equations and difference equations have been studied extensively. To
identify a few, we refer the reader to [1–11]. The main tools used in above works are
fixed-point theorems. Fixed-point theorems and their applications to nonlinear prob-
lems have a long history, some of which is documented in Zeidler’s book [11], and the
recent book by Agarwal, O’Regan and Wong [2] contains an excellent summary of the
current results and applications.

An interest in triple solutions evolved from the Leggett-Williams multiple fixed-
point theorem [9]. And lately, two triple fixed-point theorems due to Avery [5] and Avery
and Peterson [6] have been applied to obtain triple solutions of certain boundary-value
problems for ordinary differential equations as well as for their discrete analogues.

Anderson et al. [3, 4] obtained some excellent results about the existence and
multiplicity of positive solutions for the third-order three-point boundary value problem.
Also, a good set of references was included.

However, all the above works were done under the assumption that the lower-order
derivative is not involved explicitly in the nonlinear term. More recently, the authors
gave an application of a fixed-point theorem due to Avery and Peterson [6] to deal
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with the existence of positive solutions for the second-order two-point boundary value
problem with dependence on the first-order derivative [7]. In this paper, we concentrate
in getting the existence of positive solutions for the third-order three-point boundary
value problem

x′′′ = q(t)f (t, x, x′, x′′), t1 � t � t3, (1.1)

x(t1) = x′(t2) = 0, ηx(t3) + δx′′(t3) = 0. (1.2)

In this article, it is assumed that:
(C1) f ∈ C([t1, t3] × [0,∞) × R2, [0,∞)) ;
(C2) q ∈ C((t1, t3), [0,∞)) and does not vanish identically on any subinterval of

(t1, t3) . Furthermore, 0 <
∫ t2

t1
q(s)ds,

∫ t3
t2

q(s)ds < +∞ .
(C3) η � 0, δ > 0; k := 2δ + η(t3 − t1)(t3 − 2t2 + t1) > 0; t1 < t2 < t3 are real

numbers with t2 − t1 > t3 − t2 .
Our main results will depend on an application of a fixed-point theorem due to

Avery and Peterson which deals with fixed points of a cone-preserving operator defined
on an ordered Banach space. The emphasis is put on the nonlinear term involved with
all lower-order derivatives explicitly.

2. Background materials and definitions

For the convenience of the reader, we present here the necessary definitions from
cone theory in Banach spaces, these definitions can be found in recent literature.

DEFINITION 2.1. Let E be a real Banach space over R . A nonempty convex
closed set P ⊂ E is said to be a cone provided that

(i) au ∈ P for all u ∈ P and all a � 0 and
(ii) u,−u ∈ P implies u = 0 .

Note that every cone P ⊂ E induces an ordering in E given by x � y if y−x ∈ P .

DEFINITION 2.2. An operator is called completely continuous if it is continuous
and maps bounded sets into precompact sets.

DEFINITION 2.3. The map α is said to be a nonnegative continuous concave
functional on a cone P of a real Banach space E provided that α : P → [0,∞) is
continuous and

α(tx + (1 − t)y) � tα(x) + (1 − t)α(y)

for all x, y ∈ P and 0 � t � 1 . Similarly, we say the map β is a nonnegative
continuous convex functional on a cone P of a real Banach space E provided that
β : P → [0,∞) is continuous and

β(tx + (1 − t)y) � tβ(x) + (1 − t)β(y)

for all x, y ∈ P and 0 � t � 1 .

Let γ and θ be nonnegativecontinuous convex functionals on P , α a nonnegative
continuous concave functional on P , and ψ a nonnegative continuous functional on P .
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For positive real numbers a, b, c and d , we define the following convex sets:

P(γ , d) = {x ∈ P | γ (x) < d},
P(γ ,α, b, d) = {x ∈ P | b � α(x), γ (x) � d},

P(γ , θ,α, b, c, d) = {x ∈ P | b � α(x), θ(x) � c, γ (x) � d},

and a closed set

R(γ ,ψ , a, d) = {x ∈ P | a � ψ(x), γ (x) � d}.

The following fixed-point theorem due to Avery and Peterson is fundamental in
the proofs of our main results.

LEMMA 2.1. ([6]) Let P be a cone in a real Banach space E . Let γ and θ
be nonnegative continuous convex functionals on P , α a nonnegative continuous
concave functional on P , and ψ a nonnegative continuous functional on P satisfying
ψ(λx) � λψ(x) for 0 � λ � 1 , such that for some positive numbers M and d ,

α(x) � ψ(x) and ‖x‖ � Mγ (x), (2.1)

for all x ∈ P(γ , d) . Suppose T : P(γ , d) → P(γ , d) is completely continuous and
there exist positive numbers a, b , and c with a < b such that

(S1) {x ∈ P(γ , θ,α, b, c, d) | α(x) > b} �= ∅ and α(Tx) > b for x ∈
P(γ , θ,α, b, c, d) ;

(S2) α(Tx) > b for x ∈ P(γ ,α, b, d) with θ(Tx) > c ;
(S3) 0 �∈ R(γ ,ψ , a, d) and ψ(Tx) < a for x ∈ R(γ ,ψ , a, d) with ψ(x) = a .
Then T has at least three fixed points x1, x2, x3 ∈ P(γ , d) , such that

γ (xi) � d for i = 1, 2, 3;

b < α(x1);
a < ψ(x2) with α(x2) < b;

ψ(x3) < a .

The corresponding Green’s function G(t, s) for the homogeneous problem

x′′′ = 0, t1 � t � t3,

x(t1) = x′(t2) = 0, ηx(t3) + δx′′(t3) = 0,

is established by Anderson [3]:

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s ∈ [t1, t2] :

{
u1(t, s),t � s;

v1(t, s),s � t;

s ∈ [t2, t3] :

{
u2(t, s),t � s;

v2(t, s),s � t,
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for t, s ∈ [t1, t3] , where

u1(t, s) :=
t − t1

2
(2s − t − t1) +

η(t − t1)
2k

(s − t1)2(2t2 − t − t1),

v1(t, s) := u1(t, s) +
1
2
(t − s)2,

u2(t, s) :=
t − t1
2k

(2t2 − t − t1)
[
2δ + η(t3 − s)2

]
,

v2(t, s) := u2(t, s) +
1
2
(t − s)2.

LEMMA 2.2. ([3]) Assume k = 2δ+η(t3−t1)(t3−2t2+t1) > 0 . If t2−t1 > t3−t2 ,
then the Green’s function G(t, s) satisfies

G(t, s) > 0,
∂2

∂t2
G(t, s) > 0, for (t, s) ∈ (t1, t3] × (t1, t3]. (2.2)

3. Existence results of positive solutions

In this section, we impose growth conditions on f which allow us to apply Lemma
2.1 to establish the existence of triple positive solutions of Problem (1.1) , (1.2) .

Let X = C2[t1, t3] be endowed with the ordering x � y if x(t) � y(t) for all
t ∈ [t1, t3] , and the maximum norm,

‖x‖ = max
{

max
t1�t�t3

|x(t)|, max
t1�t�t3

|x′(t)|, max
t1�t�t3

|x′′(t)|
}

.

From the fact x′′′ = q(t)f (t, x, x′, x′′) � 0, x(t) � 0 and assumption (C3) , we know
that x is concave on [t1, t3] . So, define the cone P ⊂ X by

P = {x ∈ X:x(t) � 0, x(t1) = x′(t2) = 0,ηx(t3)+δx′′(t3) = 0, x is concave on [t1, t3]}.
Given h ∈ (0, t3 − t2) , let the nonnegative continuous concave functional α ,

the nonnegative continuous convex functional θ, γ , and the nonnegative continuous
functional ψ be defined on the cone P by

γ (x) = max
t1�t�t3

|x′′(t)|, ψ(x) = θ(x) = max
t1�t�t3

|x(t)|, α(x) = min
t2−h�t�t2+h

|x(t)|.

Note that for x ∈ P , there is

max
t1�t�t3

|x(t)| � (t3 − t1) · max
t1�t�t3

|x′(t)|, (3.1)

max
t1�t�t3

|x′(t)| � (t2 − t1) · max
t1�t�t3

|x′′(t)|. (3.2)

Consequently, combining with the concavity of x , the functionals defined above
satisfy:

t3 − t2 − h
t3 − t2

θ(x) � α(x) � θ(x) = ψ(x), (3.3)
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‖x‖ � max{(t3 − t1)(t2 − t1), 1} · γ (x), (3.4)

for all x ∈ P(γ , d) ⊂ P . Therefore, condition (2.1) is satisfied.
Let

B = min
{∫ t2+h

t2−h
G(t2 − h, s)q(s)ds,

∫ t2+h

t2−h
G(t2 + h, s)q(s)ds

}
,

M = max

{∫ t2

t1

[1 +
η
k
(s − t1)2]q(s)ds +

η
k

∫ t3

t2

[2δ + η(t3 − s)2]q(s)ds ,

η
k

∫ t2

t1

(s − t1)2q(s)ds +
1
k

∫ t3

t2

[k + 2δ + η(t3 − s)2]q(s)ds

}
,

N = max
t1�t�t3

∫ t3

t1

G(t, s)q(s)ds.

Topresent ourmain result,we assume there exist 0 < a < b � (t2−t1)(t3−t1)(t3−t2−h)
t3−t2

d
such that

(A1) f (t, u, v, w) � d
M , for (t, u, v, w) ∈ [t1, t3] × [0, (t2 − t1)(t3 − t1)d] × [(t1 −

t2)d, (t2 − t1)d] × [−d, d] ;
(A2) f (t, u, v, w) > b

B , for (t, u, v, w) ∈ [t2 − h, t2 + h]× [b, b(t3 − t2)/(t3 − t2 −
h)] × [(t1 − t2)d, (t2 − t1)d] × [−d, d] ;

(A3) f (t, u, v, w) < a
N , for (t, u, v, w) ∈ [t1, t3]× [0, a]× [(t1− t2)d, (t2 − t1)d]×

[−d, d] .

THEOREM 3.1. Under assumptions (A1) − (A3) , the boundary value problem
(1.1) , (1.2) has at least three positive solutions x1 , x2 and x3 satisfying

max
t1�t�t3

|x′′i (t)| � d, for i = 1, 2, 3;

max
t1�t�t3

|x′i(t)| � (t2 − t1)d, for i = 1, 2, 3;

b < min
t2−h�t�t2+h

|x1(t)|;

a < max
t1�t�t3

|x2(t)| � b(t3 − t2)
t3 − t2 − h

, with min
t2−h�t�t2+h

|x2(t)| < b;

max
t1�t�t3

|x3(t)| < a.

Proof. Problem (1.1) , (1.2) has a solution x = x(t) if and only if x solves the
operator equation

x(t) = Tx(t) :=
∫ t3

t1

G(t, s)q(s)f (s, x(s), x′(s), x′′(s))ds.

Clearly, with the definition of G(t, s) , assumptions (C1) − (C3) and Lemma 2.2,
T : P → P , moreover, a standard argument can proof T is completely continuous. We
now show that all the conditions of Lemma 2.1 are satisfied.
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If x ∈ P(γ , d) , then γ (x) = maxt1�t�t3 |x′′(t)| � d . From (3.1) , (3.2) , one has
maxt1�t�t3 |x′(t)| � (t2 − t1)d, maxt1�t�t3 |x(t)| � (t3 − t1)(t2 − t1)d , then assumption
(A1) implies f (t, x(t), x′(t), x′′(t)) � d

M . Note that for t ∈ [t1, t2] ,

(Tx)′′(t) =
(∫ t2

t1

+
∫ t3

t2

)
∂2

∂t2
G(t, s)q(s)f (s, x(s), x′(s), x′′(s))ds

= −η
k

∫ t2

t1

(s − t1)2q(s)f (s, x(s), x′(s), x′′(s))ds

− η
k

∫ t3

t2

[2δ + η(t3 − s)2]q(s)f (s, x(s), x′(s), x′′(s))ds

+
∫ t

t2

q(s)f (s, x(s), x′(s), x′′(s))ds;

for t ∈ [t2, t3] ,

(Tx)′′(t) = − η
k

∫ t2

t1

(s − t1)2q(s)f (s, x(s), x′(s), x′′(s))ds

− 1
k

∫ t3

t2

[2δ + η(t3 − s)2]q(s)f (s, x(s), x′(s), x′′(s))ds

+
∫ t

t2

q(s)f (s, x(s), x′(s), x′′(s))ds.

Therefore,

γ (Tx) = max
t1�t�t3

|(Tx)′′(t)|

� d
M

· max

{∫ t2

t1

[1 +
η
k
(s − t1)2]q(s)ds +

η
k

∫ t3

t2

[2δ + η(t3 − s)2]q(s)ds ,

η
k

∫ t2

t1

(s − t1)2q(s)ds +
1
k

∫ t3

t2

[k + 2δ + η(t3 − s)2]q(s)ds

}

=
d
M

· M = d.

Hence, T : P(γ , d) → P(γ , d) .
To check condition (S1) of Lemma 2.1, we choose x(t) = b(t3− t2)/(t3− t2−h) ,

t1 � t � t3 .
It is easy to see that

x(t) = b(t3 − t2)/(t3 − t2 − h) ∈ P(γ , θ,α, b, b(t3 − t2)/(t3 − t2 − h), d)

and
α(x) = α(b(t3 − t2)/(t3 − t2 − h)) = b(t3 − t2)/(t3 − t2 − h) > b,

and so
{x ∈ P(γ , θ,α, b, b(t3 − t2)/(t3 − t2 − h), d) | α(x) > b} �= ∅.

Hence, if x ∈ P(γ , θ,α, b, b(t3− t2)/(t3− t2 −h), d) , then b � x(t) � b(t3− t2)/(t3−
t2 − h) , |x′(t)| � (t2 − t1)d, |x′′(t)| � d for t2 − h � t � t2 + h .
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From assumption (A2) , we have f (t, x(t), x′(t), x′′(t)) > b/B for t2 − h � t �
t2 + h , and by the conditions of α and the cone P , we have to distinguish two cases,
(i) α(Tx) = (Tx)(t2 − h) and (ii) α(Tx) = (Tx)(t2 + h) .

In case (i) , we have

α(Tx) = (Tx)(t2 − h)

=
∫ t3

t1

G(t2 − h, s)q(s)f (s, x(s), x′(s), x′′(s))ds

>
b
B
·
∫ t2+h

t2−h
G(t2 − h, s)q(s)ds � b .

In case (ii) , we have

α(Tx) = (Tx)(t2 + h)

=
∫ t3

t1

G(t2 + h, s)q(s)f (s, x(s), x′(s), x′′(s))ds

>
b
B
·
∫ t2+h

t2−h
G(t2 + h, s)q(s)ds � b .

i.e.,
α(Tx) > b, for all x ∈ P(γ , θ,α, b, b(t3 − t2)/(t3 − t2 − h), d).

This shows that condition (S1) of Lemma 2.1 is satisfied.
Secondly, with (3.3) we have

α(Tx) � t3 − t2 − h
t3 − t2

θ(Tx) >
t3 − t2 − h

t3 − t2
· (t3 − t2)b
t3 − t2 − h

= b,

for all x ∈ P(γ ,α, b, d) with θ(Tx) > b(t3 − t2)/(t3 − t2 − h) . Thus, condition (S2)
of Lemma 2.1 is satisfied.

Finally we show that (S3) of Lemma 2.1 holds, too. Clearly, as ψ(0) = 0 < a ,
we have that 0 �∈ R(γ ,ψ , a, d) . Suppose that x ∈ R(γ ,ψ , a, d) with ψ(x) = a . Then,
by the assumption (A3) ,

ψ(Tx) = max
t1�t�t3

|(Tx)(t)|

= max
t1�t�t3

∫ t3

t1

G(t, s)q(s)f (s, x(s), x′(s), x′′(s))ds

<
a
N

· max
t1�t�t3

∫ t3

t1

G(t, s)q(s)ds = a.

So, condition (S3) of Lemma 2.1 is also satisfied. Therefore, an application of Lemma
2.1 ends the proof.

REMARK 3.1. To apply Lemma 2.1, we only need T : P(γ , d) → P(γ , d) ,
therefore, condition (C1) can be substituted with a weaker condition

(C1)′ f ∈ C([t1, t3]×[0, (t2−t1)(t3−t1)d]×[(t1−t2)d, (t2−t1)d]×[−d, d], [0,∞))
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