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Abstract. This paper provides bounds for second-order linear recurrences with restricted coeffi-
cients. It is determined that whenever the coefficients of the associated monic equation are less
than the constant (1/3)1/3 , all solutions tend to zero at an exponential rate. This constant is
optimal. Explicit inequalities are also provided, and some residue class structure is revealed.

1. Introduction

This paper provides bounds for second-order linear recurrences with restricted
coefficients. In particular, we are concernedwith solutions to the homogeneousequation

bn + αnbn−1 + βnbn−2 = 0, (n � 2) (1)

where {αi} and {βi} are sequences satisfying

αn, βn ∈ [0, A], (n � 2), (2)

for some A > 0 .
We are interested in the structure of the bounding sequence {Uj}∞j=2 defined by

Un = Un(A, b0, b1) = max{|bn| : {bi}, {αi} and {βi} satisfy (1) and (2)}, (3)

for n � 2 .
Bounds for linear recurrence sequences and those for zeroes of power series are

closely related (cf. Berenhaut and Morton [1]).
Note that if bn is viewed as a function of b0 , b1 and {(αi, βi)} , then

bn(b0, b1, {(αi, βi)}) = b0 bn(1, 0, {(αi, βi)}) + b1 bn(0, 1, {(αi, βi)}), (4)

for n � 2 . Thus, in terms of {Uj(A, 0, 1)} and { Uj(A, 1, 0)} , we have

Un(A, b0, b1) � |b0|Un(A, 1, 0) + |b1|Un(A, 0, 1), (5)
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for n � 2 . As well, if b0 = 1 and b1 = 0 , then b2 = −α2 , and hence, for n � 3 ,

Un(A, 1, 0) = Un−1(A, 0,−α2) = α2Un−1(A, 0,−1) � AUn−1(A, 0,−1). (6)

Thus, for simplicity, we will restrict attention to the case b0 = 0 and b1 = −1 .
Among our results is the following.

THEOREM 1. Suppose that b0 = 0 and b1 = −1 .
(i) If A < (1/3)1/3 , then {Ui} tends to zero at an exponential rate.
(ii) If A > (1/3)1/3 , then {Ui} tends to infinity at an exponential rate.
(iii) If A = (1/3)1/3 , then {Ui}∞i=76 is periodic with period five, with all values

nonzero.

Note that Theorem 1 (i) implies that all solutions to (1) tend to zero at an
exponential rate regardless of any erratic behavior in {(αi, βi)} , so long as 0 � αn, βn �
(1/3)1/3 − ε , for some ε > 0 and all n � 2 .

In proving Theorem 1 we will rely on the following recent result (see [2]) which
connects bounds for solutions to (1) with maximal products over integer partitions.

THEOREM 2. Suppose A > 0 and for given x and y , consider G(x, y) , the
maximal product over partitions of x into y parts, i.e.

G(x, y) = max
e1+e2+···+ey=x

ej∈N+

e1e2 · · · ey. (7)

Then, for n � 2 ,

Un = max
[ n

2 ]+1�k�n
G(k − 1, 2k − n − 1)Ak−1. (8)

Proof. See [2]. �
It is worthwhile to note that the proof of Theorem 2 relies heavily on the following

lemma, which serves to discretize the problem of determining {Uj} . While the Lemma
is proven in [2], we include it here for completeness.

LEMMA 1. Suppose that {bi} , {αi} , {βi} and A > 0 satisfy (1) and (2) with
b0 = 0 and b1 = −1 . Let P = {n � 0 : bn � 0} and N = {n � 0 : bn <
0} partition the sign configuration of {bi}∞i=1 , and define Bn (a polynomial in A )
recursively in n from N and P via B0 = 0 , B1 = −1 and

Bn =
{ −A · χN (n − 1)Bn−1 − A · χN (n − 2)Bn−2, n ∈ P

−A · χP(n − 1)Bn−1 − A · χP(n − 2)Bn−2, n ∈ N
, (9)

for n � 2 , where χV indicates the characteristic function for the set V .
Then, Bi and bi have the same sign and

|bi| � |Bi|, (10)

for all i � 1 .
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Proof. Simple induction with (9) will show that Bn and bn have the same sign
for n � 1 .

Now, note that under the inherent assumptions, b1 = −1 = B1 and b2 = α2 �
A = B2 . We shall prove the lemma by induction. Suppose that n > 1 and that (10) is
satisfied for all i � n − 1 . Now, assume that n ∈ P . Then,

bn = −αnbn−1 − βnbn−2

� −A · χN (n − 1)bn−1 − A · χN (n − 2)bn−2

= A · χN (n − 1)|bn−1| + A · χN (n − 2)|bn−2|
� A · χN (n − 1)|Bn−1| + A · χN (n − 2)|Bn−2|
= −A · χN (n − 1)Bn−1 − A · χN (n − 2)Bn−2

= Bn, (11)

where the first inequality follows from (2) and the second from an application of
the induction hypothesis.

An analogous argument works when n ∈ N . �

REMARK 1. Note that while Lemma 1 reduces the computations required in
obtaining Un to 2n−1 comparisons, Theorem 2 further reduces that number to roughly
n/2 . �

Rewriting (8), we have

COROLLARY 1. Under the assumptions in Theorem 2,

Un = max
[ n

2 ]+1�k�n
Wk,nA

k−1, (12)

where

Wk,n =
{

rk,n
ik,n(rk,n − 1)jk,n , 2k − n − 1 > 0

1, otherwise
, (13)

with1

rk,n =
⌈

k − 1
2k − n − 1

⌉
, (14)

jk,n = rk,n(2k − n − 1) − (k − 1), (15)

and

ik,n = 2k − n − 1 − jk,n. (16)

1We use the notations �y� , [y] , and {y} to denote the least integer greater than or equal to y , the
greatest integer less than or equal to y , and the fractional part of y , respectively.
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In [2], the following closed-form result for the case when A = 1 was obtained via
Theorem 2.

THEOREM 3. Suppose A = 1 and {Uj} is as in Theorem 2 . Then, we have
U2 = U3 = 1 , U4 = U5 = 2 , U6 = 3 , U7 = U8 = 4 and for n � 9 ,

Un =

⎧⎪⎨
⎪⎩

3 · 2 n−6
3 , n ≡ 0 mod 3

2
n−1

3 , n ≡ 1 mod 3

32 · 2 n−11
3 , n ≡ 2 mod 3

. (17)

Proof. See [2]. �

A by-product of the proof of Theorem 1 is the following similar result for

2
3

< A <
3
4
. (18)

THEOREM 4. Suppose A satisfies (18) and {Uj} is as in Theorem 2 . For given
n � 76 , express n in the form n = 15x + a + 1 , for some 0 � a � 14 . Then,

Un =
{

C2(A, a)(3A3)3x, if a ≡ 2 mod 5
C1(A, a)(3A3)3x, otherwise

, (19)

where

C1(A, a) = 3−a+3[ 2a
5 ]22a−5[ 2a

5 ]Aa−[ 2a
5 ] (20)

and

C2(A, a) = 4−2a+5[ 2a
5 ]+533a−7[ 2a

5 ]−7Aa−[ 2a
5 ]−1. (21)

Recurrences with varying or random coefficients have been studied by many pre-
vious authors. A partial survey of such literature can be found in [1].

REMARK 2. Suppose that the coefficients in (1) are constant, i.e.

bn + αbn−1 + βbn−2 = 0, (n � 2). (22)

Then, it is well known that if both roots of the auxiliary equation x2 + αx + β = 0
have modulus less than one, all solutions to (1) tend to zero (cf. Goldberg [3]). The
region of (α, β) satisfying this root requirement is shaded in Figure 1(a). Theorem
1 guarantees that if all pairs (αi, βi) are in the smaller rectangular region shaded in
Figure 1(b), then all solutions also tend to zero, regardless of any erratic behavior in
the sequence {(αi, βi)} .
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Figure 1. Shaded regions (in the (α, β) -plane) for convergence to zero of all solutions,
for constant and nonconstant coefficients (Figures 1(a) and 1(b) , respectively).

We now turn to a proof of Theorem 1.

2. Proof of Theorem 1

For fixed n > 1 , define the sequence {vi} by

vi = G
([n

2

]
+ i, 2

[n
2

]
− n + 1 + 2i

)
, (23)

for 0 � i � n − [n/2]− 1 .
We will use the following lemma.

LEMMA 2. The sequence {vi} is logarithmically concave and hence unimodal.

Proof. We will show that for all u, v � 0 ,

G(u, v)G(u + 2, v + 4) � G(u + 1, v + 2)2. (24)

From the definition of G , we have for r∗ =
⌈

2(u+1)
2(v+2)

⌉
=
⌈

u+1
v+2

⌉
,

G(u, v)G(u + 2, v + 4) � G(u + (u + 2), v + (v + 4))

= r∗2(v+2)−(r∗2(v+2)−2(u+1))(r∗ − 1)r∗2(v+2)−2(u+1)

=
(
r∗(v+2)−(r∗(v+2)−(u+1))(r∗ − 1)r∗(v+2)−(u+1)

)2

= G(u + 1, v + 2)2.

(25)

The first and last equalities in (25) follow by reasoning similar to that in the proof of
Corollary 1. �

Proof of Theorem 1 . It suffices to prove the theorem for b0 = 0 and b1 = −1 .
Suppose n = 15x + a + 1 , for some 0 � a � 14 and x � 5 , and that A satisfies (18).
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Note that by Lemma 2, the sequence {ai} , with

ai = viA[ n
2 ]+i (26)

is unimodal, and by Theorem 2,

Un = max
0�i�n−[ n

2 ]−1
ai. (27)

Let j∗ = 9x + a − [2a/5]− [n/2] . We will show that Un ∈ {aj∗−1, aj∗} .
First, it may be readily verified that for x � 5 and 0 � a � 14 ,

3 <

(
9x + a − [ 2a

5

]− 2

3x + a − 2
[

2a
5

]− 4

)
,

(
9x + a − [ 2a

5

]− 1

3x + a − 2
[

2a
5

]− 2

)
� 4 (28)

and

2 <

(
9x + a − [ 2a

5

]
3x + a − 2

[
2a
5

]
)

,

(
9x + a − [ 2a

5

]
+ 1

3x + a − 2
[

2a
5

]
+ 2

)
� 3. (29)

Thus, from (23), (26) and Corollary 1, we have

aj∗−2 = G

(
9x + a −

[
2a
5

]
− 2, 3x + a − 2

[
2a
5

]
− 4

)
A9x+a−[ 2a

5 ]−2

= 4−2a+5[ 2a
5 ]+1033x+3a−7[ 2a

5 ]−14A9x+a−[ 2a
5 ]−2,

(30)

aj∗−1 = G

(
9x + a −

[
2a
5

]
− 1, 3x + a − 2

[
2a
5

]
− 2

)
A9x+a−[ 2a

5 ]−1

= 4−2a+5[ 2a
5 ]+533x+3a−7[ 2a

5 ]−7A9x+a−[ 2a
5 ]−1,

(31)

aj∗ = G

(
9x + a −

[
2a
5

]
, 3x + a − 2

[
2a
5

])
A9x+a−[ 2a

5 ]

= 33x−a+3[ 2a
5 ]22a−5[ 2a

5 ]A9x+a−[ 2a
5 ]

(32)

and

aj∗+1 = G

(
9x + a −

[
2a
5

]
+ 1, 3x + a − 2

[
2a
5

]
+ 2

)
A9x+a−[ 2a

5 ]+1

= 33x−a+3[ 2a
5 ]−322a−5[ 2a

5 ]+5A9x+a−[ 2a
5 ]+1.

(33)

By (18) and (30) – (33), we have

aj∗−2

aj∗−1
=

45

37A

∈ [0.6243, 0.7024]
(34)
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and
aj∗

aj∗+1
=

33

25A

∈ [1.125, 1.266],
(35)

and by the unimodality of {ai} , Un ∈ {aj∗−1, aj∗} as claimed.
Now, note that

aj∗−1

aj∗
=

4−2a+5[ 2a
5 ]+534a−10[ 2a

5 ]−7

22a−5[ 2a
5 ]A

=
45

37A
310{ 2a

5 }
45{ 2a

5 }25{ 2a
5 }

=
45

37A

(
9
8

)5{ 2a
5 }

.

(36)

Hence,

aj∗−1

aj∗
∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0.624295, 0.702332), if a ≡ 0 mod 5
(0.790123, 0.888889), if a ≡ 1 mod 5
(1.000, 1.125), if a ≡ 2 mod 5
(0.702331, 0.790124), if a ≡ 3 mod 5
(0.88888, 1.000), if a ≡ 4 mod 5

, (37)

and

Un =
{

aj∗−1, if a ≡ 2 mod 5
aj∗ , otherwise

. (38)

From (32) and (31), we have

aj∗ = 33x−a+3[ 2a
5 ]22a−5[ 2a

5 ]A9x+a−[ 2a
5 ]

= C1(A, a)(3A3)3x,
(39)

and
aj∗−1 = 4−2a+5[ 2a

5 ]+533x+3a−7[ 2a
5 ]−7A9x+a−[ 2a

5 ]−1

= C2(A, a)(3A3)3x,
(40)

where C1(A, a) and C2(A, a) are as in (20) and (21), respectively.
Parts (i) and (ii) of the theorem now follow directly from (39) and (40).
Regarding Part (iii) , note that for κ = (1/3)1/3 ,

max(C1(κ , a), C2(κ , a))(3κ3)3x = max(C1(κ , a), C2(κ , a))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if a ≡ 0 mod 5
0.924482, if a ≡ 1 mod 5
0.924482, if a ≡ 2 mod 5
0.961500, if a ≡ 3 mod 5
0.888889, if a ≡ 4 mod 5

. (41)

�
REMARK 3. Note that Theorem 4 follows from (39) and (40).
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3. Conclusion and future directions

To this point, we have not found corresponding theorems for general kth order
linear recurrences, and hence we restate the following question from [2].

Open question. What is (a workable general form for) the maximumpossible value
(as a function of n and A ) of the nth term of a kth order linear recurrence satisfying

bn +
n−1∑

i=n−k

αn,ibi = 0; n � 2, (42)

where b0 = 0 , b1 = 1 , and for some A > 0 ,

αn,i ∈ [0, A]; n − k � i � n − 1, n � 2. (43)

In addition, it would be interesting to know constants satisfying Theorem 1, Parts
(i) and (ii) , for higher order difference equations.
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