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ON THE REAL LINEAR POLARIZATION CONSTANT PROBLEM

MÁTÉ MATOLCSI AND GUSTAVO A. MUÑOZ

Abstract. The present paper deals with lower bounds for the norm of products of linear forms.
It has been proved by J. Arias-de-Reyna [2], that the so-called nth linear polarization constant
cn(Cn) is nn/2 , for arbitrary n ∈ N . The same value for cn(Rn) is only conjectured. In a

recent work A. Pappas and S. Révész prove that cn(Rn) = nn/2 for n � 5 . Moreover, they
show that if the linear forms are given as f j(x) = 〈 x, aj〉 , for some unit vectors aj (1 � j � n) ,

then the product of the f j ’s attains at least the value n−n/2 at the normalized signed sum of the
vectors {aj}n

j=1 having maximal length. Thus they asked whether this phenomenon remains true

for arbitrary n ∈ N . We show that for vector systems {aj}n
j=1 close to an orthonormal system,

the Pappas-Révész estimate does hold true. Furthermore, among these vector systems the only
system giving n−n/2 as the norm of the product is the orthonormal system. On the other hand,
for arbitrary vector systems we answer the question of A. Pappas and S. Révész in the negative
when n ∈ N is large enough. We also discuss various further examples and counterexamples
that may be instructive for further research towards the determination of cn(Rn) .
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