athematical
nequalities
& Papplications
Volume 9, Number 4 (2006), 567-576

SCHUR-CONVEXITY OF THE COMPLETE SYMMETRIC FUNCTION
KAIZHONG GUAN

(communicated by 1. Olkin)

Abstract. This paper investigates Schur-convexity of the complete symmetric function c¢,(x) =
i crx)

cril X) ’
integers and r > 1. Some inequalities, including Ky Fan type inequality, are established by use
of the theory of majorization. It is also concerned with an open problem proposed by Menon [1].

it in . _ . . .
iitotig—r X1 Xy and the function ¢(x) = where ij,...,ip are non-negative

1. Introduction and notation

Let x=(x1,x2,...,x,) be a positive sequence and R, ={x = (x1,x2, ..., x,)|[x; > 0,
i=1,..,n.}. The r—th elementary symmetric function [L1, p. 33; 5, p. 81] is defined

as r
e, =e(x) =El(x) = Z Hxij, r=1,2,..,n (1.1)
1< < <. <ip <n j=1

Define eg(x) = 1, then e,(x) is the coefficient of # in the polynomial [}, (1 + x;7),
that is, e, satisfies the equation

n

’Zlertr = H(l + xit).
r=0

i=1

Using this method, Whiteley [10] defined the Whitely’s symmetric function e (x) by
the following equation

+oo
S T =
r=0

The author proved that for s > 0,

[T, (1 +x2)5, s>0,

H;:l(l —xit)s, s < 0.

1 1
1

1 1
(7@ +»)" = (1rw) "+ (1) (1.2)
and the inequality sign (1.2) is reversed for s < 0.
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The complete symmetric function [1; 5, p. 81; 8, p. 105] which is Whiteley’s
symmetric function as s = —1 reads as follows

cr=c(x) = Cl(x) = Z Xl (1.3)

i1 +...+ip=r

where iy, iy, ...,1, are non-negative integers, and co(x) = 1. It has been investigated
by many mathematicians and some interesting results are obtained. See, for example,
[1-3, 5, 8-10, 12] and the references cited therein. In particular, it follows, from (1.2),
that (also see [12])

(C,[[] (a+ b))% < (c,[ﬂ (a))% + (c}ﬂ (b))% . (1.4)

Which shows that the function (c,(x))* is convex in R". It is obvious that (c,(x))7 is
symmetric. Thus, by the proposition of C. 2 in [5, p. 67] ( see also [9]), the function

(¢,(x))7 is Schur-convex. It is well known [5] that the function e,(x) and ef:(f&) are

Schur-concave in R’} . Thus, a problem arises naturally: whether the functions c¢,(x)

and ¢,(x) = C:':(lx(l) (r > 1) are Schur-convex? This paper will be concerned with it in
section 3.
On the other hand, K. V. Menon [1] defined the generalized r— th order symmetric
mean as follows
D,(x) = D)) = (7)€, (15)

r+n—1) _ (n+r—1)!

where ("] EGE

The author proved that for n variables and for r = 1,2, 3,
D,_i(a)D,;1(a) — D*(a) > 0. (1.6)

1979, D. W. Detemple and J. M. Robertson [2] proved that when n = 2 the
inequality (1.6) is true for all » € N = {1,2,...}. The question whether inequality
(1.6) is valid for r > 4 and for n > 3 was published in [3] and [8] and solved by Guan
in [4].

By Theorem 2 of [2], one can easily prove that when n = 2,

D;_2(x)Dyy2(x) — Dy (x)Dypy1(x) 20, V r>=2. (1.7)

Thus, the problem raises naturally: whether or not the inequality (1.7) holds for n > 2.
This paper will also deal with it in section 4.

REMARK 1. The inequality of Theorem 11 in [1] is written as
D, _1(x)Dyy1(x) — Dy—2(x)Dyy2(x) 20, V r>2.

There may be misprint. As matter of fact, let r =2 , x; = 1 and x, = 2, simply
calculation shows that Dy (x) = 3, Dy(x) = £, D3(x) = £, and D4(x) = 3. Thus,

Dl(x)D3(x) — DQ(X)D4()C) = % — 35—1 < 0.

The main purpose of this paper is to prove that the functions ¢,(x) and Cfflx&

are Schur-convex in R . Some inequalities, including Ky Fan type inequality, are
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established by use of the theory of majorization. We also show that inequality (1.7)
holds for n > 2.

The Schur-convex function was introduced by I. Schur in 1923 [5], and has many
important applications in analytic inequalities. Hardy, Littlewood and Pélya were also
interested in some inequalities that are related to Schur-convex functions [6]. The
following definitions can be found in many references such as [3, 3, 8|.

For fixed n > 2, let

X = (xla-x27"'7xﬂ)a y: (y17y2a"'ayn)

be two n-tuples of real numbers. And let
X[1] Z X 2 - ZX[u]s V1] Z V2] Z - Z V)
be their ordered components.
DEFINITION 1.1. The n-tuple x is said to be majorized by y (in symbols x < y),
if

Sox <Y oy, m=1,2,.,n—1; (1.8)
i=1 i=1

and

Zx[,-] = Zy[,-]. (1.9)
i=1 i=1

DEFINITION 1.2. A real-valued function ¢ defined on a set  C R" is said to be
Schur-convex function on Q if

x=<y on Q= ¢(x) <P).

If, in addition, ¢(x) < ¢(y) whenever x < y but x is not a permutation of y, then
¢ is said to be strictly Schur-convex on Q. ¢ is Schur-concave function on Q if and
only if —¢ is Schur-convex function; ¢ is a strictly Schur-concave function on € if
and only if —¢ is strictly Schur-convex function on Q.

DEFINITION 1.3. f : R" — R is called monotonic increasing function if

x<y=f(x) <f),

where x < y implies that x; < y;,i =1,2,...,n.

2. Lemmas

In order to verify our main results, the following lemmas are necessary.

LEMMA 2.1. ([5,p. 57]) Assume that f (x) = f (x1,X2, ..., %,) is symmetric, and
has continuous partial derivatives on I", where I is an open interval. Then f : I" — R
is Schur-convex if and only if

7) 7)
(X,‘ 7Xj) <a—£’ - a—i]) Z 0 (21)

on I". Itis strictly Schur-convex if (2.1) is a strict inequality for x; # x;, 1 <i,j <n.
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The inequality (2.1) is commonly referred to as Schur’s condition. f : I" — R
is Schur-concave if and only if the inequality sign of (2.1) is reversed. In Schur’s
condition, the domain of f (x) does not have to be a Cartesian product /", Lemma 2.1
remains true if we replace I" by aset A C R" with the following properties ([3, p. 57]):

(i) A is convex and has a nonempty interior;

(ii) A is symmetric in the sense that x € A implies Px € A for any n X n
permutation matrix P.

LEMMA 2.2. ([1]) If 0 < r < s. Then
(i) er(a)es—1(a) > cr—1(a)es(a),

1

(it) (e (@) = (es(a)s.

LEMMA 2.3. ([7]) Assume that x; > 0,i = 1,2,...,n,Y . x; = s, and ¢ > s.
Then

c—x c—x c—an) ( )
= X1y X2, ey Xp) = X.
% 1 % — la ) % 1 15A25 «eey

LEMMA 2.4. ([7]) Suppose that x; > 0,i =1,2,...,n,> " x; =s, and ¢ > 0.
Then

c+x <c+x1 c+x c+xn) - (xl Xa x,,) X

s+ nc s+nc’s+nc’ s+ nc s’ s’ s s

LEMMA 2.5. ([4]) Assume that a = (a1, az,...,a,), a; >0,i=1,2,...n, n>2
and that r > 1 is an integer. Then

D;(a) < Dy—1(a)Dy+1(a).

LEMMA 2.6. Suppose that x; > 0,i=1,2,...,n and let

Xi = ()C], vy Xi— 15 Xit 1, -~-7-xn)-
Then
cr(x) = xicr—1(x) + ¢, ().
Proof. Tt is easy to see that
cr(x) = Z Xxin = x4 e () A (R,
i +ix+...+ip=r

and
r1(X) =X X T2 () F e+ o (5.
There follows that

cr(x) = xicr—1(x) + ¢, (%3).



SCHUR-CONVEXITY OF THE COMPLETE SYMMETRIC FUNCTION 571

3. Schur-convexity of the functions c,(x) and c,(x)/c,—;(x)

In this section, we investigated Schur-convexity of the complete symmetric function
¢r(x) and the function c¢,(x)/c,—1(x). As its applications, some analytic inequalities,
including Ky Fan type inequality, are established.

i in
x| ..xrisa

THEOREM 3.1. The complete symmetric function ¢,(x) =32, . _,
Schur-convex function in R"_, and is increasing in x;,i = 1,2,....,n

Proof. We firstly prove that ¢,(x) is an increasing function with respect to x;. As
matter of fact, it follows from Lemma 2.6 that

Jc(x) Ocr—1(x)
i e
Using inductive method yields that
9 S 0i—1.2...n
8x,-

Which shows that ¢,(x) is an increasing functionin x;,i = 1,2,....n
Now we prove that ¢,(x) is a Schur-convex function in R, . It is clear that c,(x)
is symmetric and have continuous partial derivatives in R" . By Lemma 2.1, we only

need to prove that
ey (x) 30,()6) Sy
- ) > 3 .
() (2522 G ) 0 (3.1)

This can be obtained by induction.
(i) When r = 2, differentiating ¢,(x) with respect to x;, we obtain

Ocy(x 8c,
3)5,-) =cr—1(x) + x; 1 Zxk—i—x,

() (252 - agy) — (i) >0

(ii) Assume that (3.1) is true for r — 1, that is,

And so

Ocr—1(x)  Ocr—1(x) .
= x; - > : .
Rl R Y 32)
Then, still by Lemma 2.6, it follows that
dc,(x) dcr—1(x) Jc,(x) Ocr—1(x)
ox; €r-1(¥) + i Ox; and ox; cr1(x) + ox;
Simply calculation arrives at
dcr(x)  Ocr(x) 7x_3cr,1(x) _Ocrmi(x)
Ox; ox; 1 Ox & Ox;
ZXiacr,l(x) _ j@cr,l( X) xjacr,l(x) 7xj80,,1(x)
Oox; Oox; Ox; Ox;

o Ocr—1(x) _ Ocr—1(x) B Ocr—1(x)
B (XI xJ) 8X,' + A ( 8X,' 3xj '
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From this and (3.2), it follows that

o) (G- = o S et (B R)

> 0.

Thus, by mathematical induction method, inequality (3.1) is true. And therefore, the
proof is complete.

REMARK 2. R. F. Muirhead established the following theorem.
MUIRHEAD’S THEOREM. ([5, p. 87; 15, p. 44]) If y» > 0,k=1,2,...,n, a,b € R"

and a < b, then
Zy;lfl(l) Zy yn (n)
T

where > denotes summation over the n! permutations of 1,2,...,n, and ©n(1)...7(n)
¥
is a permutation of 1,2,...,n

This theorem implies that for fixed yx(1 < k < n), ¢(a) = Zyn

71,'
Schur-convex in a € R". Thus, one can easily find that Theorem 3.1 1s different from
it.

THEOREM 3.2. The function ¢,(x) = % is Schur-convex in R, and is in-
creasing in x;, i = 1,2,....n, where r > 1 is a positive integer.

Proof. 1t is obvious that ¢.(x) is symmetric and has continuous partial derivatives
in R, . Differentiating ¢,(x) with respect to x;, we have

0¢.(x) 1 o der(x) o lx Ocr—1(x)
ox;  (cr—1(x))? { 1) Ox; /() Ox; ]

Using Lemma 2.6 and computing, we obtain

99, (x)  0¢r(x) _ 1 _\Oc—i(x) e (x)
Ox; ox;  (c—1(x))? cr(%) Ox; cr(%) Ox; ’
Simply calculation shows that
dc,(x) Oermi(x) _ Jer—a(x)
o cr—1(x) + XITC,- =1 (%) + x; | cr—a(x) +x,Txi

o 8c, 2( ) o
=1 (%) + xi¢pa(x) + 7 o (33)
= ¢r—1 (%) + xicr—2(x) + xizc,,3(x) + ... +xf7201(x) + X!

From Lemma 2.6 and (3.3), it follows that
09,
D) _ (e () — e ()

8x,-
+ (et (X)) — e (x)er—a(x)
+o X (emi (Ver (x) = er(@)eo(x)) + e (W)

(3.4)
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And so

20,(x) 90,(x) 1
o 0y (oilx ))2{[ - =g lle—ale) +xer-(x)

+ 220, a(0)+ e (046 2= e (1) —xic 1 (x)] %
X [era(x)xicr 3 () a7, —a(x)+ - xier (0)+2 7]}

7; Cr—1(x)cr—2(x) — cr(x)cr—3(x)|(x; — X; (3.5)
= G Lom1Wer— ) = e x)ers()]0s —x)

+ler—1()er—3(x) = e (W)er—s ()67 — ) + -+
+ler—1()er () = er(¥)co(0)] (672 = x7%)
+em (@) =T}

It follows Lemma 2.2 that

cr—1(x) S c,_3()c)7 cr—1(x) o 4(x)7“. 7c,_l(x) S co(x) (3.6)
cr(x) cr—2(x)7 cr(x) cr—3(x) cr(x) c1(x)
By (3.4) and (3.6), we have
09:(x) >0, i=12,---,n.
8x,-
Which shows that @,(x) is increasing with respectto x; (i = 1,2,--- ,n).
It is obvious that
(xi—xj)(xf—xj’f)20 (I<k<r—1). (3.7)

From (3.5), (3.6) and (3.7), it follows that

e (200080

Thus, by Lemma 2.1, ¢,(x) is Schur-convex in R’ , and therefore the proof is complete.

THEOREM 3.3. Assume that x; > 0,i=1,2,--- ,n, and Z:':lx,- =s,c >0, then
x)
(

(l) c,(c—x) < (E . l)Cr_l(c—

o) . P c=s), (3.8)
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(ii) cr(c+x) < (E N 1) cr—1(c er). (3.9)

cr(x) s cr—1(x)

Proof. (i) By Theorem 3.2 and Lemma 2.3, we have ¢, ( i;_"l) < ¢,(x), which

s

implies (3.8).
(i) From Theorem 3.2 and Lemma 2.4, it follows that ¢, (£25) < ¢,(%). Simpli-
fying get (3.9).

The unweighted arithmetic and geometric means of x, denoted by A, (x), G,(x),
respectively, are defined as follows

An(x) = %Exiy Gn(x) = (Hx,-) .

For 0 <x; < %,i=1,2,---,n, the following inequality

G,(x) An(x)
Gil—%) SA(l—x)

(3.10)

commonly referred to as the Ky Fan inequality [11, p. 5] has stimulated an interest
of many researchers. New proofs, improvements and generalizations of the inequality
(3.10). See, for example, [13, 14] and the references cited therein. Now we shall
investigate it further.

Using Theorem 3.3, one can easily establish the following results.

COROLLARY 3.1. Suppose that x; >0, > " x; =s, and ¢ > s. Then

¢r(c—x) (E B 1) ¢r—1(c —x)

N

cr(x) s cr—1(x)
nc 2¢_2(c—x
<(7-1) c,z_(g(x) : (3:11)

/A

(nc )V colc—x) (nc )’
s colx)  \s '
REMARK 3. Let c =1, 1.e., Z?:l x; < 1, we can establish the following converse
Ky Fan type inequality An(x) _ (%) L
A (1 —x) “\e(l—x)) °

COROLLARY 3.2. Assume that x; > 0, Z?:l xi=s, and ¢ > 0. Then

cr(c+x) < (E n 1) cr—1(c+x)

cr(x) s cr—1(x)
< (%H)z% (3.12)

< (E+1)ric°(c_x) = (E+1)r.

s co(x) s

N
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In particular, let ¢ = 1, it follows from (3.12) that

(e

THEOREM 3.4. Assume that 0 < x; < %, i=1,2,---,n. Then

cn(1—x) oS cr(1 —x) < cr—1(1 —x)

al) 7T el T el (3.13)
< >c1(1—x)_An(1—x)
T al An(x)

Proof. By Theorem 3.2, one see that ¢,(x) = Lfi(l”&) is an increasing function in
A= {x = (x1,x2, -+ ,%)|0 < x; < 1}. This together with the relation 1 —x > x
yields that

¢ (1 —x) = ¢,(x).
Which shows that

(1 —x) < cr—1(1 —x)
ao(x) 7 ei(x)
Thus, (3.13) holds and so the proof is complete.

4. Note on the generalized r— th order symmetric mean

In this section, we prove that the inequality (1.7) holds for n > 2, and furthermore
generalizes (1.7).

THEOREM 4.1. Assume that x; > 0,i=1,2,--- ,n, n > 2, then
D, _2(X)Dyy2(x) — Dr—1(x)Dyy1(x) 20, V r>=2. (4.1)
Proof. Using Lemma 2.5, we can obtain
D} (x) < Dyt (0Dr41 (0), D21 (x) < Dy2(0)D,(x), Dy (x) < Dy (x)Dy42(x):
Simply calculation shows that
D,_5(x)Dyy2(x) — Dr—1(x)Dyy1(x) = 0.
And so the proof is complete.

We can also establish the following more general result than Theorem 4.1.

THEOREM 4.2. Assume that x; > 0,i =1,2,--- .n, n > 2, then

D5 1(x)Dyysi1(x) — Dr—s(x)Dyi5(x) =0 (0 < s < r). (4.2)
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Proof. From Lemma 2.5, it follows that

D%—s (x) < Dy—s—1(xX)Dr—s41 (%),

D%+s71 (x) < Dpys—2 (x)Dr+s (x)7

D%Jrs(-x) < Dpys—1 (x)Dr+s+l ()C)

Multiplying the two hands of the above inequalities respectively, and simplifying arrives
at (4.2). Thus, the proof is complete.

REMARK 4. In [1] the following problem was posed
Dr—s(x)Dr+s ()C) - Dr—s—l(x)Dr+s+l ()C) >0 (O <s< r)'

By Remark 1, we find that it is mistake.
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