
Mathematical
Inequalities

& Applications
Volume 9, Number 3 (2006), 511–519

ON THE RANGE KERNEL ORTHOGONALITY

AND P–SYMMETRIC OPERATORS
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Abstract. Let H be a separable infinite dimensional complex Hilbert space, and let L(H) denote
the algebra of all bounded linear operators on H . For given A ∈ L(H) , we define the derivation
δA : L(H) −→ L(H) by δA(X) = AX − XA . In this paper we establish the orthogonality of
the range R(δA) and the kernel ker(δA) of a derivation δA induced by a cyclic subnormal
operator A , in the usual sense. We give a version of the Putnam - Fuglede theorem. We establish
a short proof of the principal result of F. Wenying and J. Guoxing in [10]. Relatad results for
P-symmetric operators are also given.

1. Introduction

Let H be an infinite dimensional complex Hilbert space and let L(H) denote the
algebra of all bounded linear operators acting on H . If A ∈ L(H) , then the inner
derivation induced by A is the operator δA defined by

δA :L(H) −→ L(H)
X �−→ δA(X) = AX − XA.

Given subspaces M and N of a Banach space V with norm ‖.‖ , M is said to
be orthogonal to N if ‖m + n‖ � ‖n‖ for all m ∈ M and n ∈ N . This definition
generalizes the idea of orthogonality in Hilbert space.

Let A be a normal operator, Anderson [1] has shown that if S is in the commutant
{A}′

of A (i.e. [A, S] = AS − SA = 0 ), then for all X ∈ L(H) we have

‖δA(X) + S‖ � ‖S‖
where ‖ · ‖ is the usual operator norm. The above inequality says that the range R(δA)
of the derivation δA is orthogonal to the kernel ker(δA) of δA .

The study of the range-kernel orthogonality of derivations has been considered in
a number of papers (see [9], [15], [16], [17] and some of the references cited in these
papers), and much attention has been given to its investigations with respect to different
norms (see [9], [15], [16] and [18]).
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It has been shown in Theorem4 [14] that if A ∈ L(H) is a cyclic subnormal operator
and if S ∈ C2(H) ∩ {A}′

, where C2(H) is the Hilbert-Schmidt class associated with
the norm ‖ · ‖2 , then for all X ∈ L(H) we have

‖δA(X) + S‖2
2 = ‖δA(X)‖2

2 + ‖S‖2
2.

In the same direction, it should be noted that F. Kittaneh remarked that the Theorem
2 in [15], can be modified to insure that if A ∈ L(H) is a cyclic subnormal operator
and S ∈ J∩ {A}′

, such that J is the norm ideal associated with the unitarily invariant
norm ‖ · ‖J , then for all X ∈ L(H) we have also

‖δA(X) + S‖J � ‖S‖J.

The purpose of the first section is to prove the orthogonality of the range and the
kernel of an inner derivation induced by a cyclic subnormaloperator in the usual operator
norm (i.e. on the whole space L(H) ). Moreover, we give an example showing that
the cyclicity assumption on a subnormal operator A is sufficient for the range-kernel
orthogonality to be hold. Finally, it is natural to ask if this range-kernel orthogonality
result has a τA analogue, where τA is the elementary operator defined on L(H) by
τA(X) = AXA − X and A is a cyclic subnormal operator.

In the second section we give a version of the Putnam-Fuglede theorem. Given
A, B ∈ L(H) and let F be a two sided ideal of L(H) . The pair (A, B) is said to possess
the Putnam-Fuglede commutativity theorem (PF)F if AT = TB and T ∈ F implies
A∗T = TB∗ . We show that the set∑

(F) = {A ∈ L(H) : (A, A) has property (PF)F}
is not norm closed. This result allow us to give a characterization of operators A such
that the pair (A, A) has the property (PF)Cp , where Cp denote the Von Newmann
schatten class for p > 1 . Consequently, we obtain a short proof of the principal result
of F. Wenying and G. Guoxing in [10]. We conclude this section with some notations.

Notations. Let K(H) be the ideal of all compact operators. For A ∈ L(H) , let
[A] denote the coset of A in the Calkin algebra C(H) = L(H)/K(H) . Let C1(H) be
the ideal of trace class operators, the trace function is defined on C1(H) by tr(T) =∑

n(Ten, en) , where (en)n is any complete orthonormal sequence in H . For 1 < p < ∞
we denote CP(H) the Von Neumann-Schatten class and ‖ · ‖p its associated norm.
R(δA/CP) is the norm closure of the range of δA/CP . The annhilateur of R(δA/CP) is
denoted by

R(δA/CP)◦ = {f ∈ (Cp(H))
′

: f (AX − XA) = 0 for all X ∈ CP(H)}.
In addition to the notation already introduced, we shall use the following notation.

Given X ∈ L(H) , we shall denote the kernel, the orthogonal complement of the kernel
and the range of X by ker(X) , (ker(X))⊥ and R(X) respectively. The spectrum, the
essential spectrum, the point spectrum and the spectral radius of X will be denoted by
σ(X) , σe(X) , σp(X) and r(X) respectively. Any other notation will be explained as
and when required.
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2. The range-kernel orthogonality

DEFINITION 2.1. A vector e◦ ∈ H is cyclic for A ∈ L(H) if H is the smallest
invariant subspace for A that contains e◦ . The operator A is said to be cyclic if it has
a cyclic vector.

DEFINITION 2.2. Let A ∈ L(H) . The operator A is said to be subnormal if there
exists a normal operator B on a Hilbert space K such that H is a subspace of K , the
subspace H is invariant under the operator B , and the restriction of B to H coincides
with A .

The basic tools in the main result of this section is to use other technics that this
used, stated below as a proposition and a remark.

PROPOSITION 2.1. Let a be a normal element of a C∗ -algebra A . Then for every
element c ∈ A satisfying ac = ca , we have

‖ax− xa + c‖ � ‖c‖
for all x ∈ A .

Proof. It is well known that there exists an ∗ -isometric isomorphism ψ and a
Hilbert space H such that ψ : A −→ L(H) preserving the order [13]. It follows that
ψ(a) is a normal operator and commutes with ψ(c) . Then combining the Anderson’s
Result for normal operators [1] and the isometric isomorphism, we get the related
inequality

‖ax− xa + c‖ � ‖c‖
for all x ∈ A .

REMARK 2.1. ( [11, p.187]) A coset [A] has norm equal to its spectral radius in
each of the following cases:

(i) [A] is hyponormal.
(ii) [A] is a Toeplitz operator.
(iii) A has norm equal to its spectral radius and A has no isolated eigenvalues of

finite multiplicity.

THEOREM 2.1. Let A ∈ L(H) be a cyclic subnormal operator. For every bounded
linear operator T such that AT = TA , we have

‖AX − XA + T‖ � ‖T‖
for all X ∈ L(H) .

Proof. Let T be in L(H) such that AT = TA . Since A is a cyclic subnormal
operator, then it follows from Yoshino’s result [20] that T is subnormal. This implies
that r(T) = ‖T‖ . Hence it is enough to prove that

‖AX − XA + T‖ � |λ |
for all X ∈ L(H) and all λ ∈ σ(T) . Furthermore, since T is a subnormal operator,
then it is well known that σ(T) = σp(T) ∪ σe(T) (see [11]).
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Let λ ∈ σ(T) . We consider the following cases for the location of λ :

Case 1. Assume that λ ∈ σp(T) . We shall divide this case into two different
steps.

(i) if λ ∈ σp(T) such that dim ker(T−λ ) < ∞ . Let us denote Eλ the subspace
ker(T − λ ) . Since AT = TA and T is subnormal , then the subspace Eλ is invariant
by T and A . Moreover A/Eλ is normal, then Eλ reduces A [18, p. 514]. Hence for
A and T we get the following decomposition

A =
(

B 0
0 C

)
, T =

(
λ 0
0 ∗

)
.

For an operator X =
(

Y Z
R S

)
, we have

AX − XA + T =
(

BY − YB + λ ∗
∗ ∗

)
.

Recall that the norm of an operator matrix is always greater than or equal to the norm of
the operator matrix consisting of its diagonal entries only [8, p. 82], applying this twice,
from the above equality we have

‖AX − XA + T‖ � ‖BY − YB + λ‖
A is a finite operator because A is subnormal [19], hence B thus. Then we obtain

‖BY − YB + λ‖ � |λ |.
Consequently we have

‖AX − XA + T‖ � |λ |
for all X ∈ L(H) and all λ ∈ σp(T) such that dim ker(T − λ ) < ∞ .

(ii) If λ ∈ σp(T) such that dim ker(T − λ ) = ∞ . Since T is a subnormal
operator then dimker(T − λ )∗ = ∞ . It follows that T − λ is not a Fredholm operator
which is equivalent to λ ∈ σe(T) (see the Case 2.).

Case 2. If λ ∈ σe(T) . For this case we may distinguish two steps.
(i) T has no isolated eigenvalues of finite multiplicity.
The condition AT = TA implies that [A][T] = [T][A] . Since A is a cyclic

subnormal operator then [A] is a normal operator according to Shaw and Berger’s result
[4]. Using the Proposition 2.1 we obtain that R(δ[A]) is orthogonal to ker(δ[A]) . From
this it follows that

‖AX − XA + T‖ � ‖[A][X]− [X][A] + [T]‖ � ‖[T]‖
for all X ∈ L(H) . Since T is subnormal and has no isolated eigenvalues of finite
multiplicity, then by Remark 2.1 we have‖[T]‖ = r([T]) . Hence by a standart argument
we have

‖[A][X]− [X][A] + [T]‖ � |λ |
for all X ∈ L(H) . It follows

‖AX − XA + T‖ � |λ |
for all X ∈ L(H) .
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(ii) If T has isolated eigenvalues of finite multiplicity. We consider the subspace
E =

∨
μ∈β(T) ker(T − μ) , where β(T) is the set of all isolated eigenvalues of T with

finite multiplicity. The condition AT = TA implies that T is subnormal. Since T/E is
a normal operator then E reduces T . With respect to the decomposition H = E⊕E⊥ ,
we have

T =
(

T1 0
0 T2

)
.

Applying Proposition 2.1 to the Calkin algebra, it is easily seen that

‖AX − XA + T‖ � ‖[A][X] − [X][A] + [T]‖ � ‖[T]‖.
On the other hand it is clear to check that T is a Fredholm operator if and only if

T2 is a Fredholm operator (see [7] Exercise 3 p. 352). It follows that λ ∈ σe(T) if and
only if λ ∈ σe(T2) . Consequently we get σe(T) = σe(T2) . By hypothesis we have
λ ∈ σe(T) = σe(T2) and T = T1 ⊕ T2 . Using [8, p. 82] one obtains

inf
{‖

(
K1 + T1 K2

K3 T2 + K4

)
‖, K1, K2, K3, K4 compacts

}
�inf

{‖T2+K4‖, K4 compact
}
.

Then it follows immediately

‖[T]‖ � ‖[T2]‖.
Since T2 has no isolated eigenvalues of finite multiplicity, then by the Remark 1

we have ‖AX − XA + T‖ � |λ | . This implies that

‖AX − XA + T‖ � |λ |
for all X ∈ L(H) and all λ ∈ σe(T) .

Finally, we conclude that

‖AX − XA + T‖ � |λ |
for all X ∈ L(H) and all λ ∈ σ(T) . Then

‖AX − XA + T‖ � ‖T‖
for all X ∈ L(H) and all T ∈ {A}′

.

EXAMPLE. Let U be the unilateral shift operator of multiplicity one. On H ⊕ H ,

we consider the operators A =
(

U 0
0 0

)
, T =

(
0 0
P 0

)
and X =

(
0 0
Q 0

)
, where

P = 1−UU∗ and Q = PU∗ . Then A is a noncyclic subnormal operator and T ∈ {A}′
.

It is easy to see that δA(X) + T = 0 but ‖T‖ = 1 ; and so R(δA) is not orthogonal to
ker(δA) .

According to the preceding theorem, this example indicates that the cyclicity
assumption on A is sufficient for the range-kernel orthogonality of δA to hold. It has
been used earlier in [15].

REMARK 2.2. There exist subnormal operator A and operator X such that AX =
XA and A∗X �= XA∗ . Hence the Putnam-Fuglede commutativity theorem cannot be
extended to subnormal operators.
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PROPOSITION 2.2. Let A be cyclic subnormal operator, then ‖T‖ � dist(T, R(τA))
for all paranormal or hyponormal operator T in ker(τA) .

Proof. Suppose that T is a hyponormal operator in ker(τA) . The condition
ATA = T implies that AT2 = T2A . Applying the Theorem 2.1 we get

‖T2‖ � ‖AY − YA + T2‖
for all Y ∈ L(H) . Replacing Y by XAT one obtains

‖T‖ � ‖AXA− X + T‖
for all X ∈ L(H) . Which completes the proof of the proposition.

REMARK 2.3. If A is a cyclic subnormal operator, then we deduce from the
Theorem2.1 that R(δA) is orthogonal to ker(δA) , hence R(δA)∩{A}′

= {0} . Anderson
proved that R(δA) ∩ {A}′

= {0} if A is normal or isometric (see [1]).

Open problem. Let τA denotes the elementary operator τA : L(H) −→ L(H)
defined by τA(X) = AXA − X . If A is a cyclic subnormal operator we ask if we have
the range-kernel orthogonality for τA .

3. P-symmetric operators

DEFINITION 3.1. Let A, B ∈ L(H) and F be a two sided ideal of L(H) . The
pair (A, B) is said to possess the Fuglede-Putnam property (shortened to (PF)F ) if
AT = TB and T ∈ F implies A∗T = TB∗ .

REMARK 3.1. It is shown in Proposition 1 [4], that the pair (A, A) of operators has
the property (PF)F , where F is a two sided ideal of L(H) , under one of the following
hypothesis:

(i) A is a normal operator.
(ii) A is an isometry.
(iii) A is a cyclic subnormal operator.
(iv) A is invertible such that ‖A−1‖‖A‖ = 1 .

PROPOSITION 3.1. Let F be a two sided ideal of L(H) . Then the set of operators
∑

(F) = {A ∈ L(H) : (A, A) has the property (PF)F}

is not norm closed in L(H) .

Proof. To see this, we define a sequence of operators (Sn)n and S as follows. Let
(ek)k�0 be an orthonormal basis for H , we consider the operators

Snek =
{ 1

n if k = 0,

ek+1 otherwise.
and Sek =

{
0 if k = 0,

ek+1 otherwise.
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It is clear that ‖Sn − S‖ −→ 0 . On the other hand , for all n � 1 , Sn is a cyclic
subnormal operator. Then from the preceding remark, it follows that Sn ∈ ∑

(F) for
all non-negative integer n .

Let us consider T = e◦ ⊗ e1 , the rank one operator defined by Tx = (x, e1)e◦ for
all x ∈ H . Evidently T ∈ F and ST = TS . However, a simple calculation show that
S∗T �= TS∗ , which implies that S �∈ ∑

(F) . This completes the proof.

REMARK 3.2. It is elementary to show that the weighted shift S defined above is
subnormal. Since S �∈ ∑

(F) for all two sided ideal F of L(H) , it follows from the
Corollary 5 [4], that the range R(δS/C2) is not orthogonal to the kernel ker(δS/C2) .

Consequently, the cyclicity assumption on the subnormal operator S is fundamental
for the orthogonality of R(δS/C2) and ker(δS/C2) to be hold. This gives an affirmative
answer to a question raised by F. Kittaneh in [14], and treated by the authors F. Wenying
and J. Guoxing in [10].

PROPOSITION 3.2. Let A ∈ L(H) . For 1 < p < ∞ and if 1
p + 1

q = 1 , then the
following statements are equivalent:

(i) (A, A) has the property (FP)Cp .

(ii) R(δA/Cq) = R(δA∗/Cq) .
(iii) If T ∈ ker(δS/Cp) , then R(T) and (ker(T))⊥ reduces A , and the restriction

A/R(T) and A/(ker(T))⊥ are normal operators.

Proof. (i) ⇐⇒ (ii) A simple calculation shows that

R(δA/Cq) = R(δA∗/Cq)

if and only if, whenever f ∈ R(δA/Cq)◦ implies f ∗ ∈ R(δA∗/Cq)◦ , where we have
f ∗(X) = f (X∗) for all X ∈ Cq . Therefore, it suffices to show that

R(δA/Cq)◦ ∼= {A}′ ∩ Cp.

It is convenient to note that

(Cq)
′
= {f T : T ∈ Cp} ∼= Cp

for all p and q such that 1
p + 1

q = 1 .
Consequently, if f T ∈ R(δA/Cq)◦ for some operator T ∈ Cp we get

f T(A(x ⊗ y)) = f T((x ⊗ y)A)

for all x and y in H . From where

tr(TAx ⊗ y) = tr(Tx ⊗ A∗y).

But since tr(u ⊗ v) = (u, v) , we obtain (TAx, y) = (Tx, A∗y) , hence AT = TA .
Conversely, suppose that T ∈ {A}′ ∩ Cp . From the above computation, it results

easily that
f T(A(x ⊗ y)) = f T((x ⊗ y)A)
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for all x and y in H . Since the class of all finite rank operators is dense in Cq for all
q � 1 , then the desired result follows immediately .

(iii) ⇐⇒ (i) Is an obvious consequence of Lemma 2.3 [3].

Application. Let Ωp(A) , Λp(A) and Δp(A) the Banach subalgebras of Cp asso-
ciated with A defined as follows

Ωp(A) = {C ∈ Cp : CCp + CpC ⊂ R(δA/Cp)}

Λp(A) = {Z ∈ Cp : ZR(δA/Cp) + R(δA/Cp)Z ⊂ R(δA/Cp)}
Δp(A) = {B ∈ Cp : R(δB/Cp) ⊂ R(δA/Cp)}.

In the finite dimensional case, Ωp(A) , Λp(A) and Δp(A) coincides with the
subalgebras introduced in [2]. Consequently we get Ωp(A) = {0} , Λp(A) = {A}′

the commutant of A and Δp(A) = {A}" the bicommutant of A . By considering the
Fuglede-Putnam theorem it follows that Ωp(A) , Λp(A) and Δp(A) are C∗ - subalgebras
if and only if A is normal.

In the infinite dimensional case, by using theProposition 3.1 ones obtain thatΩp(A) ,
Λp(A) and Δp(A) are C∗ - subalgebras if A satisfies one of the conditions of the pre-
vious Remark 3.1.

REMARK 3.3. The class of operators A ∈ L(H) such that the pair (A, A) has the
property (FP)C1 is called a class of P-symmetric operators. For a good accounts see
([5];[6]).
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