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ON (Hpq, Lpq)–TYPE INEQUALITY OF MAXIMAL OPERATOR OF

MARCINKIEWICZ–FEJÉR MEANS OF DOUBLE FOURIER

SERIES WITH RESPECT TO THE KACZMARZ SYSTEM

G. GÁT, U. GOGINAVA AND K. NAGY

(communicated by Z. Páles)

Abstract. The main aim of this paper is to prove that the maximal operator of Marcinkiewicz-
Fejér means of double Fourier series with respect to the Kaczmarz system is bounded from the
dyadic Hardy-Lorentz space Hpq into the Lorentz space Lpq for every p > 1

2 and 0 < q �
∞ provided that the supremum in the maximal operator is taken over special indices. As a
consequence, we obtain the a.e. convergence of Marcinkiewicz-Fejér means of double Fourier
series for special indices with respect to the Walsh-Kaczmarz system. That is, σ2n (f , x1, x2) →
f (x1, x2) a.e. as n → ∞.

1. Introduction

In 1939 Marcinkiewicz [6] proved for two-dimensional trigonometric system that
the Marcinkiewicz means of a function converge to the function itself almost evrywhere
for all f ∈ L logL([0, 2π]2). Zhizhiashvili [15] improved this result for f ∈ L([0, 2π]2).
Dyachenko [1] proved this result for dimensions greater than 2 .

For the two-dimensional Walsh-Fourier series Weisz [13] proved that the maximal
operator

σ∗f = sup
n�1

1
n

∣∣∣∣∣∣
n∑

j=1

Sj,j (f )

∣∣∣∣∣∣
is bounded from the two-dimensional dyadic martingale Hardy-Lorentz space Hpq to
the Lorentz space Lpq for p > 2/3 and 0 < q � ∞ and is of weak type (1,1).
Goginava [4] generalized the theorem of Weisz for d-dimensional Walsh-Fourier series.
The a.e. convergence of the arithmetic means of quadratical partial sums of double
Vilenkin-Fourier series was studied by Gát [3].

In 1948 Šneider [11] introduced the Walsh-Kaczmarz system and showed that the
inequality

lim sup
n→∞

Dκ
n (x)

log n
� C > 0
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holds a.e. In 1974 Schipp [8] and Young [12] proved that the Walsh-Kaczmarz system is
a convergence system. Skvorcov in 1981 [10] showed that the Fejér means with respect
to the Walsh-Kaczmarz system converge uniformly to f for any continuous functions
f . Gát [2] proved, for any integrable functions, that the Fejér means with respect to the
Walsh-Kaczmarz system converge almost everywhere to the function. Gát’s Theorem
was extended by Simon [9] to Hpq spaces, namely that the maximal operator of Fejér
means of the one-dimensional Fourier series is bounded fromHardy-Lorentz spaces into
Lorentz spaces for p > 1/2 and 0 < q � ∞ . He also showed (Hpq, Lpq) -boundedness
for every 0 < p � 1 if the maximal operator of the Fejér means is considered only of
order 2n.

The main aim of this paper is to prove that the maximal operator of Marcinkiewicz-
Fejér means of double Fourier series with respect to the Kaczmarz system is bounded
from the dyadic Hardy-Lorentz space Hpq into the Lorentz space Lpq for every p > 1

2
and 0 < q � ∞ provided that the supremum in the maximal operator is taken over
special indices. As a consequence, we obtain the a.e. convergence of Marcinkiewicz-
Fejér means of double Fourier series for special indices with respect to the Walsh-
Kaczmarz system. That is, σ2n(f , x1, x2) → f (x1, x2) a.e. as n → ∞.

2. Definitions and notation

Let K := [0, 1) denote the unique interval in R . By a dyadic interval in K we
mean one of the form [l/2k, (l+1)/2k) for some k, l ∈ N (N := {0, 1, ...} ). For a K �
x =

∑∞
i=0 xi/2i+1 the sets In (x0, ..., xn−1) := {y ∈ K : y0 = x0, ..., yn−1 = xn−1} are

the dyadic intervals of length 2−n . Let In := In (0, ..., 0) . The σ -algebra generated by
the dyadic 2-dimensional cubes I2

k of length 2−k×2−k will be denoted by Fk (k ∈ N) .
Let + denote the dyadic or so called logical addition [7]. Let Lp(K) denote the usual
Lebesgue spaces on K with the corresponding norm ‖.‖p (and the elements of Lp are
bounded 1-periodic functions).

The Lorentz space Lpq
(
K2

)
, 0 < p, q � ∞ with norms or quasi-norms ‖·‖pq is

defined in the usual way (For details see e.g. Weisz [14]).
Denote by f = (f n, n ∈ N) a one-parametermartingalewith respect to (Fn, n ∈ N) .

The maximal function of the martingale f is defined by

f ∗ = sup
n∈N

|f n| .

For 0 < p, q � ∞ the Hardy-Lorentz martingale space Hp,q(K2) consists of all
martingales for which

‖f ‖Hp,q
= ‖f ∗‖p,q < ∞.

Aboundedmeasurable function a is a p-atom, if there exists a dyadic 2-dimensional
cube I2 , such that

a)
∫
I2

adμ = 0 ;

b) ‖a‖∞ � μ(I2)−1/p ;
c) supp a ⊂ I2 .
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An operator T which maps the set of martingale into the collection of measurable
functions will be called p-quasi-local if there exists a constant Cp > 0 such that for
evey p-atom a ∫

K2\I2

|Ta|p � Cp < ∞,

where I2 is the support of the atom.
The Rademacher functions are defined by

rn(x) := r0(2nx), n � 1 and x ∈ K, where r0(x) :=

{
1 if x ∈ [0, 1/2),

−1 if x ∈ [1/2, 1),

and r0(x + 1) := r0(x). Each natural number n can be uniquely expressed as n =∑∞
i=0 ni2i, ni ∈ {0, 1} (i ∈ N), where only a finite number of ni ’s are different from

zero. Let the order of 1 � n be denoted by |n| := max{j ∈ N : nj �= 0} .
The Walsh-Paley functions are defined by

wn(x) :=
∞∏
k=0

(rk(x))nk .

The Walsh-Kaczmarz functions are defined by κ0 := 1 and for n � 1

κn(x) := r|n|(x)
|n|−1∏
k=0

(r|n|−1−k(x))nk .

Each x ∈ K = [0, 1) can be expressed as x =
∑∞

j=0 xj2−n−1 , where xj ∈ {0, 1}
(j ∈ N) . This expression is unique if x is not a dyadic rational. In other words, if x is
not of the form j/2n , where j, n are nonnegative integers. If x is a dyadic rational, then
we choose the expansion which terminates in zeros. In this way we have the unicity of
this expression for all x . Later we need the notation es := 1

2s , xses = xs
2s .

For A ∈ N define the transformation τA : K → K by

τA(x) :=
xA−1

21
+

xA−2

22
+ · · · + x0

2A−1
+

∞∑
j=A

xj

2j+1
.

In other words, if the coordinates of x are x0, x1, . . . , xA−1, xA, . . . , then the coordinates
of τA(x) are xA−1, xA−2, . . . , x1, x0, xA, . . . . By the definition of τA (see [10]), we have

κn(x) = r|n|(x)wn(τ|n|(x)) (n ∈ N, x ∈ [0, 1)).

The Dirichlet kernels are defined by

Dα
n (x) :=

n−1∑
k=0

αk(x),

where αk = wk or κk. Recall that

D2n(x) := Dw
2n(x) = Dκ

2n(x) =
{

2n, if x ∈ [0, 1/2n),
0, if x ∈ [1/2n, 1).
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The Fourier coefficients (if f is an integrable function), the partial sums of Fourier
series, the Fejér means and the Fejér kernels are defined as follows:

ˆf α(n) :=
∫

K
f αn, Sαn (f , x) :=

n−1∑
k=0

ˆf α(k)αk(x)

tαn (f , x) :=
1
n

n∑
k=0

Sαk (f , x), Kα
n (x) :=

1
n

n∑
k=0

Dα
k (x),

where αn = wn or κn. The 2-dimensional Dirichlet kernels and Marcinkiewicz-Fejér
kernels are defined by

Dα
k,l(x

1, x2) := Dα
k (x1)Dα

l (x2), Kα
n (x1, x2) :=

1
n

n∑
k=0

Dα
k,k(x

1, x2).

The Marcinkiewicz means of the two dimensional function f is

σα
n (f , x1, x2) :=

1
n

n∑
k=0

Sαk,k(f , x
1, x2).

If f is a martingale, that is, f = (f 0, f 1, . . . ) , then the Fourier coefficients must be
defined in a little bit different way:

ˆf α(n, m) := lim
k→∞

∫
K

f kαnαm,

For f we consider the maximal operator

σ#f (x1, x2) = sup
A

|σk
2A(f , x1, x2)|.

3. Formulation of main results

THEOREM 1. Let f ∈ Hp,q(K2) , p > 1
2 , 0 < q � ∞ . Then

∥∥σ#f
∥∥

p,q
� C (p, q) ‖f ‖Hp,q

.

COROLLARY 1. Let f ∈ L1(K2) . Then

∥∥σ#f
∥∥

weak L1
� C ‖f ‖L1

.

COROLLARY 2. Let f ∈ L1(K2) . Then

σ2n(f , x1, x2) → f (x1, x2) a.e. as n → ∞.
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4. Auxiliary propositions

We shall need the following lemmas (see [13, 2, 5]).

LEMMA 1. (Weisz) Suppose that the operator T is sublinear and p -quasi-local
for each 0 < p0 < p � 1 . If T is bounded from L∞(K2) to L∞(K2) , then

‖Tf ‖pq � C (p, q) ‖f ‖pq (f ∈ Hpq

(
K2

)
)

for every 0 < p0 < p < ∞ and 0 < q � ∞. In particular, for f ∈ L1(K2) , it holds

‖Tf ‖1,∞ = ‖Tf ‖weak L1(Kd) � C ‖f ‖1 .

LEMMA 2. (Gát) Let A, s ∈ N, A > s. Suppose that x ∈ Is\Is+1 . Then for the one
dimensional Fejér kernel

Kw
2A (x) =

{
0, if x − esxs /∈ IA

2s−1 if x − esxs ∈ IA.

LEMMA 3. (Nagy) Let A, s, l ∈ N, s � l < A,
(
x1, x2

) ∈ (Is\Is+1) × (Il\Il+1) .
Then

Kw
2A

(
x1, x2

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if ∃i ∈ B1, x
1
i �= x2

i ,

0 if ∀i ∈ B1, x
1
i = x2

i , ∃m ∈ B2, x
1−es−em /∈ Il+1, x

1
m = 1,

2s+m−2 if ∀i ∈ B1, x
1
i = x2

i , ∃m ∈ B2, x
1−es−em ∈ Il+1, x

1
m = 1,

22s−1 if x1−es ∈ Il+1
(∀i ∈ B1, x

1
i = x2

i

)
,

where B1 = {l + 1, ..., A − 1} , B2 = {s + 1, ..., l} .

LEMMA 4. (Nagy) Let A, s, l ∈ N, s � l < A,
(
x1, x2

) ∈ IA × (It\It+1) and t <
t + l < A. Then

Kw
2A

(
x1, x2

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 if ∃l, t < t + l < A, x2 − x2
t et − et+l /∈ IA, x

2
t+l �= 0,

22t+l−2 if ∃l, t < t + l < A, x2 − x2
t et − et+l ∈ IA, x

2
t+l /∈ 0,

2t−2n (A, t) if x2 − x2
t et ∈ IA,

where n (A, t) =
[−2t−A

(
2A − 2t−1 + 1/2

)− (
2A − 2

)]
.

LEMMA 5. (Nagy) Let A ∈ N,
(
x1, x2

) ∈ G × G. Then

2AKκ
2A

(
x1, x2

)
= 1+

A−1∑
j=0

2jD2j,2j

(
x1, x2

)
+

A−1∑
j=0

2jD2j

(
x1

)
rj

(
x2

)
Kw

2j

(
τj

(
x2

))

+
A−1∑
j=0

2jD2j

(
x2

)
rj

(
x1

)
Kw

2j

(
τj

(
x1

))
+

A−1∑
j=0

2jrj
(
x1+x2

)
Kw

2j

(
τj

(
x1

)
, τj

(
x2

))
.
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COROLLARY 3.
sup

A

∫
K2

Kκ
2A

(
x1, x2

)
dx1dx2 < ∞.

Proof ofCorollary 3 . Since sup
A

∫
K

Kw
2A (x) dx < ∞ and sup

A

∫
K2

Kw
2A

(
x1, x2

)
dx1dx2 <

∞ we obtain the proof of Corollary 3 from Lemma 5.

5. Proofs of the main results

Proof of Theorem 1 . By Lemma 1, the proof of Theorem 1 will be complete if we
show that the operator σ# is p-quasi-local for each 1/2 < p � 1 and bounded from
L∞(K2) to L∞(K2) .

The boundedness follows from Corollary 3.
Let a be an arbitrary atom with support R = I× J and μ (I) = μ (J) = 2−N . We

may assume that I = J = IN . It is easy to see that σ2A (a) = 0 if A � N . Therefore,
we can suppose that A > N .

Using Lemma 5 and the fact that

Dw
2n (x) =

{
2n,x ∈ In,

0,x /∈ In,
(1)

for
(
x1, x2

) ∈ K2\ (IN × IN) we write

σ2Aa
(
x1, x2

)
=

1
2A

∫
IN×IN

a
(
t1, t2

) ⎛
⎝1 +

A−1∑
j=0

2jD2j,2j

(
x1 + t1, x2 + t2

)

+
A−1∑
j=0

2jD2j

(
x1 + t1

)
rj

(
x2 + t2

)
Kw

2j

(
τj

(
x2 + t2

))

+
A−1∑
j=0

2jD2j

(
x2 + t2

)
rj

(
x1 + t1

)
Kw

2j

(
τj

(
x1 + t1

))

+
A−1∑
j=0

2jrj
(
x1+t1+x2+t2

)
Kw

2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))⎞⎠ dt1dt2

=
1
2A

∫
IN×IN

a
(
t1, t2

) A−1∑
j=N+1

2jD2j

(
x1+t1

)
rj

(
x2+t2

)
Kw

2j

(
τj

(
x2+t2

))
dt1dt2

+
1
2A

∫
IN×IN

a
(
t1, t2

) A−1∑
j=N+1

2jD2j

(
x2+t2

)
rj

(
x1+t1

)
Kw

2j

(
τj

(
x1+t1

))
dt1dt2×

× 1
2A

∫
IN×IN

a
(
t1, t2

) A−1∑
j=N+1

2jrj
(
x1+t1+x2+t2

)
Kw

2j

(
τj

(
x1+t1

)
, τj

(
x2+t2

))
dt1dt2

= σ(1)
2A a

(
x1, x2

)
+ σ(2)

2A a
(
x1, x2

)
+ σ(3)

2A a
(
x1, x2

)
.

(2)
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Step 1. Integrating over (K\IN) × (K\IN) . Using (1) and the fact that |a| �
c22N/p we have

σ(1)
2A a

(
x1, x2

)
= 0, (3)

σ(2)
2A a

(
x1, x2

)
= 0, (4)

∣∣∣σ(3)
2A a

(
x1, x2

)∣∣∣ � c
22N/p

2A

A−1∑
j=N+1

2j
∫

IN×IN

∣∣Kw
2j

(
τj

(
x1+t1

)
, τj

(
x2+t2

))∣∣ dt1dt2. (5)

By Lemma 3 we see that Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

)) �= 0 implies that one of
the four cases below must hold.

1) x1 ∈ IN
(
x1
0, ..., x

1
s−1, x

1
s = 1, 0, ..., 0

)
,

t1 =
(
0, ..., 0, x1

N, ..., x1
j−1, t

1
j , ...

)
,

x2 ∈ IN
(
x1
0, ..., x

1
s−1, 0, ..., 0, x2

m = 1, 0, ..., x2
l = 1, 0, ..., 0

)
,

t2 =
(
0, ..., 0, x2

N, ..., x2
j−1, t

2
j , ...

)
;

2)
x1 ∈ IN

(
x1
0, ..., x

1
s−1, x

1
s = 1, 0, ..., 0

)
,

t1 =
(
0, ..., 0, x1

N, ..., x1
j−1, t

1
j , ...

)
,

x2 ∈ IN
(
x1
0, ..., x

1
s−1, 0, ..., 0, x2

m = 1, 0, ..., 0
)
,

t2 =
(
0, ..., 0, x2

N, ..., x2
l−1, 1 − x2

l , x
2
l+1, ..., x

2
j−1, t

2
j , ...

)
;

3)
x1 ∈ IN

(
x1
0, ..., x

1
s−1, x

1
s = 1, 0, ..., 0

)
,

t1 =
(
0, ..., 0, x1

N, ..., x1
j−1, t

1
j , ...

)
,

x2 ∈ IN
(
x1
0, ..., x

1
s−1, 0, ..., 0

)
,

t2 =
(
0, ..., 0, x2

N, ..., x2
m−1, 1 − x2

m, x2
m+1, ..., x

2
l−1, 1 − x2

l , x
2
l+1, ..., x

2
j−1, t

2
j , ...

)
;

4) x1 ∈ IN
(
x1
0, ..., x

1
N−1

)
,

t1 =
(
0, ..., 0, t1N, ..., t1s−1, 1 − x1

s , xs+1, ..., x
1
j−1, t

1
j , ...

)
,

x2 ∈ IN
(
x1
0, ..., x

1
N−1

)
,

t2 =
(
0, ..., 0, x1

N + x2
N + t1N , ..., x1

s−1 + x2
s−1 + t1s−1, x

2
s , ..., x

2
m−1,

1 − x2
m, x2

m+1, ..., x
2
l−1, 1 − x2

l , x
2
l+1, ..., x

2
j−1, t

2
j , ...

)
.

First, we consider the case 1). From Lemma 3 it is clear that∫
IN×IN

∣∣Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))∣∣ dt1dt2

� c
2j−l+j−m

22j
1

IN
(

x1
0,...,x

1
s−1

,x1
s=1,0,...,0

)
×IN

(
x1
0,...,x

1
s−1

,0,...,0,x2
m=1,0,...,x2

l =1,0,...,0
) (

x1, x2
)

� c2−l−m1
IN

(
x1
0,...,x

1
s−1

,x1
s=1,0,...,0

)
×IN

(
x1
0,...,x

1
s−1

,0,...,0,x2
m=1,0,...,x2

l =1,0,...,0
) (

x1, x2
)
,

(6)
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Next, we consider the case 2) . We have∫
IN×IN

∣∣Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))∣∣ dt1dt2

� c
22j

j∑
l=N

2j−l+j−m1
IN

(
x1
0,...,x

1
s−1

,x1
s=1,0,...,0

)
×IN

(
x1
0,...,x

1
s−1

,0,...,0,x2
m=1,0,...,0

) (
x1, x2

)
� c2−N−m1

IN
(

x1
0,...,x

1
s−1

,x1
s=1,0,...,0

)
×IN

(
x1
0,...,x

1
s−1

,0,...,0,x2
m=1,0,...,0

) (
x1, x2

)
.

(7)

Now, we consider the case 3) . We have∫
IN×IN

∣∣Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))∣∣ dt1dt2

� c
22j

j∑
m=N

j∑
l=m

2j−l+j−m1
IN

(
x1
0,...,x

1
s−1

,x1
s=1,0,...,0

)
×IN

(
x1
0,...,x

1
s−1

,0,...,0
) (

x1, x2
)

� c2−2N1
IN

(
x1
0,...,x

1
s−1

,x1
s=1,0,...,0

)
×IN

(
x1
0,...,x

1
s−1

,0,...,0
) (

x1, x2
)
.

(8)

Finally, we consider the case 4). We write∫
IN×IN

∣∣Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))∣∣ dt1dt2

� c
22j

j∑
s=N

j∑
l=s

l∑
m=s

2j−l+j−m2s−N
�

IN
(

x1
0,...,x

1
N−1

)
×IN

(
x1
0,...,x

1
N−1

) (
x1, x2

)
� c2−2N

�
IN

(
x1
0,...,x

1
N−1

)
×IN

(
x1
0,...,x

1
N−1

) (
x1, x2

)
.

(9)

From (5)-(9) we obtain∫
(K\IN)×(K\IN)

sup
A�N

∣∣∣σ(3)
2A a

(
x1, x2

)∣∣∣p dx1dx2

� c22N
N∑

s=1

N∑
l=s

l∑
m=s

1
2(m+l)p

1
22N

2s � c
N∑

s=1

1
2(2p−1)s < ∞ for 1/2 < p � 1.

(10)

Combining (3), (4) and (10) we obtain that (1/2 < p � 1)∫
(K\IN)×(K\IN)

(
σ#a

(
x1, x2

))p
dx1dx2 � cp < ∞. (11)

Step2. Integrating over IN × (K\IN) . Then, we can write

σ2Aa
(
x1, x2

)
= σ(1)

2A a
(
x1, x2

)
+ σ(3)

2A a
(
x1, x2

)
(12)
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From (1) we have

∣∣∣σ(1)
2A a

(
x1, x2

)∣∣∣ � c
22N/p

2A

A−1∑
j=N+1

2j
∫

IN×IN

D2j

(
x1 + t1

)
Kw

2j

(
τj

(
x2 + t2

))
dt1dt2

� c
22N/p

2A

A−1∑
j=N+1

2j
∫
IN

Kw
2j

(
τj

(
x2 + t2

))
dt2.

(13)

Using Lemma 2 we conclude that Kw
2j

(
τj

(
x2 + t2

)) �= 0 implies that

x2 ∈ IN
(
0, ..., 0, x2

s=1, 0, ..., 0
)

for some s=1, ..., N and t=
(
0, ..., 0, x2

N, ..., x2
j−1, t

2
j , ...

)
.

Hence,∫
IN

Kw
2j

(
τj

(
x2 + t2

))
dt2 � c

2j−s

2j
1IN(0,...,0,x2

s=1,0,...,0)
(
x2

)
� c

2s
1IN(0,...,0,x2

s=1,0,...,0)
(
x2

)
,

and consequently,∫
IN×(I\IN )

sup
A>N

∣∣∣σ(1)
2A a

(
x1, x2

)∣∣∣p dx1dx2 � cp22N
N∑

s=1

1
2sp

1
22N

� cp < ∞. (14)

Using Lemmas 3−4 it is clear that Kw
2j

(
τj

(
x1+t1

)
, τj

(
x2+t2

)) �= 0 implies that:

5) x1 ∈ IN (0) ,

t1 =
(
0, ..., 0, x1

N, ..., x1
m−1, 1 − x1

m, x1
m+1, ..., x

1
s−1, 1 − x1

s , x
1
s+1, ..., x

1
j−1, t

1
j , ...,

)
,

x2 ∈ IN
(
0, ..., 0, x2

l = 1, 0..., 0
)
,

t2 =
(
0, ..., 0, x2

N, ..., x2
j−1, t

2
j , ...

)
;

6) x1 ∈ IN (0) ,

t1 =
(
0, ..., 0, x1

N, ..., x1
j−1, t

1
j , ...

)
x2 ∈ IN

(
0, ..., 0, x2

l = 1, 0, ..., 0
)
,

t2 =
(
0, ..., 0, x2

N, ..., x1
m−1, 1 − x1

m, x1
m+1, ..., x

2
j−1, t

2
j , ...

)
;

7) x1 ∈ IN (0) ,

t1 =
(
0, ..., 0, x1

N, ..., x1
j−1, t

1
j , ...

)
x2 ∈ IN

(
0, ..., 0, x2

l = 1, 0, ..., 0
)
,

t2 =
(
0, ..., 0, x2

N, ..., , x2
j−1, t

2
j , ...

)
;

8) x1 ∈ IN (0) ,

t1 =
(
0, ..., 0, x1

N, ..., x1
j−1, t

1
j , ...

)
x2 ∈ IN

(
0, ..., 0, x2

l = 1, 0, ..., 0, xs = 1, 0, ..., 0
)
,

t2 =
(
0, ..., 0, x2

N, ..., x2
j−1, t

2
j , ...

)
;



482 G. GÁT, U. GOGINAVA AND K. NAGY

Consider the case 5). As above we get that∫
IN×IN

∣∣Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))∣∣ dt1dt2

� c2−2N1IN(0)×IN(0,...,0,x2
l =1,0...,0)

(
x1, x2

)
.

(15)

Using Lemma 4 for case 6) we obtain∫
IN×IN

∣∣Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))∣∣ dt1dt2

� c
22j

j∑
m=N

2j−m+j−l1IN(0)×IN(0,...,0,x2
l =1,0...,0)

(
x1, x2

)
� c2−N−l1IN(0)×IN(0,...,0,x2

l =1,0...,0)
(
x1, x2

)
.

(16)

The estimation of cases 7) and 8) is analogous to the estimation of cases 5) and 6)
and we have ∫

IN×IN

∣∣Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))∣∣ dt1dt2

� c2−l1IN (0)×IN(0,...,0,x2
l =1,0...,0)

(
x1, x2

)
,

(17)

∫
IN×IN

∣∣Kw
2j

(
τj

(
x1 + t1

)
, τj

(
x2 + t2

))∣∣ dt1dt2

� c2−l−s1IN (0)×IN(0,...,0,x2
l =1,0,...,0,xs=1,0,...,0)

(
x1, x2) .

(18)

By (11) − (18) we have∫
IN×(K\IN )

sup
A>N

∣∣∣σ(3)
2A a

(
x1, x2

)∣∣∣p dx1dx2

� cp2
2N

{
1

22Np

N∑
l=1

1
22N

+
N∑

l=1

1
2pl

1
2Np

1
22N

+
N∑

l=1

1
2pl

1
22N

+
N∑

l=1

N∑
s=1

1
2p(l+s)

1
22N

}

� cp < ∞.
(19)

Combining (12), (14) and (19) we obtain that∫
IN×(K\IN )

(
σ#a

(
x1, x2

))p
dx1dx2 � cp < ∞.

Step 3. Integrating over (K\IN) × IN .
The case is analogous to step 2. �
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