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Abstract. In the present paper, we study the certain summation integral type operators which
includes the well known Baskakov-Durrmeyer and Szasz-Durrmeyer operators as special cases.
We obtain the rate of convergence for functions of bounded variation, for these generalized
sequences of linear positive operators together with the exact bounds for Baskakov basis functions
and Szasz basis functions.

1. Introduction

To approximate Lebesgue integrable functions on the interval [0, 1] Durrmeyer
[3], defined the integral modification of Bernstein polynomials as

Bn(f , x) = (n + 1)
n∑

k=0

pn,k(x)

1∫
0

pn,k(t)f (t)dt (1)

where

pn,k(x) =
(

n
k

)
xk(1 − x)n−k.

Derriennic [2] studied some approximation properties for these Bernstein Dur-
rmeyer operators. Guo [4] estimated the rate of convergence for bounded variation
functions for the operators Bn . Motivated by the integral modification of Bernstein
polynomials and subsequent work on Bernstein Durrmeyer operators, Mazhar and Totik
[9] and Sahai and Prasad [10] defined the Durrmeyer variants of Szasz-Mirakyan and
Lupas operators respectively. Gupta [5] defined some other type of BaskakovDurrmeyer
operators and studied asymptotic formulas and error estimates for the operators, it was
observed in [5] that the operators with different weight give better results over the Lupas
Durrmeyer operators defined in [10]. To approximate Lebesgue integrable functions on
the interval [0,∞) , we now consider the following operators

Mn(f , x) =
∞∑
k=0

pn,k(x, c)

∞∫
0

bn,k(t, c)f (t)dt (2)
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where

pn,k(x, c) = (−1)k xk

k!
φ (k)

n,c (x), bn,k(t, c) = (−1)k+1 tk

k!
φ (k+1)

n,c (t)

and
(i) for c > 0 , φn,c(x) = (1 + cx)−n/c and x ∈ [0,∞)
(ii) for c = 0 , φn,c(x) = e−nx and x ∈ [0,∞) .

Here we observe that for case (i) i.e. c > 0 the operators Mn reduce to Baskakov
Durrmeyer operators and for case (ii) i.e. c = 0 our operators Mn become Szasz
Durrmeyer operators. Some approximation properties of these operators were studied
in [8]. Operators with the rate of convergence for the particular value c = 1 were
studied in [6].

Let

Kn(x, t, c) =
∞∑
k=0

pn,k(x, c)bn,k(t, c)

and

βn,c(x, y) =

y∫
0

Kn(x, t, c)dt

In particular

βn,c(x,∞) =

∞∫
0

Kn(x, t, c)dt = 1

In the present paper, we study the rate of approximation for the functions of
bounded variation of these generalized operators Mn(f , x) , defined by (2).

2. Auxiliary results

In this section we give certain results, which are necessary to prove the main result.

LEMMA 1. For m ∈ N ∪ {0} , if we define the m-th order moment by

μn,m(x, c) =
∞∑
k=0

pn,k(x, c)

∞∫
0

bn,k(t, c)(t − x)mdt

then

μn,0(x, c) = 1,μn,1(x, c) =
1 + cx
n − c

and

μn,2(x, c) =
2cx2(n + c) + 2x(n + 2c) + 2

[n − c][n − 2c]
.

Also the following recurrence relation holds

[n − c(m + 1)]μn,m+1(x, c) = x(1 + cx)[μ(1)
n,m(x, c) + 2mμn,m−1(x, c)]

+ [(1 + 2cx)(m + 1) − cx]μn,m(x, c).



ON THE RATE OF CONVERGENCE FOR CERTAIN SUMMATION-INTEGRATION TYPE OPERATORS 467

REMARK 1. In particular, by Lemma 1, for c � 0 given any number λ > 2 and
x>0, we have for n sufficiently large

μn,2(x, c) � λx(1 + cx)
n

. (3)

LEMMA 2. For all x ∈ (0,∞) , c � 0 and k ∈ N , we have

(i) pn,k(x, c) �
√

1+cx√
2enx

, where φn,c(x) = (1 + cx)−n/c, c > 0

(ii) pn,k(x, c) � 1√
2enx

, where φn,c(x) = e−nx, c = 0

where the constant 1/
√

2e and the estimation order n−1/2 (for n → ∞) are the
best possible.

Proof. By [12, Th. 2], it follows that
(

n + k − 1
k

)
tk(1 − t)n <

1√
2ent

, t ∈ (0, 1]

Replacing the variable t by cx
1+cx and n by n/c in the above inequality, we get

k−1∏
l=0

l + n/c
k!

(cx)k

(1 + cx)
n
c +k

≡ pn,k(x, c) <

√
1 + cx√
2enx

, forx ∈ (0,∞.)

This completes the proof of (i) .
Next, we prove (ii) . Following [13], we have

pn,k(x, c) � H(j)√
nx

, whereφn,c(x) = e−nx, c = 0, k � j

where H(j) = (j+1/2)j+1/2e−(j+1/2)

j! .

Since maxj�0 H(j) = H(0) = 1/
√

2e , it follows that:

pn,k(x, c) � 1√
2enx

, for each integer k � 0.

REMARK 2. For particular value c = 1 Wang and Guo [11] gave the following
bound for Baskakov basis functions:

pn,k(x, 1) � 33√
n

(
1 + x

x

)3/2

, x ∈ (0,∞), k ∈ N.

It could be observed that our Lemma 2 (i) for c = 1 gives the sharp bound over
the bound of Wang and Guo [11].

For c = 0 , also Lemma 2 (ii) could be utilized to give better estimate over the
main result of [7].



468 VIJAY GUPTA AND RAMM N. MOHAPATRA

LEMMA 3. Suppose 0 < x < ∞ , λ > 2 and c � 0 for n sufficiently large, there
hold

y∫
0

Kn(x, t, c)dt � λx(1 + cx)
n(x − y)2

, 0 � y < x, (4)

∞∫
z

Kn(x, t, c)dt � λx(1 + cx)
n(z − x)2

, x < z < ∞. (5)

Proof. We first prove (4) as follows:
y∫

0

Kn(x, t, c)dt �
y∫

0

(x − t)2

(x − y)2
Kn(x, t, c)dt

� 1
(x − y)2

Mn((t − x)2, x) � μn,2(x, c)
(x − y)2

� λx(1 + cx)
n(x − y)2

by using (3). The proof of (5) follows along the similar lines.

3. Rate of convergence

In this section we prove the following general theorem, for c > 0 and c = 0 , we
get the particular results for Baskakov Durrmeyer type operators and Szasz Durrmeyer
operators respectively.

THEOREM 1. Let f be a function of bounded variation on every finite subinterval
of [0,∞) and if f (x) = O((1 + x)r), x → ∞ . Then for λ > 2 , c � 0, x ∈ (0,∞)
and n sufficiently large, we have∣∣∣∣Mn(f , x) − 1

2
{f (x+) + f (x−)}

∣∣∣∣ �
√

1 + cx√
8enx

. |f (x+) − f (x−)|

+
x + 3λ .(1 + cx)

nx

n∑
k=1

Vx+x/
√

k

x−x/
√

k
(gx) + C1

(
1 + x
nx2

)r

+ C2
(1 + cx)(1 + x)r

nx
,

where the constants C1 and C2 are independent of n and x and gx(t) is the auxiliary
function defined by

gx(t) =

⎧⎪⎨
⎪⎩

f (t) − f (x−), 0 � t < x

0, t = x

f (t) − f (x+), x < t < ∞
Vb

a (gx) is the total variation of gx on [a, b] .

Proof. Clearly∣∣∣∣Mn(f , x) − 1
2
{f (x+) + f (x−)}

∣∣∣∣
� |Mn(gx, x)| + 1

2
|f (x+) − f (x−)| . |Mn(sign(t − x), x)|

(6)
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In order to prove the result we need the estimates for Mn(gx, x) and Mn(sign(t −
x), x) . First we estimate Mn(sign(t − x), x) as follows:

Mn(sign(t − x), x) =
∞∑
k=0

pn,k(x, c)

⎛
⎝

∞∫
x

bn,k(t, c)dt−
x∫

0

bn,k(t, c)dt

⎞
⎠

=
∞∑
k=0

pn,k(x, c)

⎛
⎝

∞∫
0

bn,k(t, c)dt−2

x∫
0

bn,k(t, c)dt

⎞
⎠

= 1 − 2
∞∑
k=0

pn,k(x, c)

x∫
0

bn,k(t, c)dt

Using the fact that
∞∫
x

bn,k(t, c)dt =
k∑

j=0
pn,j(x, c) and applying Lemma 2, we have

|Mn(sign(t − x), x)| �

⎧⎪⎪⎨
⎪⎪⎩

√
1 + cx√
2enx

, c > 0

1√
2enx

, c = 0

(7)

Next we estimate Mn(gx, x) . By Lebesgue-Stieltjes integral representation, we have

Mn(gx, x) =

∞∫
0

gx(t)Kn(x, t, c)dt

= (
∫

I1

+
∫

I2

+
∫

I3

+
∫

I4

)Kn(x, t, c)gx(t)dt = R1 + R2 + R3 + R4,

(8)

say, where I1 = [0, x− x/
√

n] , I2 = [x− x/
√

n, x + x/
√

n] , I3 = [x + x/
√

n, 2x] and
I4 = [2x,∞) . First we estimate R1 . Writing y = x − x/

√
n and using integration by

parts, we have

R1 =

y∫
0

gx(t)dt(βn,c(x, t)) = gx(y+)βn(x, y) −
y∫

0

βn,c(x, t)dt(gx(t))

Since |gx(y+)| � Vx
y+(gx) by (4), we obtain

|R1| � Vx
y+(gx)βn,c(x, y) +

y∫
0

βn,c(x, t)dt(−Vx
t (gx))

� Vx
y+(gx)

λx(1 + cx)
n(x − y)2

+
λ (1 + cx)

n

y∫
0

1
(x − t)2

dt(−Vx
t (gx)).
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Integrating by parts the last term after simple computation we have

|R1| � λx(1 + cx)
n

⎡
⎣Vx

0(gx)
x2

+ 2

y∫
0

Vx
t (gx)

(x − t)3
dt

⎤
⎦ .

Now replacing the variable y in the last integral by x − x/
√

t , we obtain

|R1| � 2λ (1 + cx)
nx

n∑
k=1

Vx
x−x/

√
k
(gx). (9)

Now, we estimate R2 . For t ∈ [x − x/
√

n, x + x/
√

n] , we have

|gx(t)| = |gx(t) − gx(x)| � Vx+x/
√

n
x−x/

√
n
(gx).

Also by the fact that
b∫
a

dt(βn,c(x, t)) � 1 for (a, b) ⊂ [0,∞) it follows

|R2| � Vx+x/
√

n
x−x/

√
n
(gx) � 1

n

n∑
k=1

Vx+x/
√

k

x−x/
√

k
(gx). (10)

Next, we estimate R3 . By setting z = x + x/
√

n , we have

R3 =

2x∫
z

Kn(x, t, c)gx(t)dt = −
2x∫

z

gx(t)dt(1−βn,c(x, t))

= −gx(2x)(1−βn,c(x, 2x))+gx(z)(1−βn,c(x, z))+

2x∫
z

(1−βn,c(x, t))dtgx(t).

Since |gx(t)| = |gx(t) − gx(x)| � Vt
x(gx) it follows, by Lemma 3

|R3| � λx(1 + cx)
n

{x−2V2x
x (gx) + (z − x)−2Vz

x(gx) +

2x∫
z

(t − x)−2dtV
t
x(gx)}.

Again integrating by parts, we derive

|R3| � λx(1 + cx)
n

{2x−2V2x
x (gx) + 2

2x∫
z

Vt
x(gx)(t − x)−3dt}.

Thus arguing similarly as in the estimate of R1 , we obtain

|R3| � 3λ (1 + cx)
nx

n∑
k=1

Vx+x/
√

k
x (gx). (11)
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Finally we estimate R4 . For n > γ , we have

|R4| =

∣∣∣∣∣∣
∞∫

2x

Kn(x, t, c)gx(t)dt

∣∣∣∣∣∣ � M

∞∫
2x

Kn(x, t, c)[(1 + t)γ + (1 + x)γ ]dt.

Using the identity

(1 + t)γ − (1 + x)γ � (2γ − 1)
(1 + x)γ

xγ
(t − x)γ , for t � 2x,

and Lemma 2, we have

|R4| � M(2γ − 1)
(1 + x)γ

xγ

∞∫
2x

Kn(x, t, c)(t − x)γ dt + 2M(1 + x)γ
∞∫

2x

Kn(x, t, c)dt

� M(2γ − 1)
(1 + x)γ

xγ

∞∫
2x

Kn(x, t, c)
(t−x)2γ

xγ
dt + 2M

(1+x)γ

x2

∞∫
2x

Kn(x, t, c)(t−x)2dt

� M(2γ − 1)
(1 + x)γ

x2γ O
(
n−γ ) + 2M

(1 + x)γ

x2

λx(1 + cx)
n

.

Hence

|R4| � C1

(
1 + x
nx2

)r

+ C2
(1 + x)γ (1 + cx)

nx
, (12)

where the constants C1 and C2 are independent of n and x .
Hence if n is sufficiently large then by combining the estimates of (8), (12), we

get the required result.

REMARK 3. Recently Bastien andRogalski [1] answered the question raised by the
first author in a private communication and obtained the better bound for this Baskakov
basis functions (for the special case c = 1 ) as follows:

(
n + k − 1

k

)
xk

(1 + x)n+k
� M√

nx(1 + x)
(13)

where the constant M is 1 if n = 1 . For n � 2, k = 0 , the value of M is 2
√

2
3
√

3
. If

n � 2, k � 1 the value of M depends on n and is given by
(

3
2

)3/2
n3/2 (n−1)n−1

(n+ 1
2 )n+ 1

2
.

By using the bound (13), our theorem gives an improved estimate for this particular
case c = 1 also.
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