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ON THE CAUCHY––RASSIAS INEQUALITY AND

LINEAR n –INNER PRODUCT PRESERVING MAPPINGS

CHOONKIL BAAK, HAHNG-YUN CHU AND MOHAMMAD SAL MOSLEHIAN

Abstract. We prove the Cauchy–Rassias stability of linear n -inner product preserving mappings
in n -inner product Banach spaces. We apply the Cauchy-Rassias inequality that plays an
influencial role in the subject of functional equations. The inequality was introduced for the first
time by Th. M. Rassias in his paper entitled: On the stability of the linear mapping in Banach
spaces, Proc. Amer. Math. Soc. 72, (1978), 297–300.
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