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FUNDAMENTALS OF EQUILIBRIUM PROBLEMS

MUHAMMAD ASLAM NOOR
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Abstract. Equilibrium problems theory provides us with a unified, natural, innovative and gen-
eral framework for studying a wide class of linear and nonlinear problems arising in finance,
economics, image reconstructions, medical imaging, ecology, network analysis, transportation.
elasticity, operations research and optimization. In this work, we consider some new classes of
equilibrium problems in the framework of convexity, invexity, g -convexity and prox-regular con-
vexity. We also study a class of equilibrium problems involving the nondifferentability Lipschitz
continuous functions, which is known as the hemiequilibrium problems. The auxiliary principle
technique is used to suggest and analyze several iterative schemes for solving these classes of
equilibrium problems. We consider the convergence analysis of these iterative algorithms under
some mild conditions. We also introduce the concept of well-posedness for the equilibrium
problems and obtain some interesting results. As special cases, we obtain several known and
new results for variational inequalities and related optimization problems. Results obtained in
this paper can be viewed as a nice and novel applications of the auxiliary principle technique in
this fast growing and fascinating field.

1. Introduction

Equilibrium problems theory has had a great impact and influence in the develop-
ment of several branches of pure and applied sciences. This theory has witnessed an
explosive growth in theoretic advances, algorithmic aspects and applications across all
discipline of mathematical and engineering sciences. In recent years, it has been shown
that the equilibrium problems theory provides a novel and unified treatment of a wide
class of linear and nonlinear problems arising in economics, finance, image reconstruc-
tion, medical imaging, ecology, transportation, network analysis, structural analysis,
elasticity and nonlinear optimization. The ideas and techniques of this theory are being
used in a variety of diverse areas and proved to be productive and innovative. It has
been shown that the equilibrium problems include variational inequalities, variational-
like inequalities, hemicariational inequalities, complmentarity problems, fixed-point,
Nash equilibrium and game theory as special cases. Hence collectively equilibrium
problems cover a vast range of applications. In the present form, the equilibrium prob-
lems were first introduced by Blum and Oettli [1] and Noor and Oettli [47] in 1994. A
classical assumption in this theory and in the algorithms for equilibrium problems is
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the convexity of the set and objective function. We call such type of the equilibrium
problems as the classical equilibrium problems. Almost all the results obtained in this
theory are in the setting of convexity. It has been noted that these results may not hold
for the nonconvexity setting. The concept of the convexity has been generalized and
extended in many directions, which has potential and important applications in various
fields. Some of these generalizations are the introduction of preinvex (invex) functions,
g -convex functions, g -convex sets, invex sets as well as the prox-regular sets. It is well
known that the preinvex (invex) and g -convex functions may not be convex functions.
At the same time, the invex sets, g -convex sets and prox-regular sets are also noncon-
vex sets. Motivated by these concepts, Noor [33, 37] has introduced and considered
some new classes of the equilibrium problems, which are known as invex equilibrium
problems, nonconvex (g -convex) equilibrium problems, regular equilibrium problems
and hemiequilibrium problems. These new classes are quite different classes of the
equilibrium problems and have no inter relationship with each other. However all these
classes of the equilibrium problems include the classical equilibrium problems and
variational inequalities as special cases. We also consider another class of equilibrium
problems, which is called the hemiequilibrium problems related to the concept of the
hemivariational inequalities involving the nonlinear nondifferentiable Lipschitz contin-
uous functions. Hemivariational inequalities were introduced by Panagiotopoulos [48]
in early 1980’s.

In recent years, several numericalmethods including projection technique, Wiener-
Hopf (resolvent) equations, auxiliary principle technique have been developed for vari-
ational inequalities and related optimization problems. Unfortunately, the projection
method and its variant forms including the Wiener-Hopf equations can not be extended
for solving equilibrium problems, since it is not possible to find the projection of the
bifunction from the whole space onto the convex set. To overcome this drawback,
one usually uses the auxiliary principle technique, the origin of which can be traced
back to Lions and Stampacchia [14]. The main and basic idea in this technique is to
consider an auxiliary problem related to the original problem. This way one defines
a mapping connecting the solutions of these problems. In this case, one has to show
that the mapping connecting the solutions is a contraction mapping and consequently
it has a fixed point, which is the solution of the original problem. Glowinski, Lions
and Tremolieres [10] has used this technique to study the existence of a solution of
mixed variational inequalities, whereas Noor [26-43] has used this technique to suggest
and analyze a number of iterative methods for solving various classes of variational
inequalities and equilibrium problems. We again use the auxiliary principle technique
to suggest and analyze some classes of iterative methods for solving these classes of
equilibrium problems. We have studied the convergence criteria of these methods under
some mild conditions. As a consequence of this approach, we construct the gap (merit)
function for equilibrium problems, which can be used to develop descent-type methods
for solving equilibrium problems. We also introduce the concept of well-posedness for
equilibrium problems and obtain some results. The interested reader is urged to explore
these problems further and discover some new, novel and innovative applications of
the reqularized equilibrium problems in the setting of different normed space. Our re-
sults can be viewed as significant extension and generalization of the previously known
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results for solving classical variational inequalities and equilibrium problems.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈 ., .〉
and ‖.‖ respectively. Let K be a nonempty closed convex set in H. Let T : H −→ H
be a nonlinear operator. For a given nonlinear function F(., ., .) : K × K × K −→ R,
consider the problem of finding u ∈ K such that

F(u, Tu, v) � 0, ∀v ∈ K, (2.1)

which is called the equilibrium problem with trifunction considered and investigated
by Noor and Oettli [47] in 1994.

If F(u, Tu, v) ≡ F(u, v), then problem (2.1) is equivalent to finding u ∈ K such
that

F(u, v) � 0, ∀v ∈ K. (2.2)
Problem (2.2) is known as the classical equilibrium problem introduced and studied by
Blum and Oettli [1] and Noor and Oettli [47]. It has been shown a wide class of problems
including fixed-point, Nash equilibrium, transportaion and variational inequalities can
be obtained as special cases of problems (2.1) and (2.2), see the references.

If F(u, v) = 〈Tu, v− u〉 , then problem (2.1) is equivalent to finding u ∈ K such
that

〈Tu, v − u〉 � 0, ∀v ∈ K, (2.3)
which is known as the classical variational inequality introduced and studied by Stam-
pacchia [53] in 1964. It is well-known that a wide class of obstacle, unilateral, contact,
free, moving and equilibrium problems arising in mathematical, engineering, econom-
ics and finance can be studied in the unified and general framework of the variational
inequalities of type (2.3). For the physical and mathematical formulation of problems
(2.1) and (2.2), see [1-56] and the references therein.

We also need the following concepts and results.

LEMMA 2.1. ∀u, v ∈ H,

2〈 u, v〉 = ‖u + v‖2 − ‖u‖2 − ‖v‖2. (2.4)

LEMMA 2.2. For a given z ∈ H, u ∈ K satisfies the inequality

〈 u − z, v − u〉 � 0, ∀v ∈ K,

if and only if
u = PKz,

where PK is the projection of H onto the convex closed set K.

Lemma 2.2 is known as the Projection Lemma and plays fundamental role in
the studies of the variational inequalities and related optimization problems. It is well
known that the projection operator PK is nonexpansive and monotone, that is,

‖PKu − PKv‖ � ‖u − v‖, ∀u, v ∈ K

〈PKu − PKv, u − v〉 � 0, ∀u, v ∈ K.
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DEFINITION 2.1. The trifunction F(., ., .) and the operator T are said to be:
(i) strongly jointly monotone, if there exists a constant γ > 0 such that

F(u, Tu, v) + F(v, Tv, u) � −γ ‖u − v‖2, ∀u, v ∈ K.

(ii) jointly pseudomonotone, if

F(u, Tu, v) � 0 =⇒ −F(v, Tv, u) � 0, ∀u, v ∈ K.

(iii) partially relaxed strongly jointlymonotone, if there exists a constant α > 0
such that

F(u, Tu, v) + F(v, Tv, z) � α‖z − u‖2, ∀u, v, z ∈ K.

(iv) jointly hemicontinuous, if ∀u, v ∈ K, the mapping t ∈ [0, 1] implies that
F(u + t(v − u), T(u + t(v − u)), v) is continuous.

Note that for z = u, partially relaxed strongly jointly monotonicity reduces to

F(u, Tu, v) + F(v, Tv, u) � 0, ∀u, v ∈ K,

which is known as jointly monotonicity. It is known that jointly monotonicity implies
jointly pseudomonotonicity, but the converse is not true.

DEFINITION 2.2. A function f is said to be strongly convex function on the
convex set K with modulus μ, if,

f (u + t(v − u)) � (1 − t)f (u) + tf (v) − t(1 − t)μ‖v − u‖2, ∀u, v ∈ K, t ∈ [0, 1].

Clearly the differentiable strongly convex function f is equivalent to

f (v) − f (u) � 〈 f ′(u), v − u)〉 + 2μ‖v− u‖2, ∀u, v ∈ K.

3. Equilibrium problems

Blum and Oettli [1] and Noor and Oettli [47] have shown that the variational in-
equalities and mathematical programmingproblems can be viewed as special realization
of the abstract equilibrium problems. Equilibrium problems have numerous applica-
tions, including but not limited to problems in economics, game theory, finance, traffic
analysis, circuit network analysis and mechanics, see the references. We suggest and
analyze some proximal methods for solving the equilibrium problems (2.1) using the
auxiliary principle technique.

For a given u ∈ K, consider the auxiliary problem of finding w ∈ K such that

ρF(w, Tw, v) + 〈w − u + γ (u − u), v − w〉 � 0, ∀v ∈ K, (3.1)

where ρ > 0 and γ > 0 are constants. We note that, if w = u, then clearly w is
solution of the equilibrium problem (2.1). This observation enables us to suggest and
analyze the following iterative method for solving (2.1).
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Algorithm 3.1. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

ρF(un+1, Tun+1, v) + 〈 un+1 − un + γn(un − un−1), v − un+1〉 � 0, ∀v ∈ K,

which is known as the inertial proximal method for solving equilibrium problem (2.1).
Such type of inertial proximal methods have been considered by Noor [27, 29, 42] for
solving variational inequalities and equilibrium problems.

If F(u, Tu, v) = F(u, v), then Algorithm 3.1 collapses to:

Algorithm 3.2. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

ρF(un+1, v) + 〈 un+1 − un + γn(un − un−1), v − un+1〉 � 0, ∀v ∈ K,

which is known as the inertial proximal method for solving equilibrium problem (2.2).
For γn = 0, Algorithm 3.1 collapses to:

Algorithm 3.3. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

ρF(un+1, Tun+1, v) + 〈 un+1 − un, v − un+1〉 � 0, ∀v ∈ K, (3.2)

which is called the proximal method for solving problem (2.1). This shows that the
inertial proximal methods include the classical proximal methods as a special case.

If F(u, Tu, v) = 〈Tu, v−u〉 , then Algorithm 3.1 reduces to the following iterative
method for solving the variational inequalities (2.3).

Algorithm 3.4. For a given u0 ∈ K, compute the approximate solution un+1 by
the iterative scheme

〈 ρTun+1 + un+1 − un + γn(un − un−1), v − un+1〉 � 0, ∀v ∈ K,

which can be written as

un+1 = PK[un − ρTun+1 + γn(un − un−1)], n = 1, 2, . . . ,

where PK is the projection of H onto the convex set K. Algorithm 3.4 is known as the
inertial proximal point algorithm for solving variational inequalities (2.3) and has been
studied by Noor [27, 29, 42]. In a similar way, one can obtain several iterative methods
for variational inequalities (2.3) and their special cases.

We now study the convergence analysis of Algorithm 3.3. The convergence anal-
ysis of Algorithms 3.1, 3.2 and 3.4 can be studied in a similar way.

THEOREM 3.1. Let ū ∈ K be a solution of (2.1) and un+1 be the approximate
solution obtained from Algorithm 3.3. If the trifunction F(., ., .) and T are jointly
pseudomonotone, then

‖un+1 − ū‖2 � ‖un − ū‖2 − ‖un+1 − un‖2. (3.3)
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Proof. Let ū ∈ K be a solution of (2.1). Then

F(ū, Tū, v) � 0, ∀v ∈ K,

which implies that
− F(v, Tv, ū) � 0, ∀v ∈ K, (3.4)

since F(., ., .) and T are jointly pseudomonotone.
Taking v = un+1 in (3.4), we have

− F(un+1, Tun+1, ū) � 0. (3.5)

Now taking v = ū in (3.2), we obtain

ρF(un+1, Tun+1, ū) + 〈 un+1 − un, ū − un+1〉 � 0. (3.6)

From (3.5) and (3.6), we have

〈 un+1 − un, ū − un+1〉 � −ρF(un+1, Tun+1, ū) � 0. (3.7)

Setting u = ū − un+1 and v = un+1 − un in (2.4), we obtain

2〈 un+1 − un, ū − un+1〉 = ‖ū − un‖2 − ‖ū − un+1‖2 − ‖un − un+1‖2. (3.8)

Combining (3.7) and (3.8), we have

‖un+1 − ū‖2 � ‖un − ū‖2 − ‖un+1 − un‖2,

the required result. �

THEOREM 3.2. Let H be a finite dimensional space. If un+1 is the approxi-
mate solution obtained from Algorithm 3.2 and ū ∈ K is a solution of (2.1) , then
limn−→∞ un = ū.

Proof. Let ū ∈ K be a solution of (2.1). From (3.3), it follows that the sequence
{‖ū − un‖} is nonincreasing and consequently {un} is bounded. Also from (3.3), we
have ∞∑

n=0

‖un+1 − un‖2 � ‖u0 − ū‖2,

which implies that
lim

n−→∞ ‖un+1 − un‖ = 0. (3.9)

Let û be a cluster point of {un} and the subsequence {unj} of the sequence {un}
converge to û ∈ H. Replacing un by unj in (3.2) and taking the limit nj −→ ∞ and
using (3.9), we have

F(û, Tû, v) � 0, ∀v ∈ K,

which implies that û solves the equilibrium problem (2.1) and

‖un+1 − un‖2 � ‖un − ū‖2.
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Thus it follows from the above inequality that the sequence {un} has exactly one cluster
point û and limn−→∞ un = û. �

It is known that in order to implement the inertial proximal and proximal algorithms,
one has to find the approximate solution implicitly, which is itself a difficult problem. To
overcome this drawback,we suggest another iterativemethod for solving the equilibrium
problem (2.1).

For a given u ∈ K, consider the auxiliary problem of finding w ∈ K such that

ρF(u, Tu, v) + 〈w − u, v − w〉 � 0, ∀v ∈ K, (3.10)

where ρ > 0 is a constant.
We note that if w = u, then clearly w is solution of the equilibrium problem

(2.1). Note that problems (3.1) and (3.10) are quite different. In fact, problem (3.10)
is equivalent to an optimization problem. This observation enables us to suggest and
analyze the following iterative method for solving the equilibrium problem (2.1).

Algorithm 3.5. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

ρF(un, Tun, v) + 〈 un+1 − un, v − un+1〉 � 0, ∀v ∈ K. (3.11)

If F(u, Tu, v) ≡ 〈Tu, v−u〉 , then Algorithm 3.5 is equivalent to the following iterative
method for solving variational inequalities (2.3).

Algorithm 3.6. For a given u0 ∈ K, compute the approximate solution un+1 by
the iterative scheme

〈 ρTun + un+1 − un, v − un+1〉 � 0, ∀v ∈ K,

or equivalently
un+1 = PK[un − ρTun], n = 0, 1, 2, . . .

where PK is the projection operator. Algorithm 3.6 has been studied extensively. For
suitable and appropriate choice of the function F(., ., .) and the space H, one can obtain
several iterative schemes for solving the problems (2.1)-(2.2) and related optimization
problems.

We now study the convergence analysis of Algorithm 3.4.

THEOREM 3.3. Let ū ∈ K be a solution of (2.1) and un+1 be the approximate
solution obtained from Algorithm 3.4 . If F(., ., .) and T are partially relaxed strongly
jointly monotone with constant α > 0, then

‖un+1 − ū‖2 � ‖un − ū‖2 − (1 − 2αρ)‖un+1 − un‖2. (3.12)

Proof. Let ū ∈ K be a solution of (2.1). Then

F(ū, Tū, v) � 0, ∀v ∈ K. (3.13)

Taking v = un+1 in (3.13) and v = u in (3.11), we have

F(ū, Tū, un+1) � 0. (3.14)
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and
ρF(un, Tun, ū) + 〈 un+1 − un, ū − un+1〉 � 0. (3.15)

From (3.14) and (3.15), we have

〈 un+1 − un, ū − un+1〉 � −ρ{F(un, Tun, ū) + F(ū, Tū, un+1)}
� −αρ‖un − un+1‖2,

(3.16)

since F(., ., .) and T are partially relaxed strongly jointly monotone with a constant
α > 0.

Combining (3.8) and (3.16), we have

‖un+1 − ū‖2 � ‖un − ū‖2 − (1 − 2ρα)‖un+1 − un‖2.

THEOREM 3.4. Let H be a finite dimensional space and let 0 < ρ < 1
2α . If un+1

is the approximate solution obtained from Algorithm 3.4 and ū ∈ H is a solution of
(2.1) , then limn−→∞ un = ū.

Proof. Its proof is similar to Theorem 3.2.

We now again use the auxiliary principle technique in conjunction with Bregman
function to suggest another class of iterative methods for solving equilibrium problems
(2.1). Convergence analysis of this class of iterative methods is distinctly different from
the previous analysis.

For a given u ∈ K, consider the problem of finding w ∈ K such that

ρF(w, Tw, v) + 〈E′(w) − E′(u), v − w〉 � 0, ∀v ∈ K, (3.17)

which is known as the auxiliary equilibrium problem. Here E′(u) is the differential
of a strongly convex function E(u) at the point u ∈ K. Problem (3.17) has a unique
solution, since the functions E is a strongly convex function.

REMARK 3.1. The function B(z, u) = E(z) − E(u) − 〈E′(u), z − u〉 associated
with the convex function E(u) is called the Bregman function. For the applications of
the Bregman function in solving variational inequalities and complementarity problems,
see the references.

We remark that if w = u, then w is a solution of (2.1). On the basis of this
observation, we suggest and analyze the following iterative algorithm for solving (2.1)
as long as (3.17) is easier to solve than (2.1).

Algorithm 3.7. For a given u0 ∈ H, calculate the approximate solution un+1 by
the iterative scheme

ρF(un+1, Tun+1, v) + 〈E′(un+1) − E′(un), v − un+1〉 � 0, ∀v ∈ K, (3.18)

Algorithm 3.7 is called the proximal point method for solving the equilibrium problems
(2.1). Note that for F(u, Tu, v) = 〈Tu, v− u〉 , Algorithm 3.7 reduces to the following
method for solving classical variational inequalities (2.3).
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Algorithm 3.8. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative scheme

〈 ρTun+1 + E′(un+1) − E′(un), v − un+1〉 � 0, ∀v ∈ K,

which is called the proximal method and has been studied extensively in recent years.
We now consider the convergence analysis of Algorithm 3.7 and this is the main

motivation of our next result.

THEOREM 3.5. Let the function F(., ., .) and T be jointly pseudomonotone. If E
is differentiable strongly convex function with modulus β > 0, then the approximate
solution un+1 obtained from Algorithm 3.7 converges to a solution u ∈ K satisfying
(2.1) .

Proof. Let u ∈ K be a solution of (2.1). Then

− F(v, Tv, u) � 0, ∀v ∈ K (3.19)

since F(., ., .) and T are jointly pseudomonotone.
Taking v = un+1 in (3.19) and v = u in (3.18), we have

− F(un+1, Tun+1, u) � 0, (3.20)

and
ρF(un+1, Tun+1, u) + 〈E′(un+1) − E′(un), u − un+1〉 � 0. (3.21)

We consider the function,

B(u, z) = E(u) − E(z) − 〈E′(z), u − z〉
� β‖u − z‖2,

(3.22)

where we have used the fact that the function E is a strongly convex function with
modulus β > 0.

Combining (3.20), (3.21) and (3.22), we have

B(u, un)−B(u, un+1) = E(un+1) − E(un) − 〈E′(un), u − un〉+〈E′(un+1), u − un+1〉
= E(un+1) − E(un)−〈E′(un) − E′(un+1), u − un+1〉
− 〈E′(un), un+1 − un〉

� β‖un+1 − un‖2 + 〈E′(un+1) − E′(un), u − un+1〉
� β‖un+1 − un‖2 − ρF(un+1, Tun+1, u)

� β‖un+1 − un‖2.

If un+1 = un, then clearly un is a solution of the equilibrium problem (2.1). Otherwise,
the sequence B(u, un)−B(u, un+1) is nonnegativeand we must have limn→∞ ‖un+1−
un‖ = 0. Now by using the technique of Zhu and Marcotte [56], it can be shown that
the entire sequence {un} converges to the cluster point u satisfying the equilibrium
problem (2.1). �

We again use the auxiliary principle technique to suggest and analyze another
iterative method for solving the equilibrium problem (2.1).
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For a given u ∈ K, consider the problem of finding w ∈ K such that

ρF(u, Tu, v) + 〈E′(w) − E′(u), v − w〉 � 0, ∀v ∈ K, (3.23)

which is called the auxiliary equilibrium problem. From the strongly convexity of the
differentiable function E, it follows that problem (3.23) has a unique solution. Note
that problems (3.23) and (3.17) are quite different. It is clear that if w = u, then w is
a solution of the equilibrium problem (2.1). This observation enables to suggest and
analyze the following iterative method for solving (2.1).

Algorithm 3.9. For a given u0 ∈ K, calculate the approximate solution un+1 by
the iterative scheme

ρF(un, Tun, v) + 〈E′(un+1) − E′(un), v − un+1〉 � 0, ∀v ∈ K. (3.24)

Note that if F(u, Tu, v) = 〈Tu, v − u〉 , then Algorithm 3.9 reduces to the following
iterative scheme for variational inequalities (2.3).

Algorithm 3.10. For a given u0 ∈ K, find the approximate solution un+1 by the
iterative scheme

〈 ρTun + E′(un+1) − E′(un), v − un+1〉 � 0, ∀v ∈ K,

which can be written as

Algorithm 3.11. For a given u0 ∈ K, compute the approximate solution

E′(un+1) = PK [E′(un) − ρTun], n = 0, 1, 2, . . . .

Note that for K = H, Algorithm 3.11 reduces to:

Algorithm 3.12. For a given u0 ∈ H, compute the approximate solution

E′(un+1) = E′(un) − ρTun, n = 0, 1, 2, . . . .

which is similar to the interior point method.
One can study the convergence analysis of Algorithm 3.9 using essentially the

technique of Theorem 3.5. However, we give its proof for the sake of completeness and
to convey an idea.

THEOREM 3.6. Let the function F(., ., .) and T be partially relaxed strongly jointly
monotone with constant α > 0 and let E(u) be strongly convex function with modulus
β > 0. If 0 < ρ < β

α , then approximate solution un+1 obtained from Algorithm 3.9
converges to a solution u ∈ K of the equilibrium problem (2.1) .

Proof. Let u ∈ K be a solution of (2.1). Then taking v = un+1 in (2.1) and
v = u in (3.24), we have

F(u, Tu, un+1) � 0. (3.25)

and
ρF(un, Tun, u) + 〈E′(un+1) − E′(un), u − un+1〉 � 0. (3.26)
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Now combining (3.22), (3.25) and (3.26), we have

B(u, un) − B(u, un+1) � β‖un+1 − un‖2 + 〈E′(un+1) − E′(un), u − un+1〉
� β‖un+1 − un‖2 − ρ{F(u, un) + F(un+1, u)}
� {β − αρ}‖un+1 − un‖2,

where we have used the fact that the bifunction F(., ., .) and T are partially relaxed
strongly jointly monotone with constant α > 0.

If un+1 = un, then clearly un is a solution of (2.1). Otherwise, for 0 < ρ < β
α , the

sequence B(u, un) − B(u, un+1) is nonnegative and we must have limn→∞ ‖un+1 −
un‖ = 0. Now by using the technique of Zhu and Marcotte [56], it can be shown that
the entire sequence {un} converges to the cluster point u satisfying the equilibrium
problem (2.1). �

It is obvious that the auxiliary equilibrium problem (3.10) is equivalent to finding
the minimum of the functional I[w] over the convex set K, where

I[w] = (1/2)〈w − u, w − u〉 − F(u, Tu, w), (3.27)

which is known as the auxiliary energy (virtual work, potential) function associated with
the problem (3.10). Using this functional I[w], one can reformulate the equilibrium
problem (2.1) as an equivalent optimization problem:

Ψα(u) = max
w∈K

{−F(u, Tu, w) − (α/2)‖u − w‖2}, (3.28)

where α > 0 is a constant. Function of the type Ψ(u) defined by (3.28) is called
the regular gap function for the equilibrium problem. Note that for α = 0, and
F(u, v) ≡ 〈Tu, v−u〉 , we obtain the original gap function for the variational inequality
(2.2), which is due to Fukushima [7]. From the above discussion and observation, it
is clear that can obtain the gap (merit) function for the equilibrium problems (2.1) by
using the auxiliary principle technique. In passing, we remark this is observation is due
to Noor [27, 29], where it has been shown that the auxiliary principle technique can
be used to construct gap functions for several variational inequalities. This equivalent
optimization formulation of the equilibrium problems can be used to develop some
descent-type algorithms for solving equilibrium problems under suitable conditions on
the function F(., .) by using the technique of Fukushima [7]. See also Masteroeni [18].

4. Invex equilibrium problems

In recent years, several extensions and generalizations have been considered for
classical convexity. A significant generalization of convex functions is that of invex
functions introduced by Hanson [13]. Hanson’s initial result inspired a great deal of
subsequent work which has greatly expanded the role and applications of invexity in
nonlinear optimization and other branches of pure and applied sciences. Weir and
Mond [54] and Noor [34-36] have studied the basic properties of the preinvex functions
and their role in optimization and variational-like inequalities. It is well-known that
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the preinvex functions and invex sets may not be convex functions and convex sets.
Noor [36] has proved that the minimum of the differentiable preinvex (invex ) functions
on the invex sets in normed spaces can be characterized by a class of variational
inequalities, known as variational-like (pre-variational) inequalities. Thus it is clear
that the concept of invexity plays exactly the same role in variational-like inequalities as
the classical convexity plays in variational inequalities. This shows that the variational-
like inequalities are well-defined only in the setting of invexity. Ironically, we note that
all the results for variational-like inequalities are being obtained in the setting of classical
convexity. No attempt has been made to utilize the concept of invexity. Since the the
preinvex and invex functions are not convex functions, so all these results for variational-
like inequalities are wrong andmeaningless, since these results have been obtained using
the KKM mappings and diagonally convexity. It is still an open problem to prove that the
subdifferential of a differentiable preinvex function is maximal monotone operator. This
implies one cannot define the resolvent operator associated with the proper, preinvex and
lower-semicontinuous functions as some authors have defined. In brief, we would like to
emphasize the fact that the variational-like inequalities must be studied in the setting of
invexity. There is a very delicate and subtle difference between the concepts of invexity
and convexity, which should be taken into account while considering variational-like
inequalities and related optimization problems.

Related to the variational-like inequalities, we consider a new class of equilibrium
problems. This class of equilibrium problems is called the invex equilibrium problems,
which was introduced by Noor [25, 33, 37]. He used the auxiliary principle technique to
suggest and analyze some iterative schemes for solving invex equilibrium problems. It
has been shown that the invex equilibriumproblems include variational-like inequalities,
equilibrium problems and variational inequalities as special cases.

First of all, we recall the following well know results and concepts.
Let f : K → H and η(., .) : K × K → H be continuous functions.

DEFINITION 4.1. Let u ∈ K . Then the set K is said to be invex at u with respect
to η(., .) , if ,

u + tη(v, u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

K is said to be an invex set with respect to η , if K is invex at each u ∈ K. The invex
set K is also called η -connected set.

From now onward K is a nonempty closed invex set in H with respect to η(., .) ,
unless otherwise specified.

DEFINITION 4.2. The function f : K → H is said to be preinvex with respect to
η , if,

f (u + tη(v, u)) � (1 − t)f (u) + tf (v), ∀u, v ∈ K, t ∈ [0, 1].

The function f : K → H is said to be preconcave if and only if −f is preinvex. Also
note that for t = 1, preinvex function reduces to:

f (u + η(v, u)) � f (v), ∀u, v ∈ K.

DEFINITION 4.3. The differentiable function f : K → H is said to be an invex
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function with respect to η(., .) , if,

f (v) − f (u) � 〈 f ′(u),η(v, u)〉 , ∀u, v ∈ K,

where f ′(u) is the differential of f at u ∈ K. The concepts of the invex and preinvex
functions have played very important role in the development of convex programming.
From definitions 4.2 and 4.3, it is clear that the differentiable preinvex function are
invex functions and the converse is also true under certain conditions, see [44]. From
definitions 4.2 and 4.3, it follows that the minimum of the differentiable preinvex(invex)
function on the invex set K in H can be characterized by the inequality of the type:

〈 f ′(u),η(v, u)〉 � 0, ∀ v ∈ K,

which is known as the variational-like inequality, see Noor [34-36]. From this formula-
tion, it is clear that the set K involved in the variational-like inequality problem is an
invex set, otherwise the variational-like inequality problem is not well-defined.

DEFINITION 4.4. A function f is said to be strongly preinvex function on K with
respect to the function η(., .) with modulus μ, if,

f (u + tη(v, u)) � (1− t)f (u) + tf (v)− t(1− t)μ‖η(v, u)‖2, ∀u, v ∈ K, t ∈ [0, 1].

Clearly the differentiable strongly preinvex function F is a strongly invex functions
with module constant μ, that is,

f (v) − f (u) � 〈 f ′(u),η(v, u)〉 + μ‖η(v, u)‖2,

and the converse is also true under certain conditions, see Noor [44]. Clearly for μ = 0,
definition 5.4 includes definition 5.2 as a special case. Also strongly invexity implies
invexity.

For given continuous bifunction function F(., ., .) and the operator T4, consider
the problem of finding u ∈ K such that

F(u, Tu, v) � 0, ∀v ∈ K, (4.1)

which is called an invex equilibrium (or equilibrium-like) problem introduced and
studied by Noor [33] recently. Here the set K is an invex set in H.

If F(u, Tu, v) ≡ 〈Tu,η(v, u)〉 , then problem (4.1) is equivalent to finding u ∈ K
such that

〈Tu,η(v, u)〉 � 0, ∀v ∈ K, (4.2)

which is known as the variational-like inequality problem. Problem (4.2) and its
variant forms have been studied extensively by many authors in the setting of convexity
using the KKM mappings and fixed-point theory. It is worth mentioning the concept of
variational-like inequalities in the convexity setting is notwell-defined and consequently
all the results so far obtained in the convexity ( scalar and vector) are misleading and
wrong. Noor [34-36] and Yang and Chen [55] have shown that the minimum of the
differentiable preinvex (invex) functions f (u) on the invex sets in the normed spaces
can be characterized by a class of variational-like inequalities (4.2) with Tu = f ′(u),
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where f ′(u) is the differential of the preinvex function f (u). This shows that the
concept of variational-like inequalities is closely related to the concept of invexity.

If η(v, u) = v−u, then the invex set K becomes the convex set and problem (4.1)
is finding u ∈ K such that

F(u, Tu, v) � 0, ∀v ∈ K, (4.3)

which is exactly the equilibrium problems (2.1) considered in Section 3.
Also the variational-like inequality (4.2) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 � 0, ∀v ∈ K, (4.4)

which is known as the classical variational inequality (2.3) introduced by Stampacchia
[53].

DEFINITION 4.5. The function F(., ., .) and the operator T are said to be:
(i) jointly pseudomonotone, if

F(u, Tu, v) � 0 =⇒ −F(v, Tv, u) � 0, ∀u, v ∈ K.

(ii) partially relaxed strongly jointly η -monotone, if there exists a constant
α > 0 such that

F(u, Tu, v) + F(v, Tv, z) � α‖η(z, u)‖2, ∀u, v, z ∈ K.

(iii) jointly hemicontinuous, if ∀u, v ∈ K and t ∈ [0, 1], the mapping
F(u + tη(v, u), T(u + tη(v, u)), v) is continuous.

Note that for z = u, partially relaxed strongly jointly monotonicity reduce to

F(u, Tu, v) + F(v, Tv, u) � 0, ∀u, v ∈ K,

which is known as the jointly monotonicity.
We also need the following condition for the function η(., .) which is due to

Mohan and Neogy [19].
Condition C. We assume that the function η(., .) satisfies the following:

η(u, u + tη(v, u)) = −tη(v, u)
η(v, u + tη(v, u)) = (1 − t)η(v, u), ∀u, v ∈ K, t ∈ [0, 1]

Clearly for t = 0, we have η(u, v) = 0, if and only if u = v, ∀u, v ∈ K. Furthermore,
it can be shown that η(u + tη(v, u), u) = tη(v, u), ∀u, v,∈ K.

LEMMA 4.1. Let the function F(., .., ) and T be jointly pseudomonotone and
jointly hemicontinuous. If the function F(., ., .) is preinvex in the third argument, then
problem (4.1) is equivalent to finding u ∈ K such that

F(v, Tv, u) � 0, ∀v ∈ K. (4.5)
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Proof. Let u ∈ K be a solution of invex equilibrium problem (4.1). Then

F(u, Tu, v) � 0, ∀v ∈ K,

implies
F(v, Tv, u) � 0, ∀v ∈ K, (4.6)

since F(., ., .) and T are jointly pseudomonotone.
Since K is an invex set, ∀u, v ∈ K, t ∈ [0, 1], there exits an operator η(., .) such

that vt = u + tη(v, u) ∈ K. Taking v = vt, in (4.6), we have

F(vt, Tvt, u) � 0, ∀vt ∈ K. (4.7)

Now, using (4.7), we have

0 � F(vt, Tvt, vt) � tF(vt, Tvt, v) + (1 − t)F(vt, Tvt, u) � tF(vt, Tvt, v). (4.8)

Dividing the inequality (4.8) by t and taking the limit as t −→ 0, since F(., ., .) and
T are jointly hemicontinuous, we have

F(u, Tu, v) � 0, ∀v ∈ K,

which shows that u ∈ K is a solution of (2.1), the required result. �
For F(u, Tu, v) = 〈Tu,η(v, u)〉 Lemma 4.1 collapses to:

LEMMA 4.2. Let T be η -pseudomonotone and η -hemicontinuous. If Condition
C holds, then problem (4.2) is equivalent to finding u ∈ K such that

〈Tv,η(u, v)〉 � 0, ∀v ∈ K. (4.9)

Proof. Let u ∈ K be solution of (4.2). Then (4.2) implies (4.9), since T is η -
pseudomonotone. Since K is an invex set, ∀u, v ∈ K, t ∈ [0, 1], vt = u+tη(v, u) ∈
K. Taking v = vt in (4.9) and using Condition C, we have

0 � −〈Tvt,η(u, vt) � t〈Tvt,η(v, u)〉 .

Using the η -hemicontinuity of T and taking the limit as t −→ 0 in the above inequality,
we have

〈Tu,η(v, u) � 0, ∀v ∈ K,

the required (4.2). �
Lemma 4.2 and Lemma 4.1 can be viewed as an extension and generalization of

Minty’s Lemma for variational-like inequalities and invex equilibrium problems, see
Noor[27, 29] and Kinderlehrer and Stampacchia [12]. Problems (4.5) and (4.9) are also
called the dual invex equilibrium problems and dual variational-like inequalities.

We use the auxiliary principle technique to suggest and analyze some iterative
algorithms for solving invex equilibrium problem (4.1). For a given u ∈ K, consider
the problem of finding w ∈ K such that

ρF(w, Tw, v) + 〈E′(w) − E′(u),η(v, w)〉 � 0, ∀v ∈ K, (4.10)
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which is known as the auxiliary invex equilibrium problem. Here E′(u) is the differen-
tial of a strong preinvex function E(u) at the point u ∈ K. Problem (4.10) has a unique
solution, since the functions E is a strongly preinvex function.

REMARK 4.1. The function B(z, u) = E(z)−E(u)−〈E′(u),η(z, u)〉 associated
with the preinvex function E(u) is called the generalized Bregman function. We note
that if η(z, u) = z− u, then B(z, u) = E(z)−E(u)−〈E′(u), z− u〉 is the well known
Bregman function.

We remark that if w = u, then w is a solution of (4.1). On the basis of this
observation, we suggest and analyze the following iterative algorithm for solving (4.1)
as long as (4.10) is easier to solve than (4.1).

Algorithm 4.1. For a given u0 ∈ H, calculate the approximate solution un+1 by
the iterative scheme

ρF(un+1, Tun+1, v) + 〈E′(un+1) − E′(un),η(v, un+1)〉 � 0, ∀v ∈ K, (4.11)

Algorithm 4.1 is called the proximal point method for solving invex equilibrium prob-
lems (4.1). Note that if η(v, u) = v − u, then Algorithm 4.1 reduces to Algorithm 3.7
for solving classical equilibrium problems (2.1).

If F(u, Tu, v) = 〈Tu,η(v, u)〉 , then Algorithm 4.1 collapse to the following
method for solving variational-like inequalities (4.2).

Algorithm 4.2. For a given u0 ∈ H, calculate the approximate solution un+1 by
the iterative scheme

〈 ρTun+1 + E′(un+1) − E′(un),η(v, un+1)〉 � 0 ∀v ∈ K.

Here E′(u) is the differential of a differentiable strongly preinvex function E(u) at a
point u ∈ K, an invex set in H. Algorithm 4.2 can be considered as a correct algorithm
for solving variational-like inequalities (4.2). Note all the algorithms and their analysis
which have been proposed and investigated in the setting of convexity are wrong. As
we have pointed out earlier that the variational-like inequalities are only well-defined
in the setting of invexity. In view of these facts and comments, results obtained must
be modified and studied in the setting of invexity. In similar way, one can obtain the
proximal point method for solving classical variational inequalities (2.3).

For the convergence analysis of Algorithms, we also need the following condition.
Assumptiom 4.1. The function η(., .) satisfies the following

η(u, v) = η(u, z) + η(z, v), ∀u, v, z ∈ H. (4.12)

Assumption 4.1 has been used to study the existence of a solution of variational-like
inequalities by many authors. Note that η(u, v) = 0 if and only if u = v ∀u, v ∈ H.

THEOREM 4.1. Let the function F(., ., .) and T be jointly pseudomonotone. If E
is differentiable strongly preinvex function with modulus β > 0 and (4.12) holds, then
the approximate solution un+1 obtained from Algorithm 4.1 converges to a solution
u ∈ K satisfying the invex equilibrium problems (4.1) .
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Proof. Let u ∈ K be a solution of (4.1). Then

− F(v, Tv, u) � 0, ∀v ∈ K (4.13)

since F(., ., .) and T are jointly pseudomonotone.
Taking v = un+1 in (4.13) and v = u in (4.11), we have

− F(un+1, Tun+1, u) � 0, (4.14)

and
ρF(un+1, Tun+1, u) + 〈E′(un+1) − E′(un),η(u, un+1)〉 � 0. (4.15)

Consider the function,

B(u, z) = E(u) − E(z) − 〈E′(z),η(u, z)〉 � β‖η(u, z)‖2, (4.16)

using the strongly invexity of E.
Combining (4.12), (4.14), (4.15) and (4.16), we have

B(u, un)−B(u, un+1) = E(un+1)−E(un)−〈E′(un),η(u, un)〉+〈E′(un+1),η(u, un+1)〉
= E(un+1) − E(un) − 〈E′(un) − E′(un+1),η(u, un+1)〉
− 〈E′(un),η(un+1, un)〉

� β‖η(un+1, un)‖2 + 〈E′(un+1) − E′(un),η(u, un+1)〉
� β‖η(un+1, un)‖2 − F(un+1, Tun+1, u)

� β‖η(un+1, un)‖2.

If un+1 = un, then clearly un is a solution of the invex equilibrium problem (4.1).
Otherwise, the sequence B(u, un) − B(u, un+1) is nonnegative and we must have

lim
n→∞ ‖η(un+1, un)‖ = 0.

Now by using the technique of Zhu and Marcotte [56], it can be shown that the entire
sequence {un} converges to the cluster point u satisfying the invex equilibriumproblem
(4.1). �

For a given u ∈ K, consider the problem of finding w ∈ K such that

ρF(u, Tu, v) + 〈E′(w) − E′(u),η(v, w)〉 � 0, ∀v ∈ K, (4.17)

which is called the auxiliary invex equilibrium problem. From the strongly preinvexity
of the differentiable function E, it follows that problem (4.17) has a unique solution.
Note that problems (4.17) and (4.10) are quite different. It is clear that if w = u, then
w is a solution of invex equilibrium problem (2.1). This observation enables to suggest
and analyze the following iterative method for solving (4.1).

Algorithm 4.3. For a given u0 ∈ H, calculate the approximate solution un+1 by
the iterative scheme

ρF(un, Tun, v) + 〈E′(un+1) − E′(un),η(v, un+1)〉 � 0, ∀v ∈ K. (4.18)
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Note that, if F(u, Tu, v) = 〈Tu,η(v, u)〉 , then Algorithm 4.3 reduces to the following
iterative scheme for variational-like inequalities (4.2).

Algorithm 4.4. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative scheme

〈 ρTun + E′(un+1) − E′(un),η(v, un+1)〉 � 0, ∀v ∈ K,

For η(v, u) = v − u, the invex set K becomes the convex set K, and consequently
Algorithms 4.2 and 4.4 are exactly the iterative methods for solving convex equilibrium
problems (2.1) and variational inequalities (2.3), which have been considered and
analyzed in Section 3.

One can study the convergence analysis of Algorithm 4.3 using essentially the
technique of Theorem 4.1. However, we give its proof for the sake of completeness and
to convey an idea.

THEOREM 4.2. Let the function F(., ., .) and T be partially relaxed strongly
jointly η -monotone with constant α > 0 and let E(u) be strongly preinvex function
with modulus β > 0. If 0 < ρ < β

α and (4.12) holds, then approximate solution un+1

obtained from Algorithm 4.3 converges to a solution u ∈ K of the invex equilibrium
problem (4.1) .

Proof. Let u ∈ K be a solution of (4.1). Then taking v = un+1 in (4.1) and
v = u in (4.18), we have

F(u, Tu, un+1) � 0. (4.19)

and

ρF(un, Tun, u) + 〈E′(un+1) − E′(un),η(u, un+1)〉 � 0. (4.20)

Now combining (4.16), (4.19) and (4.20), we have

B(u, un) − B(u, un+1) � β‖η(un+1, un)‖2 + 〈E′(un+1) − E′(un),η(u, un+1)〉
� β‖η(un+1, un)‖2 − ρ{F(u, Tu, un) + F(un+1, Tun+1, u)}
� {β − αρ}‖η(un+1, un)‖2,

where we have used the fact that the bifunction F(., ., .) and T are partially relaxed
strongly jointly monotone with constant α > 0.

If un+1 = un, then clearly un is a solution of (4.1). Otherwise, for 0 < ρ < β
α ,

the sequence B(u, un) − B(u, un+1) is nonnegative and we must have

lim
n→∞ ‖η(un+1, un)‖ = 0.

Now by using the technique of Zhu and Marcotte [56], it can be shown that the entire
sequence {un} converges to the cluster point u satisfying the invex equilibriumproblem
(4.1).
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5. Regularized equiblibriun problems

Recently, the concept of convex set has been generalized in many directions, which
has potential and important applications in various fields. A significant generalization of
the convex sets is the introduction of uniformly prox-regular (smooth) sets, see [3, 51].
It is known that uniformly prox-regular sets are nonconvex sets and include convex sets
as special case. In this Section, we introduce and consider a new class of equilibrium
problems, known as regularized equilibrium problems. These regularized equilibrium
problems are more general and include classical equilibrium problems, variational
inequalities and related optimization problems as special cases. Since the underlying
set is a nonconvex set, it is not possible to extend the usual projection and resolvent
techniques for solving regularizedmixed quasi equilibriumproblems. Fortunately, these
difficulties can be overcome by using the auxiliary principle, which has been used to
develop some iterative schemes for solving various classes of equilibrium problems and
variational inequalities in Sections 3 and 4. We point out that this technique does not
involve the projection or resolvent of the operator and is flexible. Here we show that
the auxiliary principle technique can be used to suggest and analyze a class of iterative
methods for solving regularized (nonconvex) mixed quasi equilibrium problems. We
also prove that the convergenceof these new methods either require pseudomonotonicity
or partially relaxed strongly monotonicity. As special cases, one can obtain several
known and new results for variational inequalities and related optimization problems.

First of all, we recall the following well-known concepts from nonlinear convex
analysis, see [3, 51].

DEFINITION 5.1. The proximal normal cone of K at u is given by

NP(K; u) := {ξ ∈ H : u ∈ PK [u + αξ ]},
where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ‖u − u∗‖}.
Here dK(.) is the usual distance function to the subset K, that is

dK(u) = inf
v∈K

‖v − u‖.

The proximal normal cone NP(K; u) has the following characterization.
Let K be a closed subset in H. Then ζ ∈ NP(K; u) if and only if there exists a

constant α > 0 such that

〈 ζ , v − u〉 � α‖v − u‖2, ∀v ∈ K.

DEFINITION 5.2. The Clarke normal cone, denoted by NC(K; u) , is defined as

NC(K; u) = co[NP(K; u)],

where co means the closure of the convex hull.
Poliquin et al [51] and Clarke et al [3] have introduced and studied a new class

of nonconvex sets, which are also called uniformly prox-regular sets. This class of
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uniformly prox-regular sets has played an important part inmanynonconvex applications
such as optimization, dynamic systems and differential inclusions. In particular, we
have:

DEFINITION 5.3. For a given r ∈ (0,∞], a subset K is said to be normalized
uniformly r -prox-regular if and only if every nonzero proximal normal to K can be
realized by an r -ball, that is, ∀u ∈ K and 0 �= ξ ∈ NP(K; u) with ‖ξ‖ = 1, one has

〈 ξ , v− u〉 � (1/2r)‖v− u‖2, ∀v ∈ K.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p -convex sets, C1,1 submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets; see [3, 51]. It is clear that if r = ∞, then uniform r -prox-
regularity of K is equivalent to the convexity of K. This fact plays an important part in
the analysis of regularized equilibrium problems.

It is known that if K is a uniformly r -prox-regular set, then the proximal normal
cone NP(K; u) is closed as a set-valuedmapping. Thus, we have NC(K; u) = NP(K; u).
For sake of simplicity, we denote N(K; u) = NC(K; u) = NP(K; u) and take γ = 1

2r .
Clealry γ = 0 if and only if r = ∞.

From now onward, the set K is uniformly r -prox-regular set, unless otherwise
specified.

For given nonlinear continuous trifunction F(., ., .), we consider the problem of
finding u ∈ K such that

F(u, Tu, v) + γ ‖v − u‖2 � 0, ∀v ∈ K, (5.1)

which is called the regularized equilibrium problem introduced and investigated by
Noor and Noor [45].

Note that if γ = 0, then uniformly prox-regular set K becomes the convex set K
and consequently problem (5.1) reduces to finding u ∈ K such that

F(u, Tu, v) � 0, ∀v ∈ K,

which is the equilibrium problems (2.1) considered in Section 3 using the auxiliary
principle technique.

If F(u, Tu, v) = 〈Tu, v − u〉 , then problem (5.1) is equivalent to fining u ∈ K
such that

〈Tu, v − u〉 + γ ‖u − v‖2 � 0, ∀u, v ∈ K, (5.2)

which is known as the regularized variational inequalities. Noor [30] has used the
auxiliary principle technique to suggest and analyze some iterative schemes for solving
the regularized variational inequalities (5.2). In particular, for suitable and appropriate
choice of the operators and the spaces, one can obtain a number of new and previously
known classes of equilibrium problems and variational inequalities as special cases of
problem (5.1).

We use the auxiliary principle technique to suggest and analyze some iterative
methods for solving the regularized equilibrium problems (5.1).
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For a given u ∈ K, where K is a prox-regular set in H, consider the problem of
finding w ∈ K such that

ρF(w, Tw, v) + 〈w − u, v − w〉 + γ ‖v − w‖2 � 0, ∀v ∈ K, (5.3)

where ρ > 0 is a constant. Inequality of type (5.3) is called the auxiliary regularized
equilibrium problem. Note that if w = u, then w is a solution of (5.1). This simple
observation enables us to suggest the following iterative method for solving (5.1).

Algorithm 5.1. For a given u0 ∈ K, compute the approximate solution un+1 ∈ K
by the iterative scheme

ρF(un+1, Tun+1, v) + 〈 un+1 − un, v − un+1〉 � −γ ‖un+1 − un‖2 ∀v ∈ K. (5.4)

Algorithm 5.1 is called the proximal point algorithm for solving regularized equilibrium
problems (5.1). In particular, if γ = 0, then the r -prox-regular set K becomes the
standard convex set K, and consequently Algorithm 5.1 reduces to Algorithm 3.2 for
solving the equilibrium problem (2.1).

For F(u, Tu, v) = 〈Tu, v − u〉 , Algorithm 5.1 reduces to:

Algorithm 5.2. For a given u0 ∈ K, compute the approximate solution un+1 by
the iterative scheme

〈Tun+1 + un+1 − un, v − un+1〉 + γ ‖v − un+1‖2 � 0, ∀v ∈ K,

which is called the proximal method for solving the regularized variational inequalities
(5.2). In particular, if γ = 0, then the r -prox-regular set K becomes the standard
convex set K, and consequently Algorithm 5.2 reduces to Algorithm 3.3 for solving the
variational inequalities (2.3) which is considered in Section 3.

We now suggest another method by using the auxiliary principle technique, the
convergence of which requires only the partially relaxed strongly jointly monotonicity,
which is a weaker condition than cocoercivity.

For a given u ∈ K, consider the problem of finding w ∈ K such that

ρF(u, Tu, v) + 〈w − u, v − w〉 + γ ‖v − w‖2 � 0, ∀v ∈ K, (5.5)

which is also called the auxiliary uniformly regularized equilibrium problem. Note that
problems (5.3) and (5.5) are quite different. If w = u, then clearly w is a solution of
the regularized equilibrium problem (5.1). This fact enables us to suggest and analyze
the following iterative method for solving (5.1).

Algorithm 5.3. For a given u0 ∈ K, compute the approximate solution un+1 ∈ K
by the iterative scheme

ρF(un, Tun, v) + 〈 un+1 − un, v − un+1〉 � −γ ‖v − un+1‖2, ∀v ∈ K. (5.6)

Note that for γ = 0, the r -prox-regular set K becomes a convex set K and Algorithm
5.4 reduces to Algorithm 3.4 for solving the variational inequalities (2.3).

For F(u, Tu, v) = 〈Tu, v − u〉 , Algorithm 5.3 reduces to:

Algorithm 5.4. For a given u0 ∈ K, compute the approximate solution un+1 by
the iterative scheme

〈Tun + un+1 − un, v − un+1〉 + γ ‖v− un+1‖2 � 0, ∀v ∈ K,
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for solving the regularized variational inequalities (5.2). In particular, if r = ∞,
then the r -prox-regular set K becomes the standard convex set K, and consequently
Algorithm 5.4 reduces to Algorithm 3.5 for solving the variational inequalities (2.2)
which is considered in Section 3. In a similar way, for suitable and appropriate choice
of the operators and spaces, one can obtain a number of new and known algorithms for
solving various classes of (regularized) variational inequalities and related optimization
problems. Using essentially the technique developed in Section 3, one can study the
convergence analysis of Algorithm 5.1 and Algorithm 5.3.

6. Hemiequilibrium problems

Variational inequalities have been extended and generalized in several direction
using novel and new techniques. There are significant developments of variational
inequalities related with multivalued, nonmonotone, nonconvex optimization and struc-
tural analysis. An important and useful generalization of variational inequalities is a
class of variational inequalities, which is known as hemivariational inequalities. The
hemivariational inequalities were introduced and investigated by Panagiotopoulos [48,
49] by using the concept of the generalized directional derivatives of nonconvex and
nondifferentiable functions. This class has important applications in structural analysis
and nonconvex optimization. In particular, it has been shown [5] that if a nonsmooth
and nonconvex superpotential of a structure is quasidifferentiable then these problems
can be studied via hemivariational inequalities. The solution of the hemivariational
inequalities gives the position of the state equilibrium of the structure. It is worth
mentioning that hemivariational inequalities can be viewed as a special case of mildly
nonlinear variational inequalities, considered and introduced by Noor [22]. However,
numerical techniques considered for solving mildly nonlinear variational inequalities
can not be extended for hemivariational inequalities due to the presence of nonlinear and
nondifferentiable terms. For the applications and formulation of the hemivariational
inequalities, see [5, 21, 39, 4-41, 43, 46, 48, 49] and the references therein.

Thus it is clear that hemivariational inequalities and equilibrium problems are dif-
ferent generalizations of variational inequalities. It is natural to consider the unification
of these two generalized problems. Motivated and inspired by this fact, we consider
another class of equilibrium problems which is called the hemiequilibrium problems.
The class of the hemiequilibrium problems includes the hemivariational inequalities
and equilibrium problems as special cases. In this Section, we show that the auxiliary
principle technique can be used to suggest some iterative schemes for hemiequilib-
rium problems. We also prove that the convergence of these methods require either
pseudomonotonicity or partially relaxed strongly monotonicity. These are weaker con-
ditions than monotonicity. As a special case, we obtain new iterative schemes for
solving hemivariational inequalities and related optimization problems. The compari-
son of these methods with other methods is a subject of future research.

First of all we recall the following well known concepts from the nonsmooth
analysis, see [3].
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DEFINITION 6.1. Let f be locally Lipschitz continuous at a given point x ∈ H
and v be any other vector in H. The Clarke’s generalized directional derivative of f at
x in the direction v, denoted by f 0(x, v), is defined as

f 0(x, v) = lim
t→0+

sup
h→0

f (x + h + tv) − f (x + h)
t

.

The generalized gradient of f at x, denoted ∂f (x), is defined to be subdifferential of
the function f 0(x; v) at 0. That is

∂f (x) = {w ∈ H : 〈w, v〉 � f 0(x; v), ∀v ∈ H}.
LEMMA 6.1. Let f be locally Lipschitz continuous at a given point x ∈ H with a

constant L. Then
(i) ∂f (x) is a none-empty compact subset of H and ‖ξ‖ � L for each

ξ ∈ ∂f (x).
(ii) For every v ∈ H, f 0(x; v) = max{〈 ξ , c〉 : ξ ∈ ∂f (x)}.
(iii) The function v −→ f 0(x; v) is finite, positively homogeneous, subadditive,

convex and continuous.
(iv) f 0(x;−v) = (−f )0(x; v).
(v) f 0(x; v) is upper semicontinuous as a function of (x; v).
(vi) ∀x ∈ H, there exists a constant α > 0 such that

|f 0(x; v)| � α‖v‖, ∀v ∈ H.

If f is convex on K and locally Lipschitz continuous at x ∈ K, then ∂f (x) coincides
with the subdifferential f ′(x) of f at x in the sense of convex analysis , and f 0(x; v)
coincides with the directional derivative f ′(x; v) for each v ∈ H. That is, f 0(x; v) =
〈 f ′(x), v〉 , ∀v ∈ H.

For a given nonlinear continuous trifunction F(., ., .), consider the problem of
finding u ∈ K such that

F(u, Tu, v) +
∫
Ω

f 0(u; v − u)dΩ � 0, ∀v ∈ K. (6.1)

Here f 0(u; v− u) := f 0(x, u(x); v(x)− u(x)) denotes the generalized directional deriv-
ative of the function f (x, .) at u(x) in the direction v(x)− u(x). Problem of type (6.1)
is called the hemiequilibrium problems introduced and studied by Noor [39, 41].

If F(u, Tu, v) = 〈Tu, v − u〉 , then problem (6.1) is equivalent to finding u ∈ K
such that

〈Tu, v − u〉 +
∫
Ω

f 0(u; v − u)dΩ � 0, ∀v ∈ K, (6.2)

which is known as the hemivariational inequalities introduced and studied by Pana-
giotopoulos [48, 49] in order to formulate variational principles connected to energy
functions which are neither convex nor smooth. It is has been shown that the technique
of hemivariational inequalities is very efficient to describe the behaviour of complex
structure arising in enginnering and industrial sciences, see the references.
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If the nonlinear continuous function is differentiable, then f 0(u, v) = 〈 f ′(u), v〉 ,
∀v ∈ H, and consequently the hemivariationa inequality (6.2) is equivalent to finding
u ∈ K such that

〈Tu, v − u〉 + 〈 f ′(u), v − u〉 � 0, ∀v ∈ K,

which is known as the mildly nonlinear variational inequality. It is worth mentioning
that mildly nonlinear variational inequalities were first introduced and studied by Noor
[22] in 1975. Mildly nonlinear variational inequalities have been generalized and
extended in several directions. Mildly nonlinear variational inequalities have important
applications in various branches of pure and applied sciences. Thus we conclude the
hemiequilibriumproblem is more general and includes the several classes of equilibrium
problems, variational inequalities and related optimization problems as special cases.

We again use the auxiliary principle technique to suggest and analyze a class of
iterative methods for solving the hemiequilibrium problems (6.1). The analysis is in
the spirit of Section 3. However, to convey an idea of the technique and for the sake of
completeness, we sketch the main points.

For a given u ∈ K, consider the auxiliary problem of finding w ∈ K such that

ρF(w, Tw, v)+ 〈E′(w)−E′(u), v−w〉 +ρ
∫
Ω

f 0(w; v−w)dΩ � 0, ∀v ∈ K, (6.3)

where ρ > 0 is a constant and E′(u) is the differential of a strongly convex function
E(u) at u ∈ K. Since E(u) is a strongly convex function, problem (6.3) has an unique
solution. We note that if w = u, then clearly w is solution of the hemiequilibrium
problem (6.1). This observation enables us to suggest and analyze the following iterative
method for solving (6.1).

Algorithm 6.1. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

ρF(un+1, Tun+1, v) + 〈E′(un+1) − E′(un), v − un+1〉
+ ρ

∫
Ω

f 0(un+1; v − un+1)dΩ � 0, ∀v ∈ K,
(6.4)

where ρ > 0 is a constant. Algorithm 6.1 is called the proximal method for solving the
hemiequilibrium problems (6.1).

If F(u, Tu, v) = 〈Tu, v − u〉 , then Algorithm 6.1 reduces to:

Algorithm 6.2. For a given u0 ∈ H, calculate the approximate solution un+1 by
the iterative schemes

〈 ρTun+1 + E′(un+1)− E′(un), v− un+1〉 + ρ
∫
Ω

f 0(un+1; v− un+1)dΩ � 0, ∀v ∈ K,

is called the proximal point method for solving hemivariational inequalities (6.2) and
is due to Noor [40]. In brief, for suitable and appropriate choice of the operators
and the spaces, one can obtain a number of known and new algorithms for solving
variational-like inequalities and related problems.
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THEOREM 6.1. Let F(., ., .) and T be jointly psudomonotone with respect to∫
Ω f 0(u; v−u)dΩ. Let E be differentiable strongly convex function with module β > 0.

Then the approximate solution un+1 obtained from Algorithm 6.1 converges to a
solution u ∈ K satisfying (6.1) .

Proof. Let u ∈ K be a solution of (6.1). Then

F(u, Tu, v) +
∫
Ω

f 0(u; v − u)dΩ � 0, ∀v ∈ K,

implies that

− F(v, Tv, u) −
∫
Ω

f 0(v; v − u)dΩ � 0, ∀v ∈ K, (6.5)

since F(., ., .) and T are jointly pseudomonotone with respect to
∫
Ω f 0(u; v − u)dΩ.

Taking v = u in (6.4) and v = un+1 in (6.5), we have

ρF(un+1, Tun+1, u) + 〈E′(un+1)− E′(un), u− un+1〉 � −ρ
∫
Ω

f 0(un+1, ; u− un+1)dΩ.

(6.6)
and

− F(un+1, Tun+1, u) −
∫
Ω

f 0(un+1, ; un+1 − u)dΩ � 0. (6.7)

Now we consider the function

B(u, w) = E(u) − E(w) − 〈E′(w), u − w〉
� β‖u − w‖2, (using strong convexity of E).

(6.8)

Combining (6.8), (6.6) and (6.7), we have

B(u, un)−B(u, un+1) = E(un+1) − E(un) − 〈E′(un+1), un+1 − un〉
+ 〈E′(un+1) − E′(un), u − un+1〉

� β‖un+1 − un‖2 + 〈E′(un+1) − E′(un), u − un+1〉
� β‖un+1 − un‖2−ρF(un+1, Tun+1, u)−ρ

∫
Ω
f 0(un+1; u − un+1)dΩ

� β‖un+1−un‖2.

If un+1 = un, then clearly un is a solution of the hemiequilibrium problems (6.1).
Otherwise, it follows that B(u, un) − B(u, un+1) is nonnegative and we must have

lim
n→∞ ‖un+1 − un‖ = 0.

Now using the technique of Zhu and Marcotte [56], it can be shown that the entire
sequence {un} converges to the cluster point u satisfying the hemiequilibrium problems
(6.1). �

We again use the auxiliary principle technique to suggest and analyze another
iterative method for solving the hemiequilibrium problems (6.1).



554 MUHAMMAD ASLAM NOOR

For a given u ∈ K, find w ∈ K such that

ρF(u, Tu, v) + 〈E′(w) − E′(u), v − w〉 + ρ
∫
Ω

f 0(u; v − w)dΩ, ∀v ∈ K, (6.9)

where E′(u) is the differential of a strongly convex function E(u) at u ∈ K. Problem
(6.9) has a unique solution, since E is strongly convex function. Note that problems
(6.3) and (6.9) are quite different problems. It is clear that for w = u, w is a solution
of (6.1). This fact allows us to suggest and analyze another iterative method for solving
the hemiequilibrium problem (6.1).

Algorithm 6.3. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

ρF(un, Tun, v) + 〈E′(un+1)− E′(un), v− un+1〉 � −ρ
∫
Ω

f 0(un; v− un+1)dΩ, ∀v ∈ K,

(6.10)
Note that for F(u, Tu, v) = 〈Tu, v − u〉 , Algorithm 6.3 reduces to:

Algorithm 6.4. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

〈 ρTun + E′(un+1) − E′(un), v − un+1〉 � −ρ
∫
Ω

f 0(un; v − un+1)dΩ, ∀v ∈ K,

for solving the hemivariational inequalities (6.2), which is due to Noor [40]. Similarly
for suitable and appropriate choice of the operators and the spaces, one can obtain
various known and new algorithms for solving equilibrium problems and variational
inequalities.

We now consider the convergence analysis of Algorithm 6.3 using essentially the
technique of Theorem 6.1.

THEOREM 6.2. Let F(., ., .) and
∫
Ω f 0(u; v − u)dΩ be partially relaxed strongly

monotone with constants γ > 0 and α > 0 respectively. If E is strongly convex
function with modulus β > 0 and 0 < ρ < β/(α + γ ), then the approximate solution
un+1 obtained from Algorithm 6.3 converges to a solution of (6.1) .

Proof. Let u ∈ K be solution of (6.1). Setting v = un+1 in (6.1) and v = u in
(6.10), we have

F(u, Tu, un+1) +
∫
Ω

f 0(u; un+1 − u)dΩ � 0. (6.11)

and

ρF(un, Tun, u)+ 〈E′(un+1)−E′(un), u−un+1〉 � −ρ
∫
Ω

f 0(un; u−un+1)dΩ. (6.12)



FUNDAMENTALS OF EQUILIBRIUM PROBLEMS 555

As in Theorem 6.1 and from (6.11) and (6.12), we have

B(u, un)−B(u, un+1) = E(un+1) − E(un) − 〈E′(un+1), un+1 − un〉
+ 〈E′(un+1) − E′(un), u − un+1〉

� β‖un+1 − un‖2 + 〈E′(un+1) − E′(un), u − un+1〉
� β‖un+1 − un‖2−ρF(un, Tun, u)−ρ

∫
Ω

f 0(un; u − un+1)dΩ

� β‖un+1 − un‖2 − ρ{F(un, Tun, u) + F(u, Tu, un+1)}
− ρ{

∫
Ω

f 0(u;un+1 − u)dΩ+
∫
Ω

f 0(un; u − un+1)dΩ}

� β‖un+1 − un‖2 − ρ(α + γ )‖un+1 − un‖2,

where we have used the fact that F(., ., .) and T and
∫
Ω f 0(x, .; .)dΩ are partially

relaxed strongly jointly monotone with constants α > 0 and γ > 0 respectively.
If un+1 = un, then clearly un is a solution of the hemiequilibrium problems (6.1).
Otherwise, for 0 < ρ < β

α+γ , it follows that B(u, un) − B(u, un+1) is nonnegative and
we must have

lim
n→∞ ‖un+1 − un‖ = 0.

Now using the technique of Zhu and Marcotte [56], it can be shown that the entire
sequence {un} converges to the cluster point u satisfying the hemiequilibriumproblem
(6.1). �

7. Nonconvex equilibrium problems

A significant generalizationof the convex functions is the introductionof g -convex
functions. It is well-known that the g -functions and g -convex sets may not be convex
functions and convex sets, see [4]. However, it has been shown that the class of g -convex
function have some nice properties, which the convex functions have. In particular, it
been shown [34] that the minimum of the g -functions over the g -convex sets can be
characterized by a class of variational inequalities, which is called the nonconvex ( g -
convex ) variational inequality. Inspired and motivated by the recent research work
going in this field, we consider a new class of equilibrium problems, which is called
nonconvex equilibrium problems, where the convex set is replaced by the so-called
g -convex set. We again use the auxiliary principle technique to suggest a class of
iterative methods for solving nonconvex equilibrium problems. The convergence of
these methods requires only that the operator is partially relaxed strongly g -monotone,
which is weaker than g -monotonicity. We also use the auxiliary principle technique
to suggest and analyze a proximal method for solving equilibrium problem, which was
introduced as a regularization of convex optimization in Hilbert space. We prove that
the convergence of proximal method requires only g -pseudomonotonicity, which is a
weaker condition.

First of all, we recall the following concepts and results.
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DEFINITION 7.1. Let K be any set in H . The set K is said to be g -convex, if
there exists a function g : K −→ K such that

g(u) + t(g(v) − g(u)) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

Note that every convex set is g -convex, but the converse is not true, see [4]. In
passing, we remark that the notion of the g -convex set was introduced by Noor [27]
implicitly in 1988.

From now onward, we assume that K is a g -convex set, unless otherwise specified.

DEFINITION 7.2. The function f : K −→ H is said to be g -convex, if

f (g(u) + t(g(v) − g(u))) � (1 − t)f (g(u)) + tf (g(v)). ∀u, v ∈ K, t ∈ [0, 1].

Clearly every convex function is g -convex, but the converse is not true.

DEFINITION 7.3. A function f is said to be strongly g -convex on the g -convex
set K with modulus μ > 0, if, ∀u, v ∈ K, t ∈ [0, 1],

f (g(u) + t(g(v) − g(u)) � (1 − t)f (g(u)) + tf (g(v)) − t(1 − t)μ‖g(v) − g(u)‖2.

Using the convex analysis techniques, one can easily show that the differentiable
g -convex function f is strongly g -convex function if and only if

f (g(v)) − f (g(u)) � 〈 f ′(g(u)), g(v) − g(u)〉 + μ‖g(v) − g(u)‖2

or
〈 f ′(g(u)) − f ′(g(v)), g(u) − g(v)〉 � 2μ‖g(v) − g(u)‖2,

that is, f ′(g(u)) is a strongly monotone operator.
It is well-known that the g -convex functions are not convex function, but they

have some nice properties which the convex functions have. Note that for g = I, the
g -convex functions are convex functions and definition 7.3 is a well known result in
convex analysis.

For given nonlinear continuous trifunction F(., ., .) and the operator g, we con-
sider the problem of finding u ∈ K such that

F(g(u), T(g(u), g(v)) � 0, ∀v ∈ K, (7.1)

which is called is called the nonconvex equilibrium problem with trifunction. For g ≡ I,
where I is the identity operator, the g -convex set K becomes the convex set K and
consequently, problem (7.1) is equivalent to the problem (2.1).

We note that for F(g(u), T(g(u)), g(v)) = 〈Tg(u), g(v) − g(v)〉 , the problem
(7.1) is equivalent to finding u ∈ K such that

〈Tg(u), g(v) − g(u)〉 � 0, ∀v ∈ K. (7.2)

Inequality (7.2) is known as the nonconvex variational inequality, which was introduced
by Noor[34]. It is worth mentioning that the nonconvex variational inequalities (7.2)
are quite different from the so-called general variational inequalities, introduced and
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studied by Noor [27] in 1988. For the applications and numerical methods of general
variational inequalities; see Noor [27, 29, 32] and the references therein.

In brief, for a suitable and appropriate choice of the operators T , g , and the
space H , one can obtain a wide class of equilibrium, variational inequalities and
complementarity problems as special cases of problems (7.1). This clearly shows that
problem (7.1) is quite general and unifying one.

DEFINITION 7.4. The trifunction F(., ., .) and the operatos T are said to be :
(i) partially relaxed strongly jointly g -monotone, if there exists a constant

α > 0 such that

F(g(u), T(g(u))g(v)) + F(g(v), T(g(v)), g(z)) � α‖g(z) − g(u)‖2, ∀u, v, z ∈ K.

(ii) jointly g -monotone, if

F(g(u), T(g(u)), g(v)) + F(g(v), T(g(v)), g(u)) � 0, ∀u, v ∈ K.

(iii) jointly g -pseudomonotone, if

F(g(u), T(g(u)), g(v)) � 0 =⇒ −F(g(v), T(g(v)), g(u)) � 0, ∀u, v ∈ K.

(iv) jointly g -hemicontinuous, ∀u, v ∈ K, t ∈ [0, 1], if the mapping
F(g(u) + t(g(v) − g(u)), T(g(u) + t(g(v) − g(u)), g(v)) is continuous.

We remark that if z = u , then partially relaxed strongly jointly g -monotonicity
is exactly jointly g -monotonicity of F(., ., .). For g ≡ I, the indentity operator, then
Definition 7.1 reduces to the standard definitions of partially relaxed jointly strongly
monotonicity, jointly monotonicity and jointly pseudomonotonicity introduced in Sec-
tion 3.

LEMMA 7.1. Let F(., ., .) be jointly g -pseudomonotone, jointly g -hemicontinuous
and g -convex with respect to third argument. Then the nonconvex equilibrium problem
(7.1) is equivalent to finding u ∈ K such that

− F(g(v), T(g(v)), g(u)) � 0, ∀v ∈ K. (7.3)

Proof. Let u ∈ K be a solution of (7.1). Then

F(g(u), T(g(u)), g(v)) � 0, ∀v ∈ K

which implies
−F(g(v), T(g(v)), g(u)) � 0, ∀v ∈ K,

since F(., ., .) and T are jointly g -pseudomonotone.
Conversely, let u ∈ K satisfy (7.3). Since K is a g -convex set, ∀u, v ∈ K ,

t ∈ [0, 1] ,

g(vt) = g(u) + t(g(v) − g(u)) ≡ (1 − t)g(u) + tg(v) ∈ K.

Taking g(v) = g(vt) in (7.3), we have

F(g(vt), T(g(vt)), g(u)) � 0. (7.4)



558 MUHAMMAD ASLAM NOOR

Now using (7.4) and g -convexity of F(., ., .) with respect to third argument, we have

0 � F(g(vt), T(g(vt)), g(vt))
= F(g(vt), T(g(vt)), (1 − t)g(u) + tg(v))
� tF(g(vt), T(g(vt)), g(v)) + (1 − t)F(g(vt), T(g(vt)), g(u))
� tF(g(vt), T(g(vt)), g(v))

Dividing the above inequality by t and letting t −→ 0, we have

F(g(u), T(g(u)), g(v)) � 0, ∀v ∈ K,

the required (7.1). �

REMARK 7.1. Problem (7.3) is known as the dual mixed quasi nonconvex equi-
librium problem. One can easily show that the solution set of problem (7.3) is closed
and g -convex set. From Lemma 7.1, it follows that the solution set of problems (7.1)
and (7.3) are the same. This inter relationship has played an important role in the study
of well-posedness of equilibrium problems and variational inequalities. In fact, Lemma
7.1 can be viewed as a natural generalization and extension of a well-known Minty’s
Lemma in variational inequalities theory.

For a given u ∈ K , consider the problem of finding w ∈ K satisfying the auxiliary
nonconvex equilibrium problem

ρF(g(u), T(g(u)), g(v)) + 〈E′(g(w)) − E′(g(u)), g(v) − g(w)〉 � 0 ∀v ∈ K, (7.5)

where ρ > 0 is a constant and E′ is the differential of a strongly g -convex function
E. Problem (7.5) has a unique solution, since the function E is strongly g -convex
function. We note that if w = u , then clearly w is a solution of the nonconvex
equilibrium problems (7.1). This observation enables us to suggest the following
method for solving (7.1).

Algorithm 7.1. For a given u0 ∈ H , compute the approximate solution un+1 by
the iterative schemes

ρF(g(un), T(g(un)), g(v)) + 〈E′(g(un+1)) − E′(g(un)), g(v) − g(un+1)〉 � 0, ∀v ∈ K,
(7.6)

where ρ > 0 is a constant.
If F(g(u), T(g(u)), (v)) = 〈Tg(u), g(v) − g(u)〉 , then Algorithm 7.1 reduces to:

Algorithm 7.2. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

〈 ρTg(un) + E′(g(un+1)) − E′(g(un)), g(v) − g(un+1)〉 � 0, ∀v ∈ K,

for solving nonconvexvariational ineqaulities (7.2). For suitable and appropriate choice
of the operators and the space H , one can obtain various new and known methods for
solving equilibrium, variational inequalities and complementarity problems.

For the convergence analysis of Algorithm 7.1, we need the following result.
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THEOREM 7.1. Let E(u) be a strongly g -convex with modulus β > 0. and
the operator T is partially relaxed jointly strongly monotone with constant α > 0.

If 0 < ρ < β
α , then the approximate solution un+1 obtained from Algorithm 7.1

converges to a solution of (7.1) .

Proof. Let u ∈ K be a solution of (7.1). Then

F(g(u), T(g(u)), g(v)) � 0, ∀v ∈ K, (7.7)

where ρ > 0 is a constant.
Now taking v = un+1 in (7.7) and v = u in (7.6), we have

F(g(u), T(g(u)), g(un+1)) � 0. (7.8)

and

ρF(g(un), T(g(un)), g(u)) + 〈E′(g(un+1)) − E′(g(un)), g(u) − g(un+1)〉 � 0. (7.9)

We consider the Bregman function

B(u, w) = E(g(u)) − E(g(w)) − 〈E′(g(w)), g(u) − g(w)〉
� β‖g(u) − g(w)‖2, using strongly g-convexity of E.

(7.10)

Now combining (7.8), (7.9) and (7.10), we have

B(u, un)−B(u, un+1) = E(g(un+1)) − E(g(un)) − 〈E′(g(un)), g(un+1) − g(un)
+ 〈E′(g(un+1)) − E′(g(un)), g(u) − g(un+1)〉

� β‖g(un+1) − g(un)‖2 + 〈E′(g(un+1))
− E′(g(un)), g(u) − g(un+1)〉

� β‖g(un+1) − g(un)‖2 − ρF(g(un), T(g(un)), g(u))
− ρF(g(u), T(g(u)), g(un+1))

� {β − ρα}‖g(un+1) − g(un)‖2,

where we have used the fact that F(., ., .) and T are partially relaxed jointly strongly
monotone with constant α > 0.

If un+1 = un, then clearly un is a solution of the nonconvex equilibrium problems
(7.1). Otherwise, for 0 < ρ < β

α , it follows that B(u, un) − B(u, un+1) is nonnegative
and we must have

lim
n→∞ ‖un+1 − un‖ = 0.

Now using the technique of Zhu and Marcotte [56], it can be shown that the entire
sequence {un} converges to the cluster point u satisfying the nonconvex equilibrium
problem (7.1). �

We now show that the auxiliary principle technique can be used to suggest and
analyze a proximalmethod for solving nonconvex equilibriumproblems (7.1). We prove
that the convergence of the proximal method requires only jointly pseudomonotonicity,
which is a weaker condition than monotonicity.
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For a given u ∈ K consider the auxiliary problem of finding w ∈ K such that

ρF(g(w), T(g(w)), g(v)) + 〈E′(g(w))− E′(g(u)), g(v)− g(w)〉 � 0, ∀v ∈ K, (7.11)

where ρ > 0 is a constant and E′ is the differential of a strongly differentiable g -
convex function E. Since E is strongly differentiableg -convex function, there exists
a unique solution of the auxiliary problem (7.11). Note that if w = u, then w is a
solution of (7.1). This fact enables us to suggest the following iterative method for
solving nonconvex equilibrium problems (7.1).

Algorithm 7.3. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

ρF(g(un+1), T(g(un+1)), g(v))+〈E′(g(un+1))−E′(g(un)), g(v)−g(un+1)〉 � 0, ∀v ∈ K.
(7.12)

Algorithm 7.3 is known as the proximal method for solving nonconvex equilibrium
problem (7.1).

If F(g(u), g(v)) = 〈Tg(u), g(v) − g(u)〉 , then Algorithm 7.3 reduces to:

Algorithm 7.4. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

〈 ρT(g(un+1)) + E′(g(un+1)) − E′(g(un)), g(v) − g(un+1)〉 � 0, ∀v ∈ K.

In a similar way, one can obtain a variant form of proximal methods for solving
variational inequalities and equilibrium problems as special cases.

We now study the convergence analysis of Algorithm 3.4 using the technique of
Theorem 3.1. For the sake of completeness and to convey an idea of the techniques
involved, we sketch the main points only.

THEOREM 7.2. Let E(u) be a strongly g -convex with modulus β > 0. and
the trifunction F(., ., .) be jointly pseudomonotone, then the approximate solution
un+1 obtained from Algorithm 7.2 converges to a exact solution of (7.1) .

Proof. Let u ∈ K be a solution of (7.1). Then

F(g(u), T(g(u)), g(v)) � 0, ∀v ∈ K,

which implies that
− F(g(v), T(g(v), g(u)) � 0, ∀v ∈ K, (7.13)

since F(., ., .) and T are jointly pseudomonotone.
Taking v = un+1 in (7.13) and v = u in (7.12), we have

− F(g(un+1), T(g(un+1)), g(u)) � 0 (7.14)

and

ρF(g(un+1), T(g(un+1)), g(u)) � −〈E′(g(un+1)) − E′(g(un)), g(u) − g(un+1)〉 .
(7.15)
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Now as in Theorem 7.1, from (7.10), (7.14) and (7.15), we have

B(u, un) − B(u, un+1) = E(g(un+1)) − E(g(un)) − 〈E′(g(un)), g(un+1) − g(un)
+ 〈E′(g(un+1)) − E′(g(un)), g(u) − g(un+1)〉

� β‖g(un+1) − g(un)‖2

+ 〈E′(g(un+1)) − E′(g(un)), g(u) − g(un+1)〉
� β‖g(un+1) − g(un)‖2 − ρF(g(un+1), T(g(un+1)), g(u))

� β‖g(un+1) − g(un)‖2.

If un+1 = un, then clearly un is a solution of the nonconvex equilibrium problems
(7.1). Otherwise, it follows that B(u, un)−B(u, un+1) is nonnegative and we must have

lim
n→∞ ‖un+1 − un‖ = 0.

Now using the technique of Zhu and Marcotte [56], it can be shown that the entire
sequence {un} converges to the cluster point u satisfying the nonconvex equilibrium
problem (7.1).

8. Well-posed equilibrium problems

In recent years, much attention has been given to introduce the concept of well-
posedness for variational of variational inequalities, see [18-21] and the references
therein. In this Section, we introduce the similar concepts of well-posedness for equi-
librium problems of type (2.1). The results obtained can be considered as a natural
generalization of previous results of Lucchetti and Patrone [15, 16], Goeleven and
Mantague [11] and Noor [29, 42] For this purpose, we define the following:

For a given ε > 0, we consider the sets

A(ε) = {u ∈ K : F(u, Tu, v) � −ε‖v− u‖, ∀v ∈ K}
B(ε) = {u ∈ K : F(v, Tv, u) � ε‖v− u‖, ∀v ∈ K}.

For a nonempty set X ⊂ H, we define the diameter of X, denoted by D(X), as

D(X) = sup{‖v − u‖; ∀u, v ∈ X}.

DEFINITION 8.1. We say that the equilibrium problem (2.1) is well-posed, if and
only if

A(ε) �= φ and D(A(ε)) −→ 0, as ε −→ 0.

For F(u, Tu, v) = 〈Tu, v − u〉 , our definition of well-posedness is exactly the
same as one introduced by Lucchetti and Patrone [15, 16] for variational inequalities
and extended by Noor [29, 42] and Goeleven and Mantague [11] for variational-like
inequalities and hemivariational inequalities respectively.

THEOREM 8.1. Let the function F(., ., .) and T be jointly g -pseudomonotone,
jointly g -hemicontinuous and convex in the third argument. Then

A(ε) = B(ε).
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Proof. Let u ∈ K be such that

F(u, Tu, v) � −ε‖v − u‖, ∀v ∈ K,

which implies that
F(v, Tv, u) � ε‖v − u‖, ∀v ∈ K, (8.1)

since F(., ., .) and T are jointly g -pseudomonotone.
Thus

A(ε) ⊂ B(ε). (8.2)

Conversely, let u ∈ K such that (8.1) hold. Since K is a convex set, ∀u, v ∈ K ,
t ∈ [0, 1], vt = u + t(v − u) ≡ (1 − t)u + tv ∈ K.

Taking v = vt in (8.1), we have

F(vt, Tvt, u) � tε‖v − u‖. (8.3)

Also

0 = F(vt, Tvt, vt)
� tF(vt, Tvt, v) + (1 − t)F(vt, Tvt, u)
� tF(vt, Tvt, v) + (1 − t)tε‖v − u‖,

where we have used (8.3).
Dividing the above inequality by t and letting t −→ 0, we have

F(u, Tu, v) � −ε‖v − u‖, ∀v ∈ K,

which implies that
B(ε) ⊂ A(ε). (8.4)

Thus from (8.2) and (8.4), we have

A(ε) = B(ε).

�

THEOREM 8.2. The set B(ε) is closed under the assumptions of Theorem 8.1 .

Proof. Let {un : n ∈ N} ⊂ B(ε) be such that un −→ u in K as n −→ ∞. This
implies that un ∈ K and

F(v, Tv, un) � ε‖v − un‖, ∀v ∈ K.

Taking the limit in the above inequality as n −→ ∞, we have

F(v, Tv, u) � ε‖v − u‖, ∀v ∈ K,

which implies that u ∈ K, since K is a closed and convex set. Consequently, it follows
that the set B(ε) is closed.

Using essentially the technique of Goeleven and Mantague [11], we can prove the
following results. To convey an idea and for the sake of completeness, we include their
proofs.
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THEOREM 8.3. Let F(., ., .) and T be jointly g -pseudomonotone and jointly g -
hemicontinuous. If the equilibrium problem (2.1) is well-posed, then equilibrium
problem (2.1) has a unique solution.

Proof. Let us define the sequence {uk : k ∈ N} by uk ∈ A(1/k). Let ε > 0 be
sufficiently small and let m, n ∈ N such that n � m � 1

ε . Then

A(
1
n
) ⊂ A(

1
m

) ⊂ A(ε).

Thus

‖un − um‖ � D(A(
1
n
)),

which implies that the sequence {un} is a Cauchy sequence and it converges, that is,
uk −→ u in K. From Theorem 8.1 and Theorem 8.2, we know that the set A(ε) is a
closed set. Thus

u ∈ ∪ε>0 A(ε),

so that u is solution of the equilibrium problem (2.1). From the second condition of
well-posedness, we see that the solution of the equilibrium problem (2.1) is unique. �

THEOREM 8.4. Let F(., ., .) and T be jointly pseudomonotone and jointly hemi-
continuous. If A(ε) �= 0, ∀ε > 0. and A(ε) is bounded for some ε0, then the equilibrium
problem (2.1) has at least one solution.

Proof. Let un ∈ A(1/n). Then A(1/n) ⊂ A(ε), for n large enough. Thus for
some subsequence un −→ u ∈ K, we have

F(v, Tv, un) � 1
n
‖v − un‖ � 1

n
{‖v‖+ c}, ∀v ∈ K.

Taking the limit as n −→ ∞, we have

F(v, Tv, u) � 0,

which implies that u ∈ B(0) = A(0), by Theorem 8.1. This shows that u ∈ A(0),
from which it follows that the equilibrium problem (2.1) has at least one solution.

REMARK 8.1.
(I) If the equilibrium problem (2.1) has a unique solution, then it is clear that

A(ε) �= 0, ∀ε > 0 and ∩ε>0A(ε) = {u0}.
(II) It is known that [16] if the variational inequality (2.3) has a unique solution,

then it is not well-posed.
(III) From Theorem8.3, we conclude that the unique solution of the equilibrium

problem (2.1) can be computed by using the ε -equilibriumproblem, that is, find uε ∈ K
such that

F(uε, Tε, v) � −ε‖v− uε‖, v ∈ K.
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9. Conclusion and future research

In this paper, we have presented the state-of-the art in the theory and several
computational aspects of equilibrium problems in the setting of convexity, invexity,
g -convexity and uniformly prox-regular convexity. It is remarked that the concepts
of invexity, g -convexity and uniformly prox-regular convexity are generalization of
convexity in quite different directions and they have no interlink connections between
themselves. These new concepts are very recent ones and offer great opportunities for
further research. It is expected that the interplay among all these areas will certainly
lead to some innovative, novel and significant results.

While our main aim in this study has been to describe the fundamental ideas and
techniques , which have been used to develop the various iterative schemes and well-
posedness of equilibrium problems, the foundation we have laid is quite broad, flexible
and general. The study of these aspects of equilibriumproblems is a fruitful and growing
field of intellectual endeavour. We would like mention that many of the concepts, ideas
and techniques, we have described are fundamental to all of these applications. For
example, three-step and four step iterative schemes for solving equilibrium problems
have been recently suggested and analyzed. In recent years, attempts havemade to prove
the equivalence among various one-step (Mann), two-step (Ishikawa ) and three-step
(Noor) iterations for solving variational inequalities and nonlinear operator equations
in Banach spaces under various conditions on the operator T. Similar problems can
be investigated in the theory of equilibrium problems, which is another direction of
future research. In brief, the theory of the equilibrium problems does not appear to
have developed to an extent that it provides a complete framework for studying various
problems arising in pure and applied sciences. It is true that each of these areas of
applications requires special consideration of pecularities of the physical problem at
hand and the inequalities that model. The interested reader is advised to explore these
interesting and fascinating fields further. It is our hope that this brief introduction
may inspire and motivate the reader to discover new, innovative and novel applications
of equilibrium problems in all areas of pure, regional, physical, social, industrial and
engineering sciences.
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