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Abstract. We consider some inequalities involving derivatives of non-integer order. These in-
equalities arise naturally when investigating differential equations of fractional order. We find
some bounds for solutions of these inequalities and give some applications.

1. Introduction

Investigating differential equations of fractional order often leads to inequalities
involving derivatives of non-integer order. Many inequalities are available in the litera-
ture for derivatives of integer order [1, 4]. To the contrary, differential inequalities with
fractional derivatives are not well developed. This paper is an attempt to fill this gap.
In particular we are interested in the following inequalities which may be found in [1],
p. 138–141.

THEOREM 1. Let a(t) , q(t) , bj(t) , u(j)(t) , j = 0, ..., k , be nonnegative continuous
functions for t � 0 , and suppose that

u(k)(t) � a(t) + q(t)
k∑

j=0

∫ t

0
bj(s)u(j)(s)ds, t � 0,

where k � 0 is an integer. Then,

u(k)(t) � a(t) + q(t)
∫ t

0
φ1(s) exp

(∫ t

s
φ2(τ)dτ

)
ds, t � 0,

where

φ1(t) = a(t)bk(t) +
k−1∑
j=0

j∑
i=0

u(j)(0)bi(t)
tj−i

(j − i)!
, +

k−1∑
j=0

bk−j−1(t)
j!

∫ t

0
(t−x)ja(x)dx,

φ2(t) := q(t)bk(t) +
k−1∑
j=0

bk−j−1(t)
j!

∫ t

0
(t − x)jq(x)dx.
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THEOREM 2. Let a(t), bj(t), u(j)(t), j = 0, ..., k, be nonnegative continuous
functions for t � 0, with a(t) nondecreasing, and suppose that

u(k)(t) � a(t) +
k∑

j=0

∫ t

0
bj(s)u(k)(s)u(j)(s)ds, t � 0,

where k � 1 is an integer. Then,

u(t) �
a(t) exp

(∫ t
0 ψ1(s)ds

)
1 − ∫ t

0 ψ2(s) exp
(∫ s

0 ψ1(τ)dτ
)
ds

,

while

1 −
∫ t

0
ψ2(s) exp

(∫ s

0
ψ1(τ)dτ

)
ds > 0,

where

ψ1(t) :=
k−1∑
j=0

j∑
i=0

u(j)(0)bi(t)
tj−i

(j − i)!
,

ψ2(t) := a(t)
k∑

j=0

bk−j(t)
tj

j!
.

THEOREM 3. Let bj(t), u(j)(t), j = 0, ..., k, be nonnegative continuous functions
for t � 0, let a(t) be a positive nondecreasing function and suppose that

u(k)(t) � a(t) +
k∑

j=0

∫ t

0
bj(s)u(l)(s)u(j)(s)ds, t � 0,

where k − 1 � l � 0. Then,

u(k)(t) �
a(t) exp

(∫ t
0 ψ3(s)ds

)
1 − ∫ t

0 ψ4(s) exp
(∫ s

0 ψ3(τ)dτ
)
ds

,

while

1 −
∫ t

0
ψ4(s) exp

(∫ s

0
ψ3(τ)dτ

)
ds > 0,

where

ψ3(t) :=
k−1∑
j=0

j∑
i=0

u(j)(0)bi(t)
tj−i

(j − i)!

(
k−1∑
i=l

u(i)(0)
a(t)

ti−l

(i − l)!
+

tk−l

(k − l)!

)
,

ψ4(t) :=
tk−l

(k − l)!

k∑
j=0

bk−j(t)
tj

j!
.
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In this paper, we prove the non-integer order analogues of these inequalities as
well as several other inequalities. Some examples illustrating the applications of these
inequalities are also provided. The reader will notice that our results improve and/or
extend some situations even in the integer order case.

The rest of the paper is organized as follows. In Section 2. we introduce some
preliminaries. In Section 3. we present our results and their proofs. Section 4. is devoted
to some applications.

2. Preliminaries

In this section we introduce some notations, definitions and lemmas which will be
needed later. For more details, we refer the reader to [1] and [5].

We denote by Lp , 1 � p � ∞ , the usual Lebesgue spaces, and by AC([a, b]) the
space of all absolutely continuous functions on [a, b] .

DEFINITION 1. Let f (x) ∈ L1(a, b), the integral

(Iα f )(x) :=
1

Γ(α)

∫ x

a

f (t)
(x − t)1−α dt, x > a,

where α > 0, is called the Riemann-Liouville fractional integral of order α of the
function f .

We also use fα to denote Iα f .

DEFINITION 2. The expression

(Dα f )(x) :=
1

Γ(1 − α)
d
dx

∫ x

a

f (t)
(x − t)α

dt,

where 0 < α < 1 , is called the Riemann-Liouville fractional derivative of order α of
f provided the right-hand side is pointwise defined on (a, b) .

Notice that Dα f (x) = d
dx I

1−α f (x) . For convenience, we use the notation I−α to
denote Dα for α � 0 .

DEFINITION 3. Let 0 < α < 1 . A function f (x) ∈ L1(a, b) is said to have a
summable fractional derivative Dα f on (a, b) if f 1−α ∈ AC([a, b]) .

DEFINITION 4. We define the space Iα(Lp(a, b)) , α > 0 , 1 � p < ∞ , to be the
space of all functions f such that f = Iαϕ for some ϕ ∈ Lp(a, b) .

PROPOSITION 4. If f (x) has a summable fractional derivative Dβ f , 0 � β < 1 ,
on (a, b) , then for α � 0 ,

IαDβ f (x) = fα−β(x) − f 1−β (a)
Γ(α)

(x − a)α−1.

See ([5], p. 48).
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COROLLARY 5. If f (x) has a summable fractional derivative Dα f , 0 � α < 1 ,
on (a, b) , then for 0 � β � α < 1 we have

Dβ f (x) = Iα−βDα f (x) +
f 1−α(a)
Γ(α − β)

(x − a)α−β−1.

Proof. In Proposition 4, replace α by α − β , and replace β by α .

PROPOSITION 6. A function f (x) is in Iα(L1) if and only if f 1−α is absolutely
continuous on [a, b] and f 1−α(a) = 0.

See ([5], Theorem 2.3, p. 43).
The next four lemmas are proven in [1] (Lemma 1.1, Lemma 4.1, Corollary 5.3,

Theorem 10.3, respectively).

LEMMA 7. Let g(t) and f (t) be continuous functions for t � a , let v(t) be a
differentiable function for t � a , and suppose that

v
′
(t) � f (t) + g(t)v(t), t � a,

v(a) � v0.

Then, for t � a ,

v(t) � v0 exp

(∫ t

a
g(s)ds

)
+
∫ t

a
f (s) exp

(∫ t

s
g(τ)dτ

)
ds.

LEMMA 8. Let v(t) be a positive differentiable function satisfying the inequality

v
′
(t) � h(t)v(t) + k(t)vp(t), t ∈ [a, b],

where the functions h and k are continuous functions in [a, b] , and p � 0, p �= 1, is
a constant. Then,

v(t) � exp

(∫ t

a
h(s)ds

)[
vq(a) + q

∫ t

a
k(s) exp

(
−q
∫ s

a
h(τ)dτ

)
ds

]1/q

,

for t ∈ [a, T) , where q = 1 − p and T is chosen so that the expression between the
brackets is positive in the subinterval [a, T) .

LEMMA 9. Let v , f , g and k be non-negative continuous functions in [a, b] . Let
ω be a continuous,non-negative and non-decreasing function in [0,∞) , with ω(0) = 0
and ω(u) > 0 for u > 0 , and let F(t) := max0�s�t f (s) and G(t) := max0�s�t g(s) .
Assume that

v(t) � f (t) + g(t)
∫ t

a
k(s)ω(v(s))ds, t ∈ [a, b].

Then

v(t) � H−1

[
H(F(t)) + G(t)

∫ t

a
k(s)ds

]
, t ∈ [a, T),

where H(v) :=
∫ v

v0

dτ
ω(τ) , 0 < v0 � v , H−1 is the inverse of H and T > a is such that

H(F(t)) + G(t)
∫ t

a k(s)ds ∈ D(H−1) for all t ∈ [a, T).
Let I ⊂ R , and let g1, g2 : I → R \ {0} . We write g1 ∝ g2 if g2/g1 is

nondecreasing in I .
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LEMMA 10. Let f (t) be a positive continuous function in [a, b] , kj(t, s) ,
j = 1, ..., n , are nonnegative continuous functions for a � s � t < b which are
nondecreasing in t for any fixed s , gj(u) , j = 1, ..., n , are nondecreasing continuous
functions in [0,∞) , with gj(u) > 0 for u > 0 and u(t) is a nonnegative continuous
functions in [a, b] . If g1 ∝ g2 ∝ ... ∝ gn in (0,∞) , then the inequality

u(t) � f (t) +
n∑

j=1

∫ t

a
kj(t, s)gj(u(s))ds, t ∈ [a, b],

implies that
u(t) � cn(t), a � t < T

where c0(t) := max0�s�t f (s) ,

cj(t) := G−1
j

[
Gj (cj−1(t)) +

∫ t

a
kj(t, s)ds

]
, j = 1, ..., n,

Gj (u) :=
∫ u

uj

dx
gj(x)

, u > 0, uj > 0,

and T is chosen so that the functions cj(t), j = 1, ..., n , are defined for a � t < T .

LEMMA 11. (Generalized Young’s Inequality) We have, for positive ai , i =
1, . . . , k, the inequality (

k∑
i=1

ai

)n

� kn−1
k∑

i=1

an
i ,

where k and n are integers.

3. Inequalities with derivatives of fractional order

In this section we establish, among other results, the fractional order analogues of
the inequalities presented in Section 2..

THEOREM 12. Assume that a(t), b(t) and c(t) are nonnegative continuous
functions on [0, T] , 0 < T � ∞ . Let u(t) be a nonnegative function having a
summable nonnegative fractional derivative Dαu and satisfying

Dαu(t) � a(t) + b(t)
∫ t

0
c(s)

⎛
⎝ k∑

j=0

Dβju(s)

⎞
⎠

n

ds, t ∈ (0, T), (1)

where n � 1 , β0 = 0 , 0 < βj � α < 1 , 1 � j � k . Then

Dαu(t) � a(t) + b(t)

{(∫ t

0
g(s)ds

)1−n

− (n − 1)
∫ t

0
h(s)ds

}− 1
n−1

(2)

provided that g(t) ∈ L1(0, T) and(∫ t

0
g(s)ds

)1−n ∫ t

0
h(s)ds <

1
(n − 1)

,



582 K. M. FURATI AND N.-E. TATAR

where

g(t) := 2n−1c(t)

⎛
⎝ k∑

j=0

[
u1−α(0)
Γ(α − βj)

tα−βj−1 + aα−βj(t)
]⎞⎠

n

, (3)

and

h(t) := 2n−1c(t)

⎛
⎝ k∑

j=0

bα−βj(t)

⎞
⎠

n

. (4)

Proof. Let us set

ϕ(t) :=
∫ t

0
c(s)

⎛
⎝ k∑

j=0

Dβju(s)

⎞
⎠

n

ds. (5)

Then, clearly ϕ(0) = 0 ,

ϕ
′
(t) = c(t)

⎛
⎝ k∑

j=0

Dβju(t)

⎞
⎠

n

, (6)

and
Dαu(t) � a(t) + b(t)ϕ(t), t ∈ (0, T). (7)

Moreover, it is clear from Corollary 5 that Dβju(t) , j = 1, . . . , k , are nonnegative,
and thus ϕ(t) is nonnegative and nondecreasing.

Now, we would like to estimate the right hand side of (6) in terms of ϕ(t) . By
Corollary 5 we have

Dβju(t) =
u1−α(0)
Γ(α − βj)

tα−βj−1 + Iα−βjDαu(t). (8)

Substituting (8) in (6), then using (7) and Lemma 11, we obtain

ϕ
′
(t)=c(t)

⎛
⎝ k∑

j=0

u1−α(0)
Γ(α − βj)

tα−βj−1 +
k∑

j=0

Iα−βjDαu(t)

⎞
⎠

n

�c(t)

⎛
⎝ k∑

j=0

u1−α(0)
Γ(α−βj)

tα−βj−1+
k∑

j=0

aα−βj(t)+
k∑

j=0

Iα−βj(b(t)ϕ(t))

⎞
⎠

n

(9)

�2n−1c(t)

⎧⎨
⎩
⎛
⎝ k∑

j=0

[
u1−α(0)
Γ(α−βj)

tα−βj−1+aα−βj(t)
]⎞⎠

n

+

⎛
⎝ k∑

j=0

Iα−βj(b(t)ϕ(t))

⎞
⎠

n⎫⎬
⎭ .

Since ϕ(t) is a nondecreasing function, we can write (9) in the form

ϕ
′
(t) � g(t) + h(t)ϕn(t), (10)
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where g and h are as defined by (3) and (4).
Integrating both sides of (10) over (0, t) , we obtain

ϕ(t) � l(t) +
∫ t

0
h(s)ϕn(s)ds, (11)

where l(t) :=
∫ t

0 g(s)ds . Note that g(t) is nonnegative and thus max0�s�t l(s) = l(t) .
Applying Lemma 9 (with ω(v) = vn ) we infer that

ϕ(t) � H−1

[
H(l(t)) +

∫ t

0
h(s)ds

]
,

where H(v) = v1−n

1−n − v1−n
0

1−n and H−1(z) =
[
v1−n
0 − (n − 1)z

]− 1
n−1 . That is

ϕ(t) �
{

l(t)1−n − (n − 1)
∫ t

0
h(s)ds

}− 1
n−1

(12)

as long as

l(t)n−1
∫ t

0
h(s)ds <

1
(n − 1)

.

Our result follows from (7) and (12).

REMARK 1 . The assumption g(t) ∈ L1(0, T) is added in the statement of the
theorem to ensure that max0�s�t l(s) exists. This is needed to apply Lemma9. However,
this condition is not really restrictive when the βj are not "very close" to α . Indeed,
since a(t) is continuous then for Iα−βja(t) ∈ Ln(0, T) we have

(i) if α − βj � 1 − 1/n for all j = 1, . . . , k, then n(α − βj − 1) + 1 � 0 and
thus g(t) ∈ L1(0, T) ,

(ii) if α − βĵ < 1 − 1/n for some 1 � ĵ � k then we need this condition which
in fact will involve c(t) . This condition arises here in the noninteger case because we
are allowing u(t) to be singular at 0 .

COROLLARY 13. If, in addition to the hypotheses of Theorem 12, u is continuous
in the right neighborhood of 0 or that u ∈ Iα(L1) , then g(t) reduces to

g(t) = 2n−1c(t)

⎛
⎝ k∑

j=0

aα−βj(t)

⎞
⎠

n

.

Proof. This follows from Proposition 6.

For n = 1 we have the following inequality.
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THEOREM 14. Assume that a(t) , b(t) and c(t) are nonnegative continuous
functions on [0, T] , 0 < T � ∞ . Let u(t) be a nonnegative function having a
summable nonnegative fractional derivative Dαu and satisfying

Dαu(t) � a(t) + b(t)
∫ t

0
c(s)

⎛
⎝ k∑

j=0

Dβju(s)

⎞
⎠ ds, t ∈ (0, T), (13)

where β0 = 0 , 0 < βj � α < 1 , 1 � j � k . Then

Dαu(t) � a(t) + b(t)
∫ t

0
g(s) exp

(∫ t

s
h(τ)dτ

)
ds (14)

where

g(t) = c(t)
k∑

j=0

[
u1−α(0)
Γ(α − βj)

tα−βj−1 + aα−βj(t)
]

, (15)

and

h(t) = c(t)
k∑

j=0

bα−βj(t). (16)

Proof. This follows by applying Lemma 7 to (10).

For the next theorem we need the following notation

M1(t) : = c(t)
k∑

j=1

u1−α(0)
Γ(α − βj)

tα−βj−1,

M2(t) : = c(t)
k∑

j=1

Iα−βja(t),

M3(t) : = c(t)
k∑

j=1

tα−βj

Γ(α − βj + 1)
.

THEOREM 15. Let a(t) and c(t) be nonnegative continuous functions on [0, T] .
Let u(t) be a nonnegative function having a summable nonnegative fractional derivative
Dαu and

Dαu(t) � a(t) +
∫ t

0
c(s)Dαu(s)

k∑
j=1

Dβju(s)ds, t ∈ (0, T), (17)

where 0 < βj � α < 1 and k is an integer.
(a) If a(t) is nondecreasing, then

Dαu(t) � a(t) exp

(∫ t

0
M1(s)ds

)[
1 −
∫ t

0
M2(s) exp

(∫ s

0
M1(τ)dτ

)
ds

]−1

,
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for t ∈ (0, T1), where T1 is the largest value of t for which

1 −
∫ t

0
M2(s) exp

(∫ s

0
M1(τ)dτ

)
ds > 0.

(b) If a(t) is nonincreasing, then

Dαu(t) � a0 exp

(∫ t

0
M1(s)ds

)[
1 − a0

∫ t

0
M3(s) exp

(∫ s

0
M1(τ)dτ

)
ds

]−1

,

for t ∈ (0, T2) , where a0 := a(0) and T2 is the largest value of t for which

1 − a0

∫ t

0
M3(s) exp

(∫ s

0
M1(τ)dτ

)
ds > 0.

Proof. (a) Suppose first that a(t) is positive and nondecreasing. Then,

Dαu(t)
a(t)

� 1 +
∫ t

0
c(s)

Dαu(s)
a(s)

k∑
j=1

Dβju(s)ds. (18)

Let ψ(t) denote the right hand side of (18). Then ψ(0) = 1 ,

Dαu(t) � a(t)ψ(t),

and

ψ ′(t) = c(t)
Dαu(t)
a(t)

k∑
j=1

Dβju(t) � c(t)ψ(t)
k∑

j=1

Dβju(t). (19)

Since ψ is nondecreasing, by Corollary 5 we have

Dβju(t) = Iα−βjDαu(t) +
u1−α(0)
Γ(α − βj)

tα−βj−1

� Iα−βj(a(t)ψ(t)) +
u1−α(0)
Γ(α − βj)

tα−βj−1

� ψ(t) Iα−βja(t) +
u1−α(0)
Γ(α − βj)

tα−βj−1. (20)

Inserting (20) into (19) we obtain

ψ ′(t) � c(t)ψ(t)
k∑

j=1

(
ψ(t)Iα−βj a(t) +

u1−α(0)
Γ(α − βj)

tα−βj−1

)

� M1(t)ψ(t) + M2(t)ψ2(t).

Using Lemma 8 with p = 2 we deduce that

ψ(t) � exp

(∫ t

0
M1(s)ds

)[
1 −
∫ t

0
M2(s) exp

(∫ s

0
M1(τ)dτ

)
ds

]−1
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as long as 1 − ∫ t
0 M2(s) exp

(∫ s
0 M1(τ)dτ

)
ds > 0 . Consequently,

Dαu(t) � a(t) exp

(∫ t

0
M1(s)ds

)[
1 −
∫ t

0
M2(s) exp

(∫ s

0
M1(τ)dτ

)
ds

]−1

,

for t ∈ (0, T1) where T1 is the largest value of t for which

1 −
∫ t

0
M2(s) exp

(∫ s

0
M1(τ)dτ

)
ds > 0.

If a(t) is nonnegative then we carry out the same argument with a(t) + ε , for
some ε > 0 , and then let ε tend to zero.

(b) If a(t) is nonincreasing function and a(0) = a0 , then (17) can be written in
the form

Dαu(t) � a0 +
∫ t

0
c(s)Dαu(s)

k∑
j=1

Dβju(s)ds. (21)

Denoting the right hand side of (21) by ϕ(t), we have Dαu(t) � ϕ(t) and ϕ(0) = a0 .
By differentiation we get

ϕ′(t) = c(t)Dαu(t)
k∑

j=1

Dβju(t) � c(t)ϕ(t)
k∑

j=1

Dβju(t)

and we proceed as in the first part of the proof.

For the next theorem we need the following notation

M1(t)=
u2

1−α(0)
Γ(α − γ )

c(t)
a(t)

tα−γ−1

⎛
⎝ k∑

j=1

tα−βj−1

Γ(α − βj)

⎞
⎠

M2(t)=
u1−α(0) c(t)

a(t)

⎧⎨
⎩Iα−γ a(t)

k∑
j=1

tα−βj−1

Γ(α−βj)
+

tα−γ−1

Γ(α−γ )

k∑
j=1

Iα−βja(t)

⎫⎬
⎭ ,

M3(t)=
c(t)
a(t)

Iα−γ a(t)
k∑

j=1

Iα−βja(t),

(22)

and

M4(t)=
u2

1−α(0)
Γ(α − γ )

c(t)tα−γ−1

⎛
⎝ k∑

j=1

tα−βj−1

Γ(α − βj)

⎞
⎠ = a(t)M1(t),

M5(t)=u1−α(0) c(t)

⎧⎨
⎩ tα−γ

Γ(α−γ+1)

k∑
j=1

tα−βj−1

Γ(α−βj)
+

tα−γ−1

Γ(α−γ )

k∑
j=1

tα−βj

Γ(α−βj+1)

⎫⎬
⎭ ,

M6(t)=
c(t)tα−γ

Γ(α − γ + 1)

k∑
j=1

tα−βj

Γ(α − βj + 1)
.

(23)
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THEOREM 16. Let a(t) and c(t) be nonnegative continuous functions on [0, T] .
Let u(t) be a nonnegative function having a summable nonnegative fractional derivative
Dαu and

Dαu(t) � a(t) +
∫ t

0
c(s)Dγ u(s)

k∑
j=1

Dβju(s)ds, t ∈ (0, T), (24)

where 0 < γ � α < 1 and 0 < βj � α < 1 , j = 1, . . . , k .
(a) If a(t) is nondecreasing, then

Dαu(t) � a(t)
(

1 +
∫ t

0
M1(s)ds

)
exp

(∫ t

0
M2(s)ds

)
[
1 −
(

1 +
∫ t

0
M1(s)ds

)
exp

(∫ t

0
M2(s)ds

)∫ t

0
M3(s)ds

]−1

for t ∈ (0, T1) , where T1 is the largest value of t for which the bracket is positive.
(b) If a(t) is nonincreasing, then

Dαu(t) �
(

a0 +
∫ t

0
M4(s)ds

)
exp

(∫ t

0
M5(s)ds

)
[
1 −
(

a0 +
∫ t

0
M4(s)ds

)
exp

(∫ t

0
M5(s)ds

)∫ t

0
M6(s)ds

]−1

for t ∈ (0, T2) , where T2 is the largest value of t for which the bracket is positive.

Proof. (a) Suppose first that a(t) is positive and nondecreasing. Then,

Dαu(t)
a(t)

� 1 +
∫ t

0
c(s)

Dγ u(s)
a(s)

k∑
j=1

Dβju(s)ds. (25)

Let ψ(t) denote the right hand side of (25). Then ψ(0) = 1 ,

Dαu(t) � a(t)ψ(t), (26)

and

ψ ′(t) = c(t)
Dγ u(t)
a(t)

k∑
j=1

Dβju(t). (27)

Since ψ is nondecreasing, by Corollary 5 we have

Dγ u(t) = Iα−γDαu(t) +
u1−α(0)
Γ(α − γ )

tα−γ−1

� Iα−γ (a(t)ψ(t)) +
u1−α(0)
Γ(α − γ )

tα−γ−1

� ψ(t) Iα−γ a(t) +
u1−α(0)
Γ(α − γ )

tα−γ−1. (28)
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Similarly,

Dβju(t) � ψ(t) Iα−βja(t) +
u1−α(0)
Γ(α − βj)

tα−βj−1, j = 1, . . . , k. (29)

Inserting (28) and (29) into (27) we obtain

ψ ′(t) � c(t)
a(t)

(
ψ(t)Iα−γ a(t) +

u1−α(0)
Γ(α − γ )

tα−γ−1

)

×
k∑

j=1

(
ψ(t)Iα−βj a(t) +

u1−α(0)
Γ(α − βj)

tα−βj−1

)
(30)

� M1(t) + M2(t)ψ(t) + M3(t)ψ2(t), (31)

where M1 , M2 , and M3 are as in (22).
By integrating (30) we obtain

ψ(t) � 1 +
∫ t

0
M1(s)ds +

∫ t

0
M2(s)ψ(s)ds +

∫ t

0
M3(s)ψ2(s)ds.

Applying Lemma 10 with

c0 = 1 +
∫ t

0
M1(s)ds,

c1(t) = c0(t) exp
∫ t

0
M2(s)ds,

c2(t) =
[
c−1
1 (t) −

∫ t

0
M3(s)ds

]−1

,

we get our result.
If a(t) is nonnegative then we carry out the same argument with a(t) + ε , for

some ε > 0 , and then let ε tend to zero.
(b) If a(t) is nonincreasing function and a(0) = a0 , then

Dαu(t) � a0 +
∫ t

0
c(s)Dγ u(s)

k∑
j=1

Dβju(s)ds. (32)

Denoting the right hand side of (32) by ϕ(t) , we have Dαu(t) � ϕ(t) , ϕ(0) = a0 and

ϕ
′
(t) = c(t)Dγ u(t)

k∑
j=1

Dβju(t).

Next, we proceed as in the first part of the proof.

REMARK 2 . If we apply Bihari’s theorem instead with ω(x) = x + x2 and

K(s) = sup{M2(s), M3(s)},
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then we find

ψ(t) � c0(t)
1 + c0(t)

exp

(∫ t

0
sup {M2(s), M3(s)} ds

)

×
[
1 − c0(t)

1 + c0(t)
exp

(∫ t

0
sup {M2(s), M3(s)} ds

)]−1

, 0 � t < T2

where T2 is the largest value of t for which

1 − c0(t)
1 + c0(t)

exp

(∫ t

0
sup {M2(s), M3(s)} ds

)
> 0.

We can take T = max{T1, T2} with the appropriate bound for ψ(t) . This gives a
bound for Dα through (26). The rest of the proof (that is the other case) is similar to
that of Theorem 16.

REMARK 3. Using Lemma 10 we can generalize the inequality (24) to

Dαu(t) � a(t) +
∫ t

0
c(s)

m∑
i=1

(Dγiu(s))ri
k∑

j=1

(
Dβju(s)

)nj
ds

with ri, nj > 1 , i = 1, ..., m, j = 1, ..., k , or further to

Dαu(t) � a(t) +
∫ t

0
c(s)

m∑
i=1

ωi (Dγiu(s))
k∑

j=1

gj

(
Dβju(s)

)
ds

with nondecreasing functions ωi , i = 1, ..., m , and gj , j = 1, ..., k , satisfying the
hypotheses of Lemma 10. Some of the orders γi and βj may be equal to α . This is
going to be established for a slightly different inequality in the next result.

Let us now prove some nonlinear versions of the preceeding inequalities. We
consider the case of several nonlinear integral terms. In particular we will look at
different nonlinearities of power type. Let us first prepare some notation. We denote by

A(t, s) : =
k∑

j=1

2nj−1kj(t, s)
(

Iα−βja(s) +
u1−α(0)
Γ(α − βj)

sα−βj−1

)nj

,

B(t) : =

t∫
0

A(t, s)ds,

lj(t, s) : =
2nj−1

(Γ(α − βj + 1))nj
kj(t, s)snj(α−βj),

c0 = max
0�z�t

B(z),

cj(t) =
{

c
1−nj
j−1 (t) − (nj − 1)

∫ t

0
lj(t, s)ds

}− 1
nj−1

.
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THEOREM 17. Assume that a(t) is a positive continuous function in [0, T) and
kj(t, s) , j = 1, . . . , k , are nonnegative continuous functions for 0 � s � t < T . For
positive integers 1 < n1 � n2 � · · · � nk , and 0 < βj � α < 1 , we suppose that
kj(t, s)snj(α−βj−1) ∈ L1(0,∞) , j = 1, . . . , k , for each fixed t . Let u(t) be a nonnegative
function having a summable nonnegative fractional derivative Dαu and satisfying

Dαu(t) � a(t) +
k∑

j=1

∫ t

0
kj(t, s)

(
Dβju(s)

)nj
ds, t ∈ (0, T). (33)

If kj(t, s) are
(a) nondecreasing in t for any fixed s ,
or
(b) differentiable with respect to the first variable t and are nonincreasing in t for

any fixed s ,
then

Dαu(t) � a(t) + ck(t), 0 � t < T∗,

where T∗ is the largest value of t for which

c
1−nj
j−1 (t)

∫ t

0
lj(t, s)ds <

1
nj − 1

.

Proof. (a) It is clear fromCorollary 5 that Dβju(t) , j = 1, . . . , k , are nonnegative.
Let t̂ < T be fixed. As kj(t, s) are nondecreasing in t for any fixed s , we obtain from
(33) that

Dαu(t) � a(t) +
k∑

j=1

∫ t

0
kj(t̂, s)

(
Dβju(s)

)nj
ds, 0 � t � t̂ < T. (34)

Let us set

ϕ(t) :=
k∑

j=1

∫ t

0
kj(t̂, s)

(
Dβju(s)

)nj
ds.

Then, clearly ϕ(0) = 0 , Dαu(t) � a(t) + ϕ(t) and

ϕ′(t) =
k∑

j=1

kj(t̂, t)
(
Dβju(t)

)nj
.

Using Corollary 5 we obtain

ϕ
′
(t) =

k∑
j=1

kj(t̂, t)
[
Iα−βjDαu(t) +

u1−α(0)
Γ(α − βj)

tα−βj−1

]nj

�
k∑

j=1

kj(t̂, t)
[
Iα−βja(t) + Iα−βjϕ(t) +

u1−α(0)
Γ(α − βj)

tα−βj−1

]nj

.
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By Lemma 11 and since ϕ(t) is nondecreasing we can write

ϕ
′
(t) � A(t̂, t) +

k∑
j=1

lj(t̂, t)ϕnj(t). (35)

Integrating both sides of (35) we find

ϕ(t) �
∫ t

0
A(t̂, s)ds +

k∑
j=1

∫ t

0
lj(t̂, s)ϕnj(s)ds. (36)

This is true for t̂ = t , and thus

ϕ(t) � B(t) +
k∑

j=1

∫ t

0
lj(t, s)ϕnj (s)ds.

The result follows from Lemma 10.
(b) Assume the hypotheses of part (b) in the statement of the theorem. Let

ψ(t) :=
k∑

j=1

∫ t

0
kj(t, s)

(
Dβju(s)

)nj
ds.

Then

ψ ′(t) =
k∑

j=1

kj(t, t)
(
Dβju(t)

)nj
+

k∑
j=1

∫ t

0

∂kj

∂t
(t, s)

(
Dβju(s)

)nj
ds

�
k∑

j=1

kj(t, t)
(
Dβju(t)

)nj
.

The rest of the proof is similar to that in the first part.

REMARK 4 . The condition that kj(t, s) be nonincreasing in t for any fixed s can

be relaxed. In fact we only need that the partial derivative
∣∣∣ ∂kj

∂t (t, s)
∣∣∣ , j = 1, ..., k , be

bounded in t by a continuous function.

In this case, suppose that
∣∣∣ ∂kj

∂t (t, s)
∣∣∣ < Kj(s) , j = 1, ..., k , and let

ϕ̃(t) :=
k∑

j=1

∫ t

0
kj(t, s)

(
Dβju(s)

)nj
ds.

Then we have

ϕ̃
′
(t) =

k∑
j=1

kj(t, t)
(
Dβju(t)

)nj
+

k∑
j=1

∫ t

0

∂kj

∂t
(t, s)

(
Dβju(s)

)nj
ds

�
k∑

j=1

kj(t, t)
(
Dβju(t)

)nj
+

k∑
j=1

∫ t

0
Kj(s)

(
Dβju(s)

)nj
ds.
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Now let

χ1(t) =
k∑

j=1

kj(t, t)
(
Dβju(t)

)nj
,

and

χ2(t) =
k∑

j=1

∫ t

0
Kj(s)

(
Dβju(s)

)nj
ds,

and consequently, we can write ϕ̃
′
(t) � χ1(t) + χ2(t) . For χ1 , using Corollary 5 we

obtain the bound

χ1(t) � g1(t) +
k∑

j=1

lj1(t)ϕ̃nj (t),

where

g1(t) =
k∑

j=1

2nj−1kj(t, t)
[
Iα−βja(t) +

u1−α(0)
Γ(α − βj)

tα−βj−1

]nj

,

and

lj1(t) = 2nj−1kj(t, t)
tnj(α−βj)

Γnj(α − βj + 1)
.

For χ2 we have χ2(0) = 0 and

χ′
2(t) =

k∑
j=1

Kj(t)
(
Dβju(t)

)nj
� g2(t) +

k∑
j=1

lj2(t)ϕ̃nj (t),

where

g2(t) =
k∑

j=1

2nj−1Kj(t)
[
Iα−βja(t) +

u1−α(0)
Γ(α − βj)

tα−βj−1

]nj

,

and

lj2(t) =
2nj−1

Γnj(α − βj + 1)
Kj(t) tnj(α−βj).

Thus we have

χ2(t) �
∫ t

0
g2(s)ds +

k∑
j=1

ϕ̃nj(t)
∫ t

0
lj2(s)ds.

Therefore,

ϕ̃
′
(t) � g(t) +

k∑
j=1

lj(t)ϕ̃nj (t),

where

g(t) = g1(t) +
∫ t

0
g2(s)ds,

and

lj(t) = lj1(t) +
∫ t

0
lj2(s)ds.

Now we can integrate both sides and apply Lemma 10.
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THEOREM 18. Suppose the following conditions hold:
1. a(t) is a positive continuous function in [0, T) ;
2. kj(t, s) , j = 1, . . . , k , are nonnegative continuous functions for 0 � s � t < T

which are nondecreasing in t for any fixed s ;
3. gj(u) , j = 1, . . . , k , are nondecreasing continuous functions in [0,∞) , with

gj(u) > 0 for u > 0 , and w1 ∝ w2 ∝ ... ∝ wn in (0,∞) , where

wj(z(t))=gj (hj(t)z(t)+ej(t)) , hj(t)=
tα−βj

Γ(α−βj+1)
, ej(t)=

u1−α(0)
Γ(α−βj)

tα−βj−1;

4. u(t) is a nonnegative function having a summable nonnegative fractional
derivative Dαu and satisfying

Dαu(t) � a(t) +
k∑

j=1

∫ t

0
kj(t, s)gj

(
Dβju(s)

)
ds, t ∈ (0, T), (37)

where 0 < βj � α < 1 , j = 1, . . . , k .
Then,

Dαu(t) � cn(t), 0 � t � T∗,

where

c0(t) = max
0�s�t

a(s), cj(t) = W−1
j

[
Wj

(
cj−1(t) +

∫ t

0
kj(t, s)ds

)]
,

Wj(z) =
∫ z

zj

dx
wj(x)

, z > 0, zj > 0,

and T∗ is chosen so that the functions cj(t) , j = 1, . . . , k , are defined for 0 � t � T∗ .

Proof. Let â(t) = max0�s�t a(s) and t̂ < T be fixed. As kj(t, s) are nondecreas-
ing in t for any fixed s , we obtain from (37) that

Dαu(t) � â(t̂) +
k∑

j=1

∫ t

0
kj(t̂, s) gj

(
Dβju(s)

)
ds, 0 � t � t̂ < T. (38)

Let

ϕ(t) = â(t̂) +
k∑

j=1

∫ t

0
kj(t̂, s) gj

(
Dβju(s)

)
ds.

Then, clearly ϕ(0) = â(t̂) > 0 , Dαu(t) � ϕ(t) and

ϕ′(t) =
k∑

j=1

kj(t̂, t) gj

(
Dβju(t)

)
.
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Using Corollary 5 and the fact that gj is nondecreasing, we obtain

ϕ
′
(t) =

k∑
j=1

kj(t̂, t) gj

[
Iα−βjDαu(t) +

u1−α(0)
Γ(α − βj)

tα−βj−1

]

�
k∑

j=1

kj(t̂, t) gj [hj(t)ϕ(t) + ej(t)]

=
k∑

j=1

kj(t̂, t) wj (ϕ(t)) .

By integration, we have

ϕ(t) � â(t̂) +
k∑

j=1

∫ t

0
kj(t̂, s) wj(ϕ(s))ds.

This is true for t̂ = t , and thus

ϕ(t) � â(t) +
k∑

j=1

∫ t

0
kj(t, s) wj(ϕ(s))ds.

The result follows from Lemma 10.

REMARK 5 . Similar results may be proved for functions gj such that the corre-
sponding wj are in

F =

⎧⎨
⎩k : R+ → R+

∣∣∣∣∣∣
k nondecreasing,
k(v) > 0 for v > 0,
k(av) � ak(v) for v � 0, a � 1

⎫⎬
⎭ ,

or in

Hrw =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k : R+ → R+

∣∣∣∣∣∣∣∣∣∣

k nondecreasing and continuous,
k(v) > 0 for v > 0,
k(av) � r(a)w(v) for v � 0, a > 0, where,
r(a) nonnegative continuous in R+
w(v) is nondecreasing continuous in R+, w(v) > 0 for v > 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

See Theorem 10.2 and Corollary 10.2–10.5 in [1], p.92.

4. Applications

In this section we illustrate our previous results by some applications. In particular,
we show how to use these results to prove boundedness, global existence and determine
the asymptotic behavior for some families of fractional differential equations.
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Let us consider the following weighted Cauchy-type problem:

Dαu(t) = f (t, u, Dβ1u, Dβ2u, . . . , Dβku), t > 0, 0 < βj � α < 1,

t1−αu(t)|t=0 = u0 ∈ R,
(39)

where f is a continuous (linear or nonlinear) function in all its variables.
Let us define for r > 0 the space

C0
r ([0, h]) :=

{
v ∈ C0((0, h]) : lim

t→0+
trv(t) exists and is finite

}
.

Here C0((0, h]) is the usual space of continuous functions on (0, h] . It turns out
that the space C0

r ([0, h]) endowed with the norm

‖v‖r := max
0�t�h

tr |v(t)|

is a Banach space. Then, we define the space

Cα
1−α([0, h]) = {v ∈ C0

1−α([0, h]) : v(t)

= v0t
α−1 + Iαv∗(t) for some v0 ∈ R, v∗ ∈ C0

1−α([0, h])}
The space (Cα

1−α([0, h]), ‖ · ‖1−α,α) , where ‖v‖1−α,α := ‖v‖1−α + ‖Dαv‖1−α
and α > 1/2 , is also a Banach space.

For functions in Cα
1−α([0, h]) we have the following

PROPOSITION 19. Let 0 < α < 1 . If u ∈ Cα
1−α([0, h]) then u has a summable

derivative Dαu on (0, h) (in the sense of Definition 3).

Proof. Clearly I1−αu ∈ AC([0, h]) since I1−αu = const + I1−α Iαv∗ , for some
v∗ ∈ C0

1−α([0, h]) .

So for solutions of (39) we have

THEOREM 20. If u ∈ Cα
1−α([0, h]) is a solution of (39), then

u(t) = u0t
α−1 + IαDαu.

Proof. From Proposition 19, u has a summable derivative. The result follows
from Proposition 4 and the initial conditions in (39).

Now we prove a boundedness and global existence result for (39).

THEOREM 21. Suppose that

|f (t, u, v1, v2, . . . , vk)| � a(t)+b(t)
∫ t

0
c(s)

⎛
⎝|u(s)|+

k∑
j=1

|vj(s)|
⎞
⎠ ds, t>0, (40)

with nonnegative continuous functions a(t) , b(t) and c(t) . Then, any local solution of
(39) in

(
Cα

1−α([0, T), ‖ · ‖1−α,α
)

is global in time. That is, it exists for all time t > 0 .
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Proof. Following the proof of Theorem 14, we have

|Dαu(t)| � a(t) + b(t)
∫ t

0
g(s) exp

(∫ t

s
h(τ)dτ

)
ds =: L(t)

for all t > 0 , where,

g(t) = c(t)
k∑

j=0

[ |u1−α(0)|
Γ(α − βj)

tα−βj−1 + aα−βj(t)
]

,

and

h(t) = c(t)
k∑

j=0

bα−βj(t).

By Theorem 20, we have

|u(t)| =
∣∣u0t

α−1 + IαDαu
∣∣ � |u0|tα−1 +

1
Γ(α)

∫ t

0
(t − s)α−1L(s)ds.

Therefore u(t) is bounded (away from zero) by a continuous function. Thus u can be
extended for all t > 0 .

If

|f (t, u, v1, v2, . . . , vk)| � a(t) + b(t)
∫ t

0
c(s)

⎛
⎝|u(s)| +

k∑
j=1

|vj(s)|
⎞
⎠

n

ds,

that is in the nonlinear case, then Theorem 12 gives us a bound for u provided that(∫ t

0
g(s)ds

)1−n ∫ t

0
h(s)ds < 1/(n − 1).

In particular, if (∫ ∞

0
g(s)ds

)1−n ∫ ∞

0
h(s)ds < 1/(n − 1),

(which may happen in case u1−α(0) = 0 , which in turn occur when u is continuous in
the right neighborhood of zero), then this implies that the solution u exists for all time
t > 0 .

REMARK 6 . We have similar results for the case

|f (t, u, v1, . . . , vk)| � a(t) +
∫ t

0
c(s)|Dγ u(s)|

k∑
1

|vj(s)|ds,

with 0 < γ � α , and its nonlinear versions.

REMARK 7 . These results are also valid for the “usual” initial condition u(0) = u0

instead of the weighted one in (39).
Now we show how the results in Section 3. can provide information about the

behavior of solutions for large values of t .
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THEOREM 22. Assume that a(t), b(t) and c(t) are nonnegative continuous func-
tions on J = [0, T] , T > 0 , and g(t) ∈ L1(0, T) . If u(t) has a summable nonneg-
ative fractional derivative Dαu , f satisfies (40), and t1−α Iαψ(t) is bounded, where

ψ(t) := a(t) + b(t)
∫ t

0 g(z) exp
(∫ t

z h(τ)dτ
)

dz, then

|u(t)| � C/t1−α , t > 0

for some positive constant C .

Proof. Since u is in (Cα
1−α ([0,∞), ‖ · ‖1−α,α) , we have from Theorem 14 and

20

|u(t)| =
∣∣u0t

α−1 + IαDαu
∣∣

� |u0|tα−1 +
1

Γ(α)

∫ t

0
(t − s)α−1

[
a(s) + b(s)

∫ s

0
g(z) exp

(∫ s

z
h(τ)dτ

)
dz

]
ds

� |u0|tα−1 + Iαψ(t).

Therefore,
t1−α |u(t)| � u0 + t1−α Iαψ(t) < C.

REMARK 8 . In case

|f (t, u, v1, v2, . . . , vk)| � a(t) + b(t)
∫ t

0
c(s)

⎛
⎝|u(s)| +

k∑
j=1

|vj(s)|
⎞
⎠

n

ds

for instance, then we have from Theorem 12 that

ψ(t) = a(t) + b(t)

{(∫ t

0
g(s)ds

)1−n

− (n − 1)
∫ t

0
h(s)ds

}− 1
n−1

.

If
(∫∞

0 g(s)ds
)n−1 ∫∞

0 h(s)ds < 1/(n−1), then ψ(t) � a(t)+Cb(t) for some positive
constant C. Thus

t1−α Iαψ(t) � t1−α Iαa(t) + Ct1−α Iαb(t). (41)

A simple condition assuring boundedness of the right hand side of (41) is

a(t) � C1t
λ1−1e−ω1t, λ1,ω1 > 0

and
b(t) � C2t

λ2−1e−ω2t, λ2,ω2 > 0,

for some positive constants C1 and C2 . Indeed, it suffices to apply the Lemma (See
[2, 3])
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LEMMA 23. If α, λ ,ω > 0 , then for any t > 0, we have

t1−α
∫ t

0
(t − s)α−1sλ−1e−ωsds � Const.

with λ = λ1, λ2 and ω = ω1,ω2 .
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