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SCHUR–CONVEXITY OF THE COMPLETE SYMMETRIC FUNCTION

KAIZHONG GUAN

(communicated by I. Olkin)

Abstract. This paper investigates Schur-convexity of the complete symmetric function cr(x) =∑
i1+...+in=r xi11 ...xinn and the function φr(x) = cr(x)

cr−1(x) , where i1, ..., in are non-negative

integers and r � 1. Some inequalities, including Ky Fan type inequality, are established by use
of the theory of majorization. It is also concerned with an open problem proposed by Menon [1].

1. Introduction and notation

Let x=(x1, x2, ..., xn) be a positive sequence and Rn
+={x = (x1, x2, ..., xn)|xi > 0 ,

i = 1, ..., n.} . The r− th elementary symmetric function [11, p. 33; 5, p. 81] is defined
as

er = er(x) = Er
n(x) =

∑
1�i1<i2<...<ir�n

r∏
j=1

xij , r = 1, 2, ..., n. (1.1)

Define e0(x) = 1 , then er(x) is the coefficient of tr in the polynomial
∏n

i=1(1 + xit),
that is, er satisfies the equation

n∑
r=0

ert
r =

n∏
i=1

(1 + xit).

Using this method, Whiteley [10] defined the Whitely’s symmetric function T [r,s]
n (x) by

the following equation

+∞∑
r=0

T [r,s]
n (x)tr =

⎧⎨
⎩
∏n

i=1(1 + xit)s, s > 0,

∏n
j=1(1 − xit)s, s < 0.

The author proved that for s > 0,(
T [r,s]

n (x + y)
) 1

r �
(
T [r,s]

n (x)
) 1

r
+
(
T [r,s]

n (y)
) 1

r
, (1.2)

and the inequality sign (1.2) is reversed for s < 0 .
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The complete symmetric function [1; 5, p. 81; 8, p. 105] which is Whiteley’s
symmetric function as s = −1 reads as follows

cr = cr(x) = C[r]
n (x) =

∑
i1+...+in=r

xi1
1 ...xin

n , (1.3)

where i1, i2, ..., in are non-negative integers, and c0(x) = 1 . It has been investigated
by many mathematicians and some interesting results are obtained. See, for example,
[1-3, 5, 8-10, 12] and the references cited therein. In particular, it follows, from (1.2),
that (also see [12]) (

C[r]
n (a + b)

) 1
r �

(
C[r]

n (a)
) 1

r
+
(
C[r]

n (b)
) 1

r
. (1.4)

Which shows that the function (cr(x))
1
r is convex in Rn

+. It is obvious that (cr(x))
1
r is

symmetric. Thus, by the proposition of C. 2 in [5, p. 67] ( see also [9]), the function
(cr(x))

1
r is Schur-convex. It is well known [5] that the function er(x) and er(x)

er−1(x)
are

Schur-concave in Rn
+ . Thus, a problem arises naturally: whether the functions cr(x)

and φr(x) = cr(x)
cr−1(x)

(r � 1) are Schur-convex? This paper will be concerned with it in
section 3.

On the other hand, K. V. Menon [1] defined the generalized r− th order symmetric
mean as follows

Dr(x) = D[r]
n (x) =

(r+n−1
n−1

)−1
C[r]

n (x), (1.5)

where (r+n−1
n−1 ) = (n+r−1)!

(n−1)!r! . The author proved that for n variables and for r = 1, 2, 3 ,

Dr−1(a)Dr+1(a) − D2
r (a) � 0. (1.6)

1979, D. W. Detemple and J. M. Robertson [2] proved that when n = 2 the
inequality (1.6) is true for all r ∈ N = {1, 2, ...}. The question whether inequality
(1.6) is valid for r � 4 and for n � 3 was published in [3] and [8] and solved by Guan
in [4].

By Theorem 2 of [2], one can easily prove that when n = 2 ,

Dr−2(x)Dr+2(x) − Dr−1(x)Dr+1(x) � 0, ∀ r � 2. (1.7)

Thus, the problem raises naturally: whether or not the inequality (1.7) holds for n > 2 .
This paper will also deal with it in section 4.

REMARK 1. The inequality of Theorem 11 in [1] is written as

Dr−1(x)Dr+1(x) − Dr−2(x)Dr+2(x) � 0, ∀ r � 2.

There may be misprint. As matter of fact, let r = 2 , x1 = 1 and x2 = 2 , simply
calculation shows that D1(x) = 3

2 , D2(x) = 7
3 , D3(x) = 15

4 , and D4(x) = 31
5 . Thus,

D1(x)D3(x) − D0(x)D4(x) =
45
8

− 31
5

< 0.

The main purpose of this paper is to prove that the functions cr(x) and cr(x)
cr−1(x)

are Schur-convex in Rn
+ . Some inequalities, including Ky Fan type inequality, are
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established by use of the theory of majorization. We also show that inequality (1.7)
holds for n > 2 .

The Schur-convex function was introduced by I. Schur in 1923 [5], and has many
important applications in analytic inequalities. Hardy, Littlewood and Pólya were also
interested in some inequalities that are related to Schur-convex functions [6]. The
following definitions can be found in many references such as [3, 5, 8].

For fixed n � 2, let

x = (x1, x2, ..., xn), y = (y1, y2, ..., yn)

be two n -tuples of real numbers. And let

x[1] � x[2] � ... � x[n], y[1] � y[2] � ... � y[n],

be their ordered components.

DEFINITION 1.1. The n -tuple x is said to be majorized by y (in symbols x ≺ y ),
if

m∑
i=1

x[i] �
m∑

i=1

y[i], m = 1, 2, ..., n − 1; (1.8)

and
n∑

i=1

x[i] =
n∑

i=1

y[i]. (1.9)

DEFINITION 1.2. A real-valued function φ defined on a set Ω ⊂ Rn is said to be
Schur-convex function on Ω if

x ≺ y on Ω =⇒ φ(x) � φ(y).

If, in addition, φ(x) < φ(y) whenever x ≺ y but x is not a permutation of y , then
φ is said to be strictly Schur-convex on Ω . φ is Schur-concave function on Ω if and
only if −φ is Schur-convex function; φ is a strictly Schur-concave function on Ω if
and only if −φ is strictly Schur-convex function on Ω.

DEFINITION 1.3. f : Rn → R is called monotonic increasing function if

x � y =⇒ f (x) � f (y),

where x � y implies that xi � yi, i = 1, 2, ..., n.

2. Lemmas

In order to verify our main results, the following lemmas are necessary.

LEMMA 2.1. ([5, p. 57]) Assume that f (x) = f (x1, x2, ..., xn) is symmetric, and
has continuous partial derivatives on In , where I is an open interval. Then f : In → R
is Schur-convex if and only if

(xi − xj)
(

∂f
∂xi

− ∂f
∂xj

)
� 0 (2.1)

on In . It is strictly Schur-convex if (2.1) is a strict inequality for xi �= xj , 1 � i, j � n .
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The inequality (2.1) is commonly referred to as Schur’s condition. f : In → R
is Schur-concave if and only if the inequality sign of (2.1) is reversed. In Schur’s
condition, the domain of f (x) does not have to be a Cartesian product In, Lemma 2.1
remains true if we replace In by a set A ⊆ Rn with the following properties ([5, p. 57]):

(i) A is convex and has a nonempty interior;
(ii) A is symmetric in the sense that x ∈ A implies Px ∈ A for any n × n

permutation matrix P .

LEMMA 2.2. ([1]) If 0 < r < s. Then
(i) cr(a)cs−1(a) > cr−1(a)cs(a),
(ii) (cr(a))

1
r � (cs(a))

1
s .

LEMMA 2.3. ([7]) Assume that xi > 0, i = 1, 2, ..., n,
∑n

i=1 xi = s, and c � s .
Then

c − x
nc
s − 1

=
(

c − x1
nc
s − 1

, ...,
c − xn
nc
s − 1

)
≺ (x1, x2, ..., xn) = x.

LEMMA 2.4. ([7]) Suppose that xi > 0, i = 1, 2, ..., n,
∑n

i=1 xi = s, and c � 0 .
Then

c + x
s + nc

=
(

c + x1

s + nc
,
c + x2

s + nc
, ...,

c + xn

s + nc

)
≺
(x1

s
,
x2

s
, ...,

xn

s

)
=

x
s
.

LEMMA 2.5. ([4]) Assume that a = (a1, a2, ..., an), ai > 0, i = 1, 2, ..., n, n � 2
and that r � 1 is an integer. Then

D2
r (a) � Dr−1(a)Dr+1(a).

LEMMA 2.6. Suppose that xi > 0, i = 1, 2, ..., n and let

x̄i = (x1, ..., xi−1, xi+1, ..., xn).

Then

cr(x) = xicr−1(x) + cr(x̄i).

Proof. It is easy to see that

cr(x) =
∑

i1+i2+...+in=r

xi1
i ...xin

n = xr
i + xr−1

i c1(x̄i) + ... + cr(x̄i),

and

cr−1(x) = xr−1
i + xr−2

i c1(x̄i) + ... + cr−1(x̄i).

There follows that

cr(x) = xicr−1(x) + cr(x̄i).
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3. Schur-convexity of the functions cr(x) and cr(x)/cr−1(x)

In this section,we investigated Schur-convexity of the complete symmetric function
cr(x) and the function cr(x)/cr−1(x) . As its applications, some analytic inequalities,
including Ky Fan type inequality, are established.

THEOREM 3.1. The complete symmetric function cr(x) =
∑

i1+...+in=r xi1
1 ...xin

n is a
Schur-convex function in Rn

+ , and is increasing in xi, i = 1, 2, ..., n.

Proof. We firstly prove that cr(x) is an increasing function with respect to xi . As
matter of fact, it follows from Lemma 2.6 that

∂cr(x)
∂xi

= cr−1(x) + xi
∂cr−1(x)

∂xi
.

Using inductive method yields that

∂cr(x)
∂xi

� 0, i = 1, 2, ..., n.

Which shows that cr(x) is an increasing function in xi, i = 1, 2, ..., n.
Now we prove that cr(x) is a Schur-convex function in Rn

+ . It is clear that cr(x)
is symmetric and have continuous partial derivatives in Rn

+ . By Lemma 2.1, we only
need to prove that

(xi − xj)
(

∂cr(x)
∂xi

− ∂cr(x)
∂xj

)
� 0, i �= j. (3.1)

This can be obtained by induction.
(i) When r = 2 , differentiating cr(x) with respect to xi , we obtain

∂cr(x)
∂xi

= cr−1(x) + xi
∂cr−1(x)

∂xi
=

n∑
k=1

xk + xi.

And so

(xi − xj)
(

∂cr(x)
∂xi

− ∂cr(x)
∂xj

)
= (xi − xj)2 � 0.

(ii) Assume that (3.1) is true for r − 1 , that is,

(xi − xj)
(

∂cr−1(x)
∂xi

− ∂cr−1(x)
∂xj

)
� 0, i �= j. (3.2)

Then, still by Lemma 2.6, it follows that

∂cr(x)
∂xi

= cr−1(x) + xi
∂cr−1(x)

∂xi
and

∂cr(x)
∂xj

= cr−1(x) + xj
∂cr−1(x)

∂xj
.

Simply calculation arrives at

∂cr(x)
∂xi

− ∂cr(x)
∂xj

= xi
∂cr−1(x)

∂xi
− xj

∂cr−1(x)
∂xj

= xi
∂cr−1(x)

∂xi
− xj

∂cr−1(x)
∂xi

+ xj
∂cr−1(x)

∂xi
− xj

∂cr−1(x)
∂xj

= (xi − xj)
∂cr−1(x)

∂xi
+ xj

(
∂cr−1(x)

∂xi
− ∂cr−1(x)

∂xj

)
.
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From this and (3.2), it follows that

(xi−xj)
(

∂cr(x)
∂xi

−∂cr(x)
∂xj

)
= (xi−xj)2 ∂cr−1(x)

∂xi
+xj(xi−xj)

(
∂cr−1(x)

∂xi
−∂cr−1(x)

∂xj

)
� 0.

Thus, by mathematical induction method, inequality (3.1) is true. And therefore, the
proof is complete.

REMARK 2 . R. F. Muirhead established the following theorem.

MUIRHEAD’S THEOREM. ([5, p. 87; 15, p. 44]) If yk > 0, k = 1, 2, ..., n , a, b ∈ Rn

and a ≺ b, then ∑
π

ya1
π(1)...y

an
π(n) �

∑
π

yb1
π(1)...y

bn
π(n),

where
∑
π

denotes summation over the n! permutations of 1, 2, ..., n, and π(1)...π(n)

is a permutation of 1, 2, ..., n.

This theorem implies that for fixed yk(1 � k � n) , φ(a) =
∑
π

ya1
π(1)...y

an
π(n) is

Schur-convex in a ∈ Rn. Thus, one can easily find that Theorem 3.1 is different from
it.

THEOREM 3.2. The function φr(x) = cr(x)
cr−1(x)

is Schur-convex in Rn
+ , and is in-

creasing in xi , i = 1, 2, ..., n, where r � 1 is a positive integer.

Proof. It is obvious that φr(x) is symmetric and has continuous partial derivatives
in Rn

+ . Differentiating φr(x) with respect to xi , we have

∂φr(x)
∂xi

=
1

(cr−1(x))2

[
cr−1(x)

∂cr(x)
∂xi

− cr(x)
∂cr−1(x)

∂xi

]
.

Using Lemma 2.6 and computing, we obtain

∂φr(x)
∂xi

− ∂φr(x)
∂xj

=
1

(cr−1(x))2

[
cr(x̄j)

∂cr−1(x)
∂xi

− cr(x̄i)
∂cr−1(x)

∂xi

]
.

Simply calculation shows that

∂cr(x)
∂xi

= cr−1(x) + xi
∂cr−1(x)

∂xi
= cr−1(x) + xi

[
cr−2(x) + xi

∂cr−2(x)
∂xi

]

= cr−1(x) + xicr−2(x) + x2
i
∂cr−2(x)

∂xi
= · · ·

= cr−1(x) + xicr−2(x) + x2
i cr−3(x) + ... + xr−2

i c1(x) + xr−1
i .

(3.3)

From Lemma 2.6 and (3.3), it follows that

∂φr(x)
∂xi

= (cr−1(x)cr−1(x) − cr(x)cr−2(x))

+ xi((cr−1(x)cr−2(x) − cr(x)cr−3(x))

+ · · · + xr−2
i (cr−1(x)c1(x) − cr(x)c0(x)) + cr−1(x)xr−1

i .

(3.4)
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And so

∂φr(x)
∂xi

−∂φr(x)
∂xj

=
1

(cr−1(x))2
{[cr−(x) − xjcr−1(x)][cr−2(x) + xjcr−3(x)

+ x2
j cr−4(x)+ · · ·+xr−3

j c1(x)+xr−2
i ]−[cr(x)−xicr−1(x)]×

× [cr−2(x)+xicr−3(x)+x2
i cr−4(x)+ · · ·+xr−3

i c1(x)+xr−2
i ]}

=
1

(cr−1(x))2
{[cr−1(x)cr−2(x) − cr(x)cr−3(x)](xi − xj)

+ [cr−1(x)cr−3(x) − cr(x)cr−4(x)](x2
i − x2

j ) + · · ·
+ [cr−1(x)c1(x) − cr(x)c0(x)](xr−2

i − xr−2
j )

+ cr−1(x)(xr−1
i − xr−1

j )}.

(3.5)

It follows Lemma 2.2 that

cr−1(x)
cr(x)

>
cr−3(x)
cr−2(x)

,
cr−1(x)
cr(x)

>
cr−4(x)
cr−3(x)

, · · · ,
cr−1(x)
cr(x)

>
c0(x)
c1(x)

. (3.6)

By (3.4) and (3.6), we have

∂φr(x)
∂xi

� 0, i = 1, 2, · · · , n.

Which shows that φr(x) is increasing with respect to xi (i = 1, 2, · · · , n).
It is obvious that

(xi − xj)(xk
i − xk

j ) � 0 (1 � k � r − 1). (3.7)

From (3.5), (3.6) and (3.7), it follows that

(xi − xj)
(

∂φr(x)
∂xi

− ∂φr(x)
∂xj

)
� 0.

Thus, by Lemma 2.1, φr(x) is Schur-convex in Rn
+ , and therefore the proof is complete.

THEOREM 3.3. Assume that xi > 0, i = 1, 2, · · · , n, and
∑n

i=1 xi = s, c > 0, then

(i) cr(c − x)
cr(x)

� (
nc
s
− 1)

cr−1(c − x)
cr−1(x)

(c � s), (3.8)
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(ii) cr(c + x)
cr(x)

�
(nc

s
+ 1
) cr−1(c + x)

cr−1(x)
. (3.9)

Proof. (i) By Theorem 3.2 and Lemma 2.3, we have φr

(
c−x
nc
s −1

)
� φr(x) , which

implies (3.8).
(ii) From Theorem 3.2 and Lemma 2.4, it follows that φr( c+x

s+nc ) � φr( x
s ). Simpli-

fying get (3.9).

The unweighted arithmetic and geometric means of x , denoted by An(x), Gn(x) ,
respectively, are defined as follows

An(x) =
1
n

n∑
i=1

xi, Gn(x) =

(
n∏

i=1

xi

) 1
n

.

For 0 < xi � 1
2 , i = 1, 2, · · · , n, the following inequality

Gn(x)
Gn(1 − x)

� An(x)
An(1 − x)

, (3.10)

commonly referred to as the Ky Fan inequality [11, p. 5] has stimulated an interest
of many researchers. New proofs, improvements and generalizations of the inequality
(3.10). See, for example, [13, 14] and the references cited therein. Now we shall
investigate it further.

Using Theorem 3.3, one can easily establish the following results.

COROLLARY 3.1. Suppose that xi > 0,
∑n

i=1 xi = s, and c � s. Then

cr(c − x)
cr(x)

�
(nc

s
− 1
) cr−1(c − x)

cr−1(x)

�
(nc

s
− 1
)2 cr−2(c − x)

cr−2(x)

� · · · �
(nc

s
− 1
)r c0(c − x)

c0(x)
=
(nc

s
− 1
)r

.

(3.11)

REMARK 3 . Let c = 1 , i.e.,
∑n

i=1 xi � 1 , we can establish the following converse
Ky Fan type inequality An(x)

An(1 − x)
�
(

cr(x)
cr(1 − x)

) 1
r

.

COROLLARY 3.2. Assume that xi > 0,
∑n

i=1 xi = s, and c � 0. Then

cr(c + x)
cr(x)

�
(nc

s
+ 1
) cr−1(c + x)

cr−1(x)

�
(nc

s
+ 1
)2 cr−2(c + x)

cr−2(x)

� · · · �
(nc

s
+ 1
)r c0(c − x)

c0(x)
=
(nc

s
+ 1
)r

.

(3.12)
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In particular, let c = 1 , it follows from (3.12) that

An(x)
An(1 + x)

�
(

cr(x)
cr(1 + x)

) 1
r

.

THEOREM 3.4. Assume that 0 < xi � 1
2 , i = 1, 2, · · · , n. Then

cn(1 − x)
cn(x)

� · · · � cr(1 − x)
cr(x)

� cr−1(1 − x)
cr−1(x)

� · · · � c1(1 − x)
c1(x)

=
An(1 − x)

An(x)
.

(3.13)

Proof. By Theorem 3.2, one see that φr(x) = cr(x)
cr−1(x)

is an increasing function in

A = {x = (x1, x2, · · · , xn)|0 < xi < 1} . This together with the relation 1 − x � x
yields that

φr(1 − x) � φr(x).

Which shows that
cr(1 − x)

cr(x)
� cr−1(1 − x)

cr−1(x)
.

Thus, (3.13) holds and so the proof is complete.

4. Note on the generalized r− th order symmetric mean

In this section, we prove that the inequality (1.7) holds for n > 2 , and furthermore
generalizes (1.7).

THEOREM 4.1. Assume that xi > 0, i = 1, 2, · · · , n, n � 2 , then

Dr−2(x)Dr+2(x) − Dr−1(x)Dr+1(x) � 0, ∀ r � 2. (4.1)

Proof. Using Lemma 2.5, we can obtain

D2
r (x) � Dr−1(x)Dr+1(x), D2

r−1(x) � Dr−2(x)Dr(x), D2
r+1(x) � Dr+1(x)Dr+2(x).

Simply calculation shows that

Dr−2(x)Dr+2(x) − Dr−1(x)Dr+1(x) � 0.

And so the proof is complete.

We can also establish the following more general result than Theorem 4.1.

THEOREM 4.2. Assume that xi > 0, i = 1, 2, · · · , n, n � 2 , then

Dr−s−1(x)Dr+s+1(x) − Dr−s(x)Dr+s(x) � 0 (0 � s < r). (4.2)
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Proof. From Lemma 2.5, it follows that

D2
r−s(x) � Dr−s−1(x)Dr−s+1(x),

D2
r−s+1(x) � Dr−s(x)Dr−s+2(x),

· · · · · · · · · · · · · · · · · · · · · · · ·
D2

r+s−1(x) � Dr+s−2(x)Dr+s(x),

D2
r+s(x) � Dr+s−1(x)Dr+s+1(x).

Multiplying the two hands of the above inequalities respectively, and simplifying arrives
at (4.2). Thus, the proof is complete.

REMARK 4 . In [1] the following problem was posed

Dr−s(x)Dr+s(x) − Dr−s−1(x)Dr+s+1(x) � 0 (0 � s < r).

By Remark 1, we find that it is mistake.

Acknowledgment. The author is very grateful to the referee for her (his) valuable
suggestions for the improvement of this paper.
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