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ON THE REAL LINEAR POLARIZATION CONSTANT PROBLEM

MÁTÉ MATOLCSI AND GUSTAVO A. MUÑOZ

(communicated by L. Leindler)

Abstract. The present paper deals with lower bounds for the norm of products of linear forms.
It has been proved by J. Arias-de-Reyna [2], that the so-called nth linear polarization constant

cn(Cn) is nn/2 , for arbitrary n ∈ N . The same value for cn(Rn) is only conjectured. In a

recent work A. Pappas and S. Révész prove that cn(Rn) = nn/2 for n � 5 . Moreover, they
show that if the linear forms are given as f j(x) = 〈 x, aj〉 , for some unit vectors aj (1 � j � n) ,

then the product of the f j ’s attains at least the value n−n/2 at the normalized signed sum of the
vectors {aj}n

j=1 having maximal length. Thus they asked whether this phenomenon remains true

for arbitrary n ∈ N . We show that for vector systems {aj}n
j=1 close to an orthonormal system,

the Pappas-Révész estimate does hold true. Furthermore, among these vector systems the only
system giving n−n/2 as the norm of the product is the orthonormal system. On the other hand,
for arbitrary vector systems we answer the question of A. Pappas and S. Révész in the negative
when n ∈ N is large enough. We also discuss various further examples and counterexamples
that may be instructive for further research towards the determination of cn(Rn) .

1. Introduction and notation

For convenience we recall the basic definitions needed to discuss polynomials on a
Banach space. If K is the real or complex field and X is a Banach space over K , then
by BX and SX we denote the closed unit ball and the unit sphere of X respectively. A
map P : X → K is a (continuous) n -homogeneouspolynomial if there is a (continuous)
symmetric n -linear mapping L : Xn → K for which P(x) = L(x, . . . , x) for all x ∈ X .
In this case it is convenient to write P = L̂ . We let P(nX) denote the space of
scalar valued continuous n -homogeneous polynomials on X . We define the norm of a
(continuous) homogeneous polynomial P : X → K by

‖P‖ = sup{|P(x)| : x ∈ BX}.
For general background on polynomials, we refer to [7].

If Pk ∈ P(nkX) (1 � k � m ) then the pointwise product of the Pk ’s given by
(P1 · · ·Pm)(x) := P1(x) · · ·Pm(x) for every x ∈ X is also a homogeneous polynomial,
in fact if n = n1 + . . . + nm we have P1 · P2 · · ·Pm ∈ P(nX) . Clearly ‖P1 · · ·Pm‖ �
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‖P1‖ · · · ‖Pm‖ . An estimate in the other direction is more difficult to establish, but still
possible. Indeed, there is an absolute constant Cn1 ,...,nm such that

‖P1‖ · ‖P2‖ · · · ‖Pm‖ � Cn1,...,nm‖P1 · P2 · · ·Pm‖. (1)

Products of polynomials and estimates like (1) have been studied by several authors.
For a general account on this problem we recommend [6] and the references therein.

In this paper we will restrict ourselves to the case where the Pk ’s are contin-
uous linear functionals f 1, f 2, . . . , f n on X . Then the product (f 1f 2 · · · f n)(x) :=
f 1(x)f 2(x) · · · f n(x) is a continuous n -homogeneous polynomial on X and from (1)
there exists Cn > 0 such that

‖f 1‖‖f 2‖ · · · ‖f n‖ � Cn‖f 1f 2 · · · f n‖ . (2)

Estimate (2) was also studied by R. A. Ryan and B. Turett in [18]. In [6] it was proved,
in the case of complex Banach spaces, that Cn � nn and the constant nn is best possible
in general. However nn can be improved for specific spaces. The best fitting constant
in (2) was defined by C. Benı́tez, Y. Sarantopulos and A. Tonge in [6] as

cn(X) := inf{M > 0 : ‖f 1‖ · · · ‖f n‖ � M · ‖f 1 · · · f n‖, ∀f 1, . . . , f n ∈ X∗},
and in the literature it is referred to as the nth linear polarization constant of X .

Let us represent the Hilbert space of the n -tuples of elements of K endowed
with the Euclidean norm ‖ · ‖2 by K

n . Then, it has been proved by S. Révész and Y.
Sarantopoulos [17] that

cn(X) � cn(Kn), ∀n ∈ N,

for any infinite dimensional Banach space X . This inequality shows the importance of
cn(Kn) when estimating cn(X) , at least for infinite dimensional Banach spaces.

J. Arias-de-Reyna proved in [2] that cn(Cn) = n
n
2 , however his proof does not

adapt to the real case. It has been conjectured in [6] that cn(Rn) = n
n
2 also holds, but

no proof has been given yet.
Observe that in order to determine cn(Rn) one only needs to consider norm-one

functionals f 1, f 2, . . . , f n in (2). Therefore by the Riesz Representation Theorem a
polynomial Pn(x) := f 1(x) · · · f n(x) , where f k ∈ S(Rn)∗ , 1 � k � n , can be written in
the form

Pn(x) = 〈 x, a1〉 · 〈 x, a2〉 · . . . 〈 x, an〉 , (3)

where aj ∈ S(Rn)∗ = SRn .
If Bn = {ej : 1 � j � n} is the canonical basis of Rn and we put aj = ej for

1 � j � n in (3), then for x ∈ BRn with coordinates (x1, . . . , xn) , we have (using the
fact that the geometric mean is smaller than the quadratic mean):

|Pn(x)| = |x1 · · · xn| � n−
n
2 (x2

1 + . . . + x2
n)

n
2 = n−

n
2 ‖x‖n

2 � n−
n
2 ,

from which ‖Pn‖ � n−
n
2 . In addition to this

|Pn(
1√
n
, . . . ,

1√
n
)| = n−

n
2 ,
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and therefore ‖Pn‖ = n−
n
2 . This lets us state that cn(Rn) � n

n
2 . In order to prove the

reverse inequality one could try and find for every Pn as in (3) a norm one vector x
in Rn satisfying |Pn(x)| � n−

n
2 . This has been done in the real case for n � 5 by A.

Pappas and S. Révész in [16], taking x as the normalization of the signed combination
of the functional vectors {aj}n

j=1 with maximal length (see next section).
A. Pappas and S. Révész also asked whether their argument can be generalized for

any dimension. We show in Section 4 that their argument fails in spaces of large enough
dimension.

Another approach to the problem of estimating cn(Rn) is using complexification
arguments together with the result of J. Arias-de-Reyna in Cn . In fact, this idea has
been used by S. Révész and Y. Sarantopoulos in [17] to prove

cn(Rn) � 2
n
2 −1n

n
2 , (4)

which is the best known estimate on cn(Rn) (see also [15] for a complete account on
results on complexifications of polynomials).

With the notation ‖Pn‖SKn := sup{|Pn(ξ)| : ξ ∈ SKn} one could aim to prove
that ‖Pn‖SRn = ‖Pn‖SCn for any {aj}n

j=1 ⊂ SRn . Then it would follow that

‖Pn‖SRn = ‖Pn‖SCn � n−
n
2 ,

from which cn(Rn) = n
n
2 . However, it is shown in Section 5 that ‖Pn‖SRn does not

necessarily coincide with ‖Pn‖SCn . Moreover, we prove that using complexification
arguments it is not possible to improve the estimate (4) .

2. Mean vectors of maximal length

In the following we will refer to a real choice of signs ε as an n -tuple, ε =
(ε1, . . . , εn) , with εj = ±1 (1 � j � n) . If a1, . . . , an ∈ SRn are n vectors in Rn we
define

aε :=
n∑

i=1

εiai. (5)

If we select ε to maximize ‖aε‖2 it can be easily shown that 〈 aε, εjaj〉 � 1 for
1 � j � n . Indeed, if we fix j (1 � j � n ) and ε′ is the choice of signs given by
ε′k = εk if k 
= j and ε′j = −εj then

‖aε‖2
2 � ‖aε′‖2

2 = ‖aε‖2 + 4(1 − 〈 aε, εjaj〉 ),

from which 〈 aε, εjaj〉 � 1 follows immediately. Note that if we replace the aj ’s in (3)
by εjaj , the norm of Pn does not change. Therefore, we can assume without loss of
generality that the choice ε = (1, 1, . . . , 1) gives the maximal length, and then, by the
argument above we have

y1 : = 〈 a1, a1〉 + 〈 a1, a2〉 + . . . + 〈 a1, an〉 � 1

y2 : = 〈 a2, a1〉 + 〈 a2, a2〉 + . . . + 〈 a2, an〉 � 1

.................................................

yn : = 〈 an, a1〉 + 〈 an, a2〉 + . . . + 〈 an, an〉 � 1.

(6)
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A. Pappas and S. Révész used in [16] this type of signed combinations. In particular
they considered the normalized mean vector

x :=
aε

‖aε‖2
=

a1 + · · · + an

‖a1 + · · · + an‖2
, (7)

(with aε having maximal length), and they obtained the following:

THEOREM 1. (A. Pappas and S. Révész [16]) Let n � 5 . If Pn is as in (3) and x
as in (7) then

|Pn(x)| =
n∏

j=1

|〈 x , aj〉 | � n−n/2 . (8)

REMARK 1. Let us note that (6) is a special case of a more general result, known
as Bang’s Lemma, see [5]. The argument for this special case occurs at several places,
see eg. [10, Lemma 2.4.1 (i) ], [12] and [16].

REMARK 2. We observe that signed combinations of vectors such as (5) have
been used in many other constructions (see for instance [8] and [10]). In all cases the
usual approach is to choose the combination of maximal length.

3. A Question of A. Pappas and S. Révész and its complex version

Estimate (8) entails the conjectured value nn/2 of the polarization constant for
dimensions n � 5 . That is why the next question was posed by A. Pappas and S.
Révész [16].

Question. (A. Pappas and S. Révész [16]). Is it true, that for any n and unit vectors
aj ∈ Rn (1 � j � n) , with signs of the unit vectors aj (1 � j � n) chosen to maximize
the length of the signed sum (and thus satisfying (6) , too), the mean value vector (7)
satisfies |P(x)| � n−n/2 ?

This question has a natural analogue in the complex case. Instead of ±1 we
consider complex choices of sign, which we define by n -tuples ε = (ε1, . . . , εn) ,
where εj = eiϕj for some ϕj ∈ [0, 2π) (1 � j � n ). In this setting we consider
complex vectors aj ∈ SCn (j = 1, . . . , n) and in this case aε is defined as

aε :=
n∑

j=1

εjaj =
n∑

j=1

eiϕjaj.

If we choose eiϕj (1 � j � n ) so as to maximize the norm of aε , as in the real case it
can be easily shown that

〈 aε, εjaj〉 = 〈
n∑

k=1

eiϕkaj, e
iϕjaj〉 � 1,

for 1 � j � n . Indeed, taking 1 � j � n , u :=
∑

k �=j e
iϕkak , v := eiϕjaj and λ ∈ C

such that |λ | = 1 and 〈 u, λv〉 = |〈 u, v〉 | , we have

‖u + v‖2
2 � ‖u + λv‖2

2 ⇔ ‖u‖2
2 + ‖v‖2

2 + 2Re (〈 u, v〉 ) � ‖u‖2
2 + ‖v‖2

2 + 2Re (〈 u, λv〉 )
⇔ Re (〈 u, v〉 ) � Re (〈 u, λv〉 ) = |〈 u, v〉 |.
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Therefore Im (〈 u, v〉 ) = 0 and 〈 u, v〉 = |〈 u, v〉 | � 0 . This implies the desired result:

〈 aε, εjaj〉 = 〈
n∑

k=1

eiϕkaj, e
iϕjaj〉 = 〈 u + v, v〉 = 〈 u, v〉 + 1 � 1.

Now, since

|Pn(z)| = |〈 a1, z〉 . . . 〈 an, z〉 | = |〈 eiϕ1a1, z〉 . . . 〈 eiϕnan, z〉 | ,
we can replace the aj ’s in (3) by eiϕjaj without loss of generality. In other words,
writing yj := 〈∑n

k=1 ak, aj〉 , we find yj � 1 , j = 1, . . . , n , as in (6). From here, the
argument proving Theorem 1 coincides with the real case (cf. [16]), considering the
normalized mean vector z :

z :=
a1 + . . . + an

‖a1 + . . . + an‖2
.

The arguments of [16] (applied verbatim) then show that z always satisfies |Pn(z)| �
n−n/2 , for n � 5 .

The advantage of this result (in these low dimensional cases) compared to [2] and
[3] is that it gives a construction for the vector z as opposed to proving existence only.

The analogue to the question of A. Pappas and S. Révész in the complex case is to
ask whether this construction of z works in all dimensions.

4. Mean vectors of maximal length for systems close to orthonormal vectors

It is plausible to expect that the only system of vectors for which ‖Pn‖ � n−n/2 is
the orthonormal system (which satisfies ‖Pn‖ = n−n/2 as shown in Section 1). Even
in the complex case, this statement does not follow from the considerations in [2] and
[3], and remains an open question. In this section we prove the local uniqueness of the
orthonormal system in both the real and the complex case. In Theorem 2 below we show
that for vectors close to the orthonormal system we always have ‖Pn‖ � n−n/2 and the
Pappas-Révész choice (7) of mean vector belonging to maximal length always provides
strict inequality (unless the system is orthonormal, in which case strict inequality is not
possible). With the help of some specific examples, however, we will show later that
the Pappas-Révész choice (7) of mean vector x does not satisfy |Pn(x)| � n−n/2 in
general.

THEOREM 2. Let H be any real or complex Hilbert space and {aj}n
j=1 ⊂ SH .

We assume (without loss of generality) that the choice of signs ε = (1, 1, . . . , 1) gives
maximal length among the mean vectros aε . (This also means that the system {aj}n

j=1

satisfies condition (6) .) Assume also, with the notation used in (6) , that yj � 3.5 ,
for j = 1, . . . , n . Then ‖Pn‖ � n−n/2 holds with equality only when yj = 1 for
j = 1, . . . , n , that is, only for the orthonormal vector system.

Proof. Before proceeding with the proof we note that the condition yj � 3.5
is certainly satisfied in a small neighbourhood of the orthonormal system. (Due to
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the dimension being finite, all definitions of “neighbourhood” are equivalent. Vector
systems in a small neighbourhood are obtained by small perturbations of the vectors of
an orthonormal system.)

Let x be the mean vector defined as in (7) . The assertion |Pn(x)| � n−n/2 is
equivalent to state that the inequality

y2
1y

2
2 · · · y2

n �
(

y1 + y2 + · · · + yn

n

)n

(9)

holds true (see [16]). With a slight reformulation, we put ti := yi − 1 (i = 1, . . . , n)
and write

(1 + t1)2(1 + t2)2 · · · (1 + tn)2 �
(

1 +
t1 + t2 + · · · + tn

n

)n

. (10)

Note that here 0 � ti � n − 1 for all i = 1, . . . , n . Now it suffices to show (10) for
real quantities 0 � tj � 2.5 ( j = 1, . . . , n ). To start with, observe that

(1 + t)2 � et. (11)

is satisfied for 0 � t � t0 , where t0 is the (unique) root of f (t) := (1 + t)2 − et in
(1,∞) . Moreover, since t0 > 2.5 , (11) follows with strict inequality if 0 < t � 2.5 .

Multiplying together this inequality for all ti with i = 1, . . . , n , we obtain

(1 + t1)2(1 + t2)2 · · · (1 + tn)2 � et1+t2+···+tn . (12)

Since ex � (1 + x/n)n for all x � 0 and n ∈ N , we conclude (10) , and hence the
assertion.

We have equality in (11) only for t = 0 , hence for equality in (12) we must have
t1 = · · · = tn = 0 . That is, {aj}n

j=1 must be an orthonormal system of vectors.

The proof of the theorem above heavily relied on the assumption yj � 3.5 . A
thorough analysis of the proof above leads us to give a negative answer to the question
of A. Pappas and S. Révész in high dimensions.

THEOREM 3. If n is large enough, then there exist vectors {aj}n
j=1 ⊂ SRn so that

taking the mean vector (7) of maximal length, we have

|Pn(x)| =
n∏

j=1

|〈 x , aj〉 | < n−n/2 . (13)

The analogous results holds for aj ∈ SCn (j = 1, . . . , n) and complex signs eiϕj .

Proof. The proof is a specific example obtained by analyzing the proof of Theorem
2 above.

Take n � 34 and let a1, . . . , an be the n unit vectors in H defined as follows:

aj := b := (
1√
6
, . . .(6) ,

1√
6
, 0 . . . , 0) for 1 � j � 6

aj := ej for 6 < j � n,
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where {ej : 1 � j � n} is the canonical basis of Kn .
Then it is obvious that a choice of signs maximizing the length of the mean vector

(both in the real and complex case) is z = 6b +
∑n

j=7 ej , and for this vector we have

|Pn(z/‖z‖)| =
66

(n + 30)
n
2

<
1

n
n
2

for n � 34.

REMARK 3. In the example above there exists a combination of signs such that
the corresponding mean vector x satisfies |Pn(x)| � n−n/2 . But this choice of signs
does not correspond to the sum vector of maximal length. Indeed, the choice x =
a1 + a2 + a3 + a4 − a5 − a6 +

∑n
j=7 aj = 2b +

∑n
j=7 ej is such a choice.

REMARK 4. The example used in the previous proof can be easily generalized by
considering natural numbers n > d and the system of vectors {aj}n

j=1 given by

aj := b := (
1√
d
, (d). . .,

1√
d
, 0 . . . , 0) for 1 � j � d

aj := ej for d < j � n.

In this case z = db +
∑n

j=d+1 ej and

|P(z/‖z‖)| =
dd

(n + d2 − d)
n
2
.

The reader can check easily that for every d ∈ N we can find n0 ∈ N with

dd

(n + d2 − d)
n
2

<
1

n
n
2

for n � n0.

It is also a simple exercise to see that the smallest possible value for n0 is 34 and it is
achieved when d = 6 .

5. Norms over Rn and over Cn

Complexifications provide another natural approach towards the determination of
real polarization constants. In this context, it is natural to ask whether the norm of a real
polynomial of the form (3) remains the same when considered over the complex unit
ball SCn instead of SRn . In view of the result of Arias-de-Reyna [2], this would imply
the conjectured value cn(Rn) = nn/2 . However, in this section we show that if n � 3
then the norm of the complex polynomial can be strictly larger than that of the real one.

The main result in this section is based on the following well-known estimate by
G. A. Muñoz, Y. Sarantopoulos and A. Tonge [15]:

THEOREM 4. If P : Rn → R (n � 2) is an n -homogeneous polynomial then

‖P‖SCn � 2
n−2

2 ‖P‖SRn . (14)
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Moveover, the constant 2
n−2

2 is sharp and equality in (14) is achieved for the polyno-
mial Rn : Rn → R defined by

Rn(x1, x2, . . . , xn) := Re (x1 + ix2)n.

Regarding the real linear polarization problem, one could hope to achieve a better
estimate than (14) by restricting attention to products of functionals instead of all n -
homogeneouspolynomials. However, we shall prove in this section that the polynomials
Rn (n ∈ N) can be written as a product of functionals as in (3) . This fact leads us
to conclude that the inequality (14) cannot be improved even if we consider only
polynomials as described in (3) .

REMARK 5. The polynomials Rn (n � 2) were originally defined in [15] on R
2 .

For simplicity we shall consider the restriction of Rn to R2 , in other words

Rn(x, y) := Re (x + iy)n. (15)

The following elementary result shall be required in order to prove that Rn (n ∈ N)
can be factored as the product of n linear forms:

LEMMA5. If P ∈ P(nR2) satisfies P(x0, y0) = 0 for some (x0, y0) ∈ R2\{(0, 0)} ,
then there exists Q ∈ P(n−1R2) such that

P(x, y) = (−y0x + x0y)Q(x, y),

for every (x, y) ∈ R2 .

Proof. Suppose that x0 
= 0 and define p(t) := P(1, t) for all t ∈ R . Then p is
a real polynomial of degree at most n such that

p(
y0

x0
) = P(1,

y0

x0
) =

1
xn
0
P(x0, y0) = 0.

Therefore p(t) = (t− y0

x0
)q(t) for some real polynomial q(t) := an−1tn−1+. . .+a1t+a0

of degree at most n − 1 . Hence, if we take (x, y) ∈ R2 with x 
= 0 we have

P(x, y) = xnp(
y
x
) = (

y
x
− y0

x0
)xnq(

y
x
) = (−y0x + x0y)

xn−1

x0
q(

y
x
).

On the other hand the mapping Q : R2 → R given by

Q(x, y) =

{
xn−1

x0
q( y

x ) if x 
= 0
an−1

x0
yn−1 if x = 0 ,

is clearly an (n − 1) -homogeneous polynomial. By continuity it follows immediately
that P(x, y) = (−y0x + x0y)Q(x, y) for all (x, y) ∈ R2 .
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THEOREM 6. If Rn (n ∈ N) is as in (15) then there exist {aj} ⊂ SR2 and a
constant K 
= 0 so that

Rn(v) = K〈 v, a1〉 · · · 〈 v, an〉 ,

for all v ∈ R2 .

Proof. Assume first that n is odd and define (identifying R
2 with C )

(xj, yj) :=
(

sin
jπ
n

,− cos
jπ
n

)
= ei( jπ

n − π
2 ) for j = 0, 1, . . . , n − 1.

Then, since 2j − n is always an odd integer for all odd n ∈ N and 0 � j � n − 1 , it
follows that

Rn(xj, yj) := Re ein( jπ
n − π

2 ) = Re ei(2j−n) π2 = 0,

and hence by Lemma 5 for every v ∈ R2

Rn(v) = K〈 v, a1〉 · · · 〈 v, an〉 ,

where aj = (cos jπ
n , sin jπ

n ) for 0 � j � n − 1 and

K =
1∏n−1

j=0 cos jπ
n

= (−1)
n−1

2 2n−1.

Now suppose that n is even and define

(xj, yj) :=
(

sin
(2j + 1)π

2n
,− cos

(2j + 1)π
2n

)
= ei( (2j+1)π

2n − π
2 ) for j = 0, 1, . . . , n − 1.

Then since 2j + 1 − n is always an odd integer for all even n ∈ N and 1 � j � n − 1
we have

Rn(xj, yj) = Re ein( (2j+1)π
2n − π

2 ) = Re ei(2j+1−n) π2 = 0.

and hence by Lemma 5 for every v ∈ R2

Rn(v) = K〈 v, a1〉 · · · 〈 v, an〉 ,

where aj = (cos (2j+1)π
2n , sin (2j+1)π

2n ) for 0 � j � n − 1 and

K =
1∏n−1

j=0 cos (2j+1)π
2n

= (−1)
n
2 2n−1.

REMARK 6. If aj = (a1
j , a

2
j ) (1 � j � n) are the unit vectors obtained in Theorem

6 and we regard the aj ’s as vectors in Rn (n � 2) by setting aj := (a1
j , a

2
j , 0 . . . , 0) ∈

R
n (1 � j � n) , then the n -homogeneous polynomial Pn : R

n → R defined by

Pn(x) := 〈 x, a1〉 · · · 〈 x, an〉 ,

is of the type (3) and satisfies

‖Pn‖SCn = 2
n−2

2 ‖Pn‖SRn .
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This shows that the complexification argument used to prove estimate (4) cannot be
improved.
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[16] A. PAPPAS, SZ. RÉVÉSZ, Linear polarization constants of Hilbert spaces, Preprint of the Alfréd Rényi
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