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STABILITY OF GROUP AND RING HOMOMORPHISMS

DENGHUA ZHANG AND HUAI-XIN CAO

(communicated by Th. M. Rassias)

Abstract. In this paper, we give generalization of Hyers’ theorem on the stability of approximately
additive mapping and a generalization of Badora’s theorem on approximate ring homomorphism.
We also obtain a more general stability theorem, which gives stability theorems on Jordan and
Lie homomorphisms. The proofs of the theorems given in this paper follow essentially the D.
H. Hyers - Th. M. Rassias approach to stability of functional equations connected with S. M.
Ulam’s problem.

1. Introduction

In 1940, Ulam [1] raised the following question concerning the stability of homo-
morphisms:

Ulam’s Question.Let G1 be a group and let G2 be a metric group with a metric
d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a mapping f : G1 → G2

satisfies d(f (xy), f (x)f (y)) � δ for all x, y ∈ G1 , then there is a homomorphism
g : G1 → G2 with d(f (x), g(x)) � ε for all x ∈ G1 ?

One of the first result in this direction is the result proved by Hyers (see [2]) which
establishes the stability of a group homomorphism.

THEOREM (D. H. Hyers).Let ε � 0 and let f be a function defined on an Abelian
group (G, +) with values in a Banach space (Y, ‖ · ‖) satisfying

‖f (x + y) − f (x) − f (y)‖ � ε

for all x, y ∈ G. Then there exists a unique additive mapping h : G → Y , such that

‖f (x) − h(x)‖ � ε, ∀x ∈ G.

In 1978, Th. M. Rassias [3] provided the following drastic generalization of Hyers’s
result which allows the Cauchy difference to be unbounded.

THEOREM (Th. M. Rassias.) Consider E1, E2 to be two Banach spaces and let
f : E1 → E2 be a mapping such that f (tx) is continuous in t for each fixed x . Assume
that there exists θ � 0 and p ∈ [0, 1) such that

‖f (x + y) − f (x) − f (y)‖ � θ(‖x‖p + ‖y‖p), ∀x, y ∈ E1.
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Then there exists a unique linear mapping T : E1 → E2 such that

‖f (x) − T(x)‖ � 2θ
2 − 2p

‖x‖p, ∀x ∈ E1.

R. Badora in [4] proved the following result concerning the stability of a ring
homomorphism.

THEOREM (R. Badora). Let R be a ring and B be a Banach algebra and let
ε, δ � 0. Assume that f : R → B satisfies

‖f (x + y) − f (x) − f (y)‖ � ε

and
‖f (x · y) − f (x)f (y)‖ � δ,

for all x, y ∈ R. Then there exists a unique ring homomorphism T : R → B such that

‖f (x) − T(x)‖ � ε, ∀x ∈ R.

During the last decades, Hyers’ theorem was generalized in various directions, see
[5-10]. In this note, we will generalize Hyers’ theorem and Badora’s theorem above.
Moreover, we will give a stability theorem on Jordan homomorphism and a stability
theorem on Lie homomorphism.

2. Stability of group homomorphisms

We first prove a theorem on stability of group homomorphisms, which generalizes
Hyers’ theorem.

THEOREM 2.1. Let E1 be an Abelian group and E2 be a Banach space, if ε � 0,
r ∈ N, r � 2 and f : E1 → E2 is such that

‖f (
r∑

k=1

xk) −
r∑

k=1

f (xk)‖ � ε, ∀x1, x2, . . . , xr ∈ E1, (2.1)

then there exists a unique additive mapping T : E1 → E2 such that

‖f (x) − T(x)‖ � 1
r − 1

ε, ∀x ∈ E1. (2.2)

Proof. First, we use induction to prove that for all n ∈ N ,
∥∥∥∥ f (rnx)

rn
− f (x)

∥∥∥∥ � ε
n∑

m=1

r−m, ∀x ∈ E1. (2.3)

Indeed, the case n = 1 is clear because by the hypothesis (2.1), we have∥∥∥∥ f (rx)
r

− f (x)
∥∥∥∥ =

1
r
‖f (x + x + · · · + x) − rf (x)‖ � 1

r
ε, ∀x ∈ E1.
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Suppose that (2.3) holds for some n ∈ N . Then for each x ∈ E1 , by (2.3) we have
∥∥∥∥ f (rn · rx)

rn
− f (rx)

∥∥∥∥ � ε
n∑

m=1

r−m,

therefore ∥∥∥∥ f (rn+1x)
rn+1

− 1
r
f (rx)

∥∥∥∥ � ε
n+1∑
m=2

r−m.

The triangle inequality yields that∥∥∥∥ f (rn+1x)
rn+1

− f (x)
∥∥∥∥ �

∥∥∥∥ 1
rn+1

f (rn+1x) − 1
r
f (rx)

∥∥∥∥ +
∥∥∥∥1

r
f (rx) − f (x)

∥∥∥∥
� ε

r
+ ε

n+1∑
m=2

r−m

= ε
n+1∑
m=1

r−m.

Thus, (2.3) is valid for all n ∈ N . Since
∑n

m=1r
−m is increasingly convergent to 1

r−1 ,
we get from (2.3) that ∥∥∥∥ f (rnx)

rn
− f (x)

∥∥∥∥ � 1
r − 1

ε, ∀x ∈ E1. (2.4)

Fixed an x ∈ E1 , for all m, n ∈ N with m > n, we have from (2.4) that∥∥∥∥ 1
rm

f (rmx) − 1
rn

f (rnx)
∥∥∥∥ =

1
rn

∥∥∥∥ 1
rm−n

f (rmx) − f (rnx)
∥∥∥∥

� 1
rn

· 1
r − 1

ε.

Therefore

lim
n,m→∞

∥∥∥∥ 1
rm

f (rmx) − 1
rn

f (rnx)
∥∥∥∥ = 0.

Since E2 is a Banach space, the sequence { f (rnx)
rn } converges. Set

T(x) = lim
n→∞

1
rn

f (rnx), ∀x ∈ E1, (2.5)

then we obtain a mapping T : E1 −→ E2 . From (2.1), for all x1, x2, . . . , xr ∈ E1 and
all n ∈ N , we compute that

‖f (rn(x1 + x2 + · · · + xr)) − f (rnx1) − f (rnx2) − · · · − f (rnxr)‖ � ε,

and so
1
rn

∥∥∥∥∥f (rn
r∑

k=1

xk) −
r∑

k=1

f (rnxk)

∥∥∥∥∥ � 1
rn
ε.
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Consequently,

lim
n→∞

∥∥∥∥∥
1
rn

f (rn
r∑

k=1

xk) −
r∑

k=1

1
rn

f (rnxk)

∥∥∥∥∥ = 0.

It follows from (2.5) that

‖T(x1 + x2 + · · · + xr) − T(x1) − T(x2) − · · · − T(xr)‖ = 0.

Hence
T(x1 + x2 + · · · + xr) = T(x1) + T(x2) + · · · + T(xr)

for all x1, x2, . . . , xr ∈ E1 . Clearly, T(0) = 0 and so T is an additive mapping. From
(2.4) and (2.5) we obtain

‖T(x) − f (x)‖ � 1
r − 1

ε, ∀x ∈ E1.

Now we prove the uniqueness of T . Assume that T1 : E1 −→ E2 is an additive
mapping such

‖f (x) − T1(x)‖ � 1
r − 1

ε, ∀x ∈ E1.

Since both T and T1 are additive, we deduce that for each x ∈ E1 and all n ∈ N ,

n‖T(x) − T1(x)‖ = ‖T(nx) − T1(nx)‖
� ‖T(nx) − f (nx)‖ + ‖f (nx) − T1(nx)‖
� 2ε

r − 1
,

so that

‖T(x) − T1(x)‖ � 2ε
n(r − 1)

for all x ∈ E1 and hence T(x) = T1(x) for all x ∈ E1. This completes the proof.

REMARK 2.1. From Theorem 2.1, Hyers’ theorem can be easily proved. However,
Theorem 2.1 is not a consequence of Hyers’ theorem, because the condition (2.1)
implies only

‖f (x + y) − f (x) − f (y)‖ � ε + (r − 2)‖f (0)‖, ∀x, y ∈ E1.

Hence Hyers’ theorem says only that there exists a unique mapping T : E1 → E2 such
that

‖f (x) − T(x)‖ � ε + (r − 2)‖f (0)‖, ∀x ∈ E1

rather than (2.2) since ε + (r − 2)‖f (0)‖ > ε
r−1 .

REMARK 2.2. The condition (2.1) does not imply f (0) = 0. For example, let
f (x) = 1, ∀x ∈ R , then (2.1) holds for ε = r − 1 but f (0) = 1 . Also, in this case the
mapping T is identically zero.
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3. Stability of a ring homomorphism

In this section, we prove some results concerning stability of a ring homomorphism
and generalize R. Badora’s theorem in two directions.

THEOREM 3.1. Let R be a ring, B be a Banach algebra and r ∈ N, r � 2 and
ε, δ � 0. If f : R → B satisfies (2.1) and

‖f (x1x2 · · · xr) − f (x1)f (x2) · · · f (xr)‖ � δ, ∀x1, x2, . . . , xr ∈ R, (3.1)

then there exists a unique additive mapping T : R → B such that

T(x1)T(x2) · · · T(xr) = T(x1x2 · · · xr), ∀x1, x2, . . . , xr ∈ R (3.2)

and
‖f (x) − T(x)‖ � ε

r − 1
, ∀x ∈ R. (3.3)

Proof. Theorem2.1 shows that there exists a unique additivemapping T : R → B
satisfies (3.3). By the proof of Theorem 2.1, we see that the mapping T is given by

T(x) = lim
n→∞

1
rn

f (rnx), ∀x ∈ R. (3.4)

For all x1, x2, . . . , xr ∈ R, let

g(x1, x2, . . . , xr) = f (x1x2 · · · xr) − f (x1)f (x2) · · · f (xr),

then using inequality (3.1), we get limn→∞ 1
rn g(rnx1, x2, . . . , xr) = 0. Therefore

T(x1x2 · · · xr) = lim
n→∞

1
rn

f [rn(x1x2 · · · xr)]

= lim
n→∞

1
rn

f [(rnx1)x2 · · · xr]

= lim
n→∞

1
rn

[g(rnx1, x2, . . . , xr) + f (rnx1)f (x2) · · · f (xr)]

= T(x1)f (x2) · · · f (xr)

for all x1, x2, . . . , xr ∈ R . From the last equation and the additivity of T we see that
for all n ∈ N ,

T(x1)f (rnx2)f (x3) · · · f (xr) = T(x1 · rnx2 · x3 · · · , xr)
= T(rnx1 · x2 · · · xr)
= rnT(x1)f (x2) · · · f (xr),

and so

T(x1)
f (rnx2)

rn
f (x3) · · · f (xr) = T(x1)f (x2)f (x3) · · · f (xr).

Sending n to infinity, we see that

T(x1)T(x2)f (x3) · · · f (xr) = T(x1x2x3 · · · xr), ∀x1, x2, . . . , xr ∈ R. (3.5)
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Suppose that

T(x1)T(x2) · · · T(xr−1)f (xr) = T(x1x2 · · · xr), ∀x1, x2, . . . , xr ∈ R. (3.6)

Then from (3.6) we get that for all n ∈ N ,

1
rn

T(x1)T(x2) · · ·T(xr−1)f (rnxr) =
1
rn

T(x1x2 · · · xr−1 · rnxr)

=
1
rn

T(rn(x1x2 · · · xr))

= T(x1x2 · · · xr).

By letting n → ∞ we see that

T(x1)T(x2) · · ·T(xr) = T(x1x2 · · · xr), ∀x1, x2, . . . , xr ∈ R,

which is the desired identity (3.2).

COROLLARY 3.1. Let R be a ring with a unit 1 and B be a Banach algebra with
a unit e , and r ∈ N, r � 2, ε, δ � 0. If a mapping f : R → B satisfies (2.1) and
(3.1) and f (1) = e , then there exists a unique ring homomorphism T : R → B such
that

‖f (x) − T(x)‖ � ε
r − 1

, ∀x ∈ R. (3.7)

Proof. From Theorem 3.1, there exists a unique additive mapping T : R → B
satisfying (3.2) and (3.7). Using (3.5) we see that

T(x1)T(x2) = T(x1x2), ∀x1, x2 ∈ R.

Thus, the mapping T : R → B is also a ring homomorphism.

REMARK 3.1. Under the assumptions of Theorem 3.1, the condition f (1) = e does
not implies T(1) = e , where T is given by (3.4). For example, let f (1) = 1, f (x) =
0, ∀x ∈ R \ {1} , then we get a bounded function f : R → R satisfying

|f (x + y) − f (x) − f (y)| � ε = 2, ∀x, y ∈ R,

and
|f (xy) − f (x)f (y)| � δ = 1, ∀x, y ∈ R.

But the function T given by (3.4) is identically zero. However, by (3.6) the condition
T(1) = e does imply f (1) = e .

REMARK 3.2. By Theorem 3.1,R. Badora’s theorem can be easily proved. However
Theorem 3.1 is not a simple consequence of Badora’s theorem, see Remark 2.1 for the
reason.

Next we give the following more general stability result.

THEOREM 3.2. Let A be an Abelian group, B be a Banach space, φ : A ×A →
A be such that

2nφ(x, y) = φ(2nx, y) = φ(x, 2ny), ∀n ∈ N, x, y ∈ A ,
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and ψ : B × B → B be a continuous mapping such that

2nψ(x, y) = ψ(2nx, y) = ψ(x, 2ny), ∀n ∈ N, x, y ∈ B,

and ε, δ � 0. If f : A → B satisfies

‖f (x + y) − f (x) − f (y)‖ � ε, ∀x, y ∈ A (3.8)

and
‖f (φ(x, y)) − ψ(f (x), f (y))‖ � δ, ∀x, y ∈ A , (3.9)

then there exists a unique additive mapping T : A → B such that

T(φ(x, y)) = ψ(T(x), T(y)), ∀x, y ∈ A (3.10)

and
‖f (x) − T(x)‖ � ε, ∀x ∈ A , (3.11)

Proof. From Theorem 2.1, we know that the mapping T given by (3.4) is the
unique additive mapping satisfying (3.8) and (3.11). To show that the mapping T
satisfies (3.10), let us define

g(x, y) = f (φ(x, y)) − ψ(f (x), f (y)), ∀x, y ∈ A .

Then from condition (3.9) we see that limn→∞ 1
2n g(2nx, y) = 0, ∀x, y ∈ A . Thus, by

(3.4) we have for all x, y ∈ A ,

T(φ(x, y)) = lim
n→∞

1
2n

f (φ(2nx, y))

= lim
n→∞

(
ψ(

1
2n

f (2nx), f (y)) +
1
2n

g(2nx, y)
)

= ψ(T(x), f (y)).

From the last equation and the additivity of T , we obtain that

T(φ(x, y)) =
1
2n

T(φ(x, 2ny)) = ψ(T(x),
1
2n

f (2ny)), ∀n ∈ N.

Letting n → ∞ yields (3.10). This completes the proof.

For example, in the case where A is an algebra, we can take φ(x, y) = αxy+βyx
and take ψ similarly. Especially, we obtain the following stability theorems on Jordan
and Lie homomorphisms.

COROLLARY 3.2. Let A be an algebra, B be a Banach algebra and ε, δ � 0.
If f : A → B satisfies

‖f (x + y) − f (x) − f (y)‖ � ε, ∀x, y ∈ A (3.12)

and ∀x, y ∈ A ,

‖f ([x, y]) − [f (x), f (y)]‖(resp.‖f (x ◦ y) − f (x) ◦ f (y)‖) � δ, (3.13)
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then there exists a unique additive mapping T : A → B such that

T([x, y]) = [T(x), T(y)](resp.T(x ◦ y) = T(x) ◦ T(y)), ∀x, y ∈ A (3.14)

and
‖f (x) − T(x)‖ � ε, ∀x ∈ A , (3.15)

where [X, Y] = XY − YX is the Lie product of X, Y and a ◦ b = 1
2 (ab + ba) is the

Jordan product of a, b .
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